Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2345-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-2345-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mechanisms of the overturning circulation in the northern Red Sea other than convective mixing
Lina Eyouni
Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Red Sea Global (RSG), Riyadh, Saudi Arabia
Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), Pozzuolo di Lerici, Italy
Nikolaos D. Zarokanellos
Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Balearic Islands Coastal Observing and Forecasting System (SOCIB), Palma de Mallorca, Spain
Burton H. Jones
Biological and Environmental Sciences and Engineering (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Related authors
No articles found.
Florian Volmer Martin Kokoszka, Mireno Borghini, Katrin Schroeder, Jacopo Chiggiato, Joaquín Tintoré, Nikolaos Zarokanellos, Albert Miralles, Patricia Rivera Rodríguez, Manuel Rubio, Miguel Charcos, Benjamín Casas, and Anneke Ten Doeschate
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-451, https://doi.org/10.5194/essd-2025-451, 2025
Preprint under review for ESSD
Short summary
Short summary
We present a unique dataset of underwater measurements collected by an autonomous glider in the western Mediterranean Sea. It reveals how ocean layers mix over seasons and years. Using sensors to detect small scale water movements, we estimated how energy and heat are transferred in the ocean. These data help scientists better understand ocean circulation and climate effects. All files and methods are openly shared to support future research.
Baptiste Mourre, Emma Reyes, Pablo Lorente, Alex Santana, Jaime Hernández-Lasheras, Ismael Hernández-Carrasco, Maximo García-Jove, and Nikolaos D. Zarokanellos
State Planet, 1-osr7, 15, https://doi.org/10.5194/sp-1-osr7-15-2023, https://doi.org/10.5194/sp-1-osr7-15-2023, 2023
Short summary
Short summary
We characterize the signature of an intense storm-induced coastal upwelling along the north-western coast of the Balearic Islands in 2021 using a high-resolution operational prediction model. The upwelling, with a duration of 3 d and a spatial offshore extension of 20 km, led to cross-shore surface temperature differences of up to 6 °C. It was the most intense event of the past 9 years in terms of the impact on temperature and the second-most intense event in terms of cross-shore transports.
Tiziana Ciuffardi, Zoi Kokkini, Maristella Berta, Marina Locritani, Andrea Bordone, Ivana Delbono, Mireno Borghini, Maurizio Demarte, Roberta Ivaldi, Federica Pannacciulli, Anna Vetrano, Davide Marini, and Giovanni Caprino
Earth Syst. Sci. Data, 15, 1933–1946, https://doi.org/10.5194/essd-15-1933-2023, https://doi.org/10.5194/essd-15-1933-2023, 2023
Short summary
Short summary
This paper presents the results of the first 2 years of the Levante Canyon Mooring, a mooring line placed since 2020 in the eastern Ligurian Sea, to study a canyon area at about 600 m depth characterized by the presence of cold-water living corals. It provides hydrodynamic and thermohaline measurements along the water column, describing a water-mass distribution coherent with previous evidence in the Ligurian Sea. The data also show a Northern Current episodic and local reversal during summer.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Cited articles
Abualnaja, Y., Papadopoulos, V. P., Josey, S., Hoteit, I., Kontoyiannis, H., and Raitsos, D. E.: Impacts of Climate Modes on Air-Sea Heat Exchange in the Red Sea, J. Climate, 28, 2665–2681, https://doi.org/10.1175/JCLI-D-14-00379.1, 2015.
Acker, J., Leptoukh, G., Shen, S., Zhu, T., and Kempler, S.: Remotely-sensed chlorophyll a observations of the northern Red Sea indicate seasonal variability and influence of coastal reefs, J. Mar. Syst., 69, 191–204, 2008.
Al Senafi, F., Anis, A., and Menezes, V.: Surface Heat Fluxes over the Northern Arabian Gulf and the Northern Red Sea: Evaluation of ECMWF-ERA5 and NASA-MERRA2 Reanalyses, Atmosphere, 10, 504, https://doi.org/10.3390/atmos10090504, 2019.
Asfahani, K., Krokos, G., Papadopoulos, V. P., Jones, B. H., Sofianos, S., Kheireddine, M., and Hoteit, I.: Capturing a Mode of Intermediate Water Formation in the Red Sea, J. Geophys. Res.-Oceans, 125, e2019JC015803, https://doi.org/10.1029/2019jc015803, 2020.
Beal, L. M., Field, A., and Gordon, A. L.: Spreading of Red Sea overflow waters in the Indian Ocean, J. Geophys. Res., 105, 8549–8564, https://doi.org/10.1029/1999JC900306, 2000.
Biton, E., Gildor, H., and Peltier, W. R.: Red Sea during the Last Glacial Maximum: Implications for sea level reconstruction, Paleoceanography, 23, PA1214, https://doi.org/10.1029/2007PA001431, 2008.
Biton, E., Gildor, H., Trommer, G., Siccha, M., Kucera, M., van der Meer, M. T. J., and Schouten, S.: Sensitivity of Red Sea circulation to monsoonal variability during the Holocene: An integrated data and modelling study, Paleoceanography, 25, PA4209, https://doi.org/10.1029/2009PA001876, 2010.
Bower, A. S. and Farrar, J. T.: Air-Sea Interaction and Horizontal Circulation in the Red Sea, in: The Red Sea, Springer, edited by: Rasul, N. M. A. and Stewart, I. C. F., Springer, 329–342, https://doi.org/10.1007/978-3-662-45201-1_19, 2015.
Bower, A. S. and Furey, H. H.: Mesoscale eddies in the Gulf of Aden and their impact on the spreading of Red Sea Outflow Water, Prog. Oceanogr., 96, 14–39, https://doi.org/10.1016/j.pocean.2011.09.003, 2010.
Cember, R. P.: On the sources, formation, and circulation of Red Sea deep water, J. Geophys. Res.-Oceans, 93, 8175–8191, https://doi.org/10.1029/JC093iC07p08175, 1988.
Chen, C., Li, R., Pratt, L., Limeburner, R., Beardsley, R. C., Bower, A. S., Jiang, H., Abualnaja, Y., Xu, Q., Lin, H., Liu, X., Lan, J., and Kim, T.: Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea, J. Geophys. Res.-Oceans, 119, 1445–1464, https://doi.org/10.1002/2013JC009351, 2014.
Churchill, J. H., Lentz, S. J., Farrar, J. T., and Abualnaja, Y.: Properties of Red Sea coastal currents, Cont. Shelf. Res., 78, 51–61, https://doi.org/10.1016/j.csr.2014.01.025, 2014.
Clifford, M., Horton, C., Schmitz, J., and Kantha, L. H.: An oceanographic nowcast/forecast system for the Red Sea, J. Geophys. Res., 102, 25101–25112, https://doi.org/10.1029/97JC01919, 1997.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicon, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378, 2004.
Edwards, A. J. and Head, S. M.: Red Sea, Key Environments, Pergamon Press, Oxford, ISBN 10:0080288731 1987.
Emery, W. J.: Water types and water masses, in: Encyclopedia of ocean sciences, Elsevier, 3179–3187, https://doi.org/10.1006/rwos.2001.0108, 2001.
Erickson, Z. K., Thompson, A. F., Cassar, N., Sprintall, J., and Mazloff, M. R.: An advective mechanism for deep chlorophyll maxima formation in southern Drake Passage, Geophys. Res. Lett., 43, 10846–10855, https://doi.org/10.1002/2016GL070565, 2016.
Eshel, M. and Naik, N. H.: Climatological Coastal Jet Collision, Intermediate Water Formation, and the General Circulation of the Red Sea, J. Phys. Oceanogr., 27, 1233–1257, https://doi.org/10.1175/1520-0485(1997)027<1233:CCJCIW>2.0.CO;2, 1997.
Eshel, M., Cane, A., and Blumenthal, M. B.: Modes of subsurface, intermediate and deep-water renewal in the Red-Sea, J. Geophys. Res.-Oceans, 99, 15941–15952, https://doi.org/10.1029/94JC01131, 1994.
Eyouni, L., Kokkini, Z., Zarokanellos, N., and Jones, B. H.: Mechanisms of the Overturning Circulation in the Northern Red Sea [Data set], Zenodo [data set], https://doi.org/10.5281/zenodo.16832154, 2025.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment, J. Geophys. Res., 101, 3747–3764, https://doi.org/10.1029/95JC03205, 1996.
Falkowski, P. G., Bartber, R. T., and Smetacek, V.: Biogeochemical Controls and Feedbacks on Ocean Primary Production, Science, 281, 200–206, https://doi.org/10.1126/science.281.5374.200, 1998.
Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Dissolved Oxygen Saturation. A. Mishonov Technical Editor, NOAA Atlas NESDIS 83, NOAA, 38 pp., https://www.ncei.noaa.gov/sites/default/files/2020-04/woa18_vol3.pdf (last access: 3 April 2024), 2019a.
Garcia, H. E., Weathers, K. W., Paver, C. R., Smolyar, I., Boyer, T. P., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J .R.: World Ocean Atlas 2018. Vol. 4: Dissolved Inorganic Nutrients (phosphate, nitrate and nitrate+nitrite, silicate), edited by: Mishonov, A., NOAA Atlas NESDIS 84, NOAA, 35 pp., https://doi.org/10.25923/tzyw-rp36, 2019b.
GEBCO Bathymetric Compilation Group 2021: The GEBCO_2021 Grid – a continuous terrain model of the global oceans and land, NERC EDS British Oceanographic Data Centre NOC, https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f, 2021.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gittings, J. A., Raitsos, D. E., Krokos, G., and Hoteit, I.: Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem, Sci. Rep., 8, 2240, https://doi.org/10.1038/s41598-018-20560-5, 2018.
Hernandez F. and Schaeffer P.: The CLS01 mean sea surface: A validation with the GSFC00.1 surface. Tech. Rep., CLS, Ramonville, St Agne, France, 14 pp., https://www.researchgate.net/profile/Philippe-Schaeffer-2/publication/253141840_The_CLS01_Mean_Sea_Surface_ A_validation_with_the_GSFC001_surface/links/0deec52a6e93 e32a70000000/The-CLS01-Mean-Sea-Surface-A-validation-with-the-GSFC001-surface.pdf (last access: 10 May 2025), 2001.
Iselin, C. O. D.: The influence of vertical and lateral turbulence on the characteristics of the waters at mid-depths, Eos Transactions American Geophysical Union, https://doi.org/10.1029/TR020i003p00414, 1939.
Jain, V., Shankar, D., Vinayachandran, P. N., Kankonkar, A., Chatterjee, A., Amol, P., Almeida, A. M., Michael, G. S., Mukherjee, A., Chatterjee, M., Fernandes, R., Luis, R., Kamble, A., Hegde, A. K., Chatterjee, S., Das, U., and Neema, C. P.: Evidence for the existence of Persian Gulf Water and Red Sea Water in the Bay of Bengal, Clim. Dynam., 48, 3207–3226, https://doi.org/10.1007/s00382-016-3259-4, 2017.
Johnson, K. S., Plant, J. N., Riser, S. C., and Gilbert, D.: Air Oxygen Calibration of Oxygen Optodes on a Profiling Float Array, J. Atmos. Ocean. Tech., 2160–2172. doi 10.1175/JTECH-D-15-0101.1, 2015.
Karnauskas, K. B. and Jones, B. H.: The Interannual Variability of Sea Surface Temperature in the Red Sea From 35 Years of Satellite and In Situ Observations, J. Geophys. Res.-Oceans, 123, 5824–5841, https://doi.org/10.1029/2017JC013320, 2018.
Kheireddine, M., Dall'Olmo, G., Ouhssain, M., Krokos, G., Claustre, H., Schmechtig, C., Poteau, A., Zhan, P., Hoteit, I., and Jones, B. H.: Organic carbon export and loss rates in the RedSea, Global Biogeochem. Cy., 34, e2020GB006650, https://doi.org/10.1029/2020GB006650, 2020.
Krokos, G., Cerovečki, I., Papadopoulos, V. P., Hendershott, M. C., and Hoteit, I.: Processes governing the seasonal evolution of mixed layers in the Red Sea, J. Geophys. Res.-Oceans, 127, e2021JC017369, https://doi.org/10.1029/2021JC017369, 2022.
Kürten, B., Al-Aidaroos, A. M., Kürten, S., El-Sherbiny, M. M., Devassy, R. P., Struck, U., and Sommer, U.: Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea, Prog. Oceanogr., 140, 69–90, https://doi.org/10.1016/j.pocean.2015.11.003, 2016.
Kürten, B., Al-aidaroos, A. M., Kurten, S., El-Sherbiny, M. M., Devassy, R. P., Struck, U., Zarokanellos, N., Jones, B. H., Hansen, T., Bruss, G., and Sommer, U.: Seasonal modulation of mesoscale processes alters nutrient availability and plankton communities in the Red Sea, Prog. Oceanogr., 173, 238–255, https://doi.org/10.1016/j.pocean.2019.02.007, 2019.
Lea, D. J., Mirouze, I., Martin, M. J., King, R. R., Hines, A., Walters, D., and Thurlow, M.: Assessing a new data assimilation system based on the Met Office coupled atmosphere-land-ocean-sea ice model, Mon. Weather Rev., 143, 4678–4694, https://doi.org/10.1175/MWR-D-15-0174.1, 2015.
Longhurst, A.: Toward an Ecological Geography of the Sea. Academic Press, London, https://doi.org/10.1016/B978-012455521-1/50002-4, 2007.
Lozier, M. S.: Evidence for large-scale eddy-driven gyres in the North Atlantic, Science, 277, 361–364, https://doi.org/10.1126/science.277.5324.361, 1997.
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2015.
Manasrah, M. B., Lass, H. U., and Fennel, W.: Circulation and winter deep-water formation in the northern Red Sea, Oceanologia, 46, 5–23, 2004.
Manasrah, R.: The general circulation and water masses characteristics in the Gulf of Aqaba and northern Red Sea, PhD thesis, Meereswissenschaftliche Berichte Institut für Ostsee Forschung Warnemünde, Universität Rostock, https://www.io-warnemuende.de/files/forschung/meereswissenschaftliche-berichte/mebe50_2002_manasreh.pdf (last access: 10 May 2025), 2002.
McGillicuddy, D., Robinson, A., Siegel, D., Jannasch, H. W., Johnsonk, R., Dickey, T. D., McNeil, J., Michaels, A. F., and Knapk, A. H.: Influence of mesoscale eddies on new production in the Sargasso Sea, Nature, 394, 263–266, https://doi.org/10.1038/28367, 1998.
Mohamed, B. and Skliris, N.: Recent Sea level changes in the Red Sea: Thermosteric and halosteric contributions, and impacts of natural climate variability, Prog. Oceanogr., 231, 103416, https://doi.org/10.1016/j.pocean.2025.103416, 2025.
Morcos, S. A.: Physical and Chemical Oceanography of the Red Sea, Oceanogr. Mar. Biol. Annu. Rev., 8, 73–202, 1970.
Morcos, S. A. and Soliman, G. F.: Circulation and deep water formation in the northern Red Sea in winter, L'Océanographie Physique de la Mer Rouge, UNESCO, 91–103, https://www.scirp.org/reference/referencespapers?referenceid=1441017 (last access: 10 May 2025), 1972.
Murray, S. P. and Johns, W.: Direct observations of Bab el Mandab Strait, Geophys. Res. Lett., 24, 2557–2560, https://doi.org/10.1029/97GL02741, 1997.
Papadopoulos, V. P., Abualnaja, Y., Josey, S. A., Bower, A., Raitsos, D. E., Kontoyiannis, H., and Hoteit, I.: Atmospheric forcing of the winter air-sea heat fluxes over the northern Red Sea, J. Climate, 26, 1685–1701, https://doi.org/10.1175/JCLI-D-12-00267.1, 2013.
Papadopoulos, V. P., Zhan, P., Sofianos, S., Raitsos, D. E., Qurbaan, M., Abualnaja, Y., Bower, A., Kontoyannis, H., Pavlidou, A., Asharaf, T. T. M., Zarokanellos, N., and Hoteit, I.: Factors governing the deep ventilation of the Red Sea, J. Geophys. Res.-Oceans, 120, 7493–7505, https://doi.org/10.1002/2015JC010996, 2015.
Patzert, W.: Wind-induced reversal in Red Sea circulation, Deep-Sea Res., 21, 109–121, https://doi.org/10.1016/0011-7471(74)90068-0, 1974.
Pearman, J. K., Ellis, J., Irigoien, X., Sarma, Y. V. B., Jones, B.-H., and Carvalho, S.: Microbial planktonic communities in the Red Sea: high levels of spatial and temporal variability shaped by nutrient availability and turbulence, Sci. Rep., 7, 6611, https://doi.org/10.1038/s41598-017-06928-z, 2017.
Price, J., Weller, R., and Pinkel, R.: Diurnal Cycling' Observations and Models of the Upper Ocean Response to Diurnal Heating, Cooling, and Wind Mixing, J. Geophys. Res., 91, 8411–8427, https://doi.org/10.1029/JC091iC07p08411, 1986.
Quadfasel, D. and Baudner, H.: Gyre-scale circulation cells in the Red Sea, Oceanol. Acta, 16, 221–229, 1993.
Racault, M.-F., Raitsos, D. E., Berumen, M. L., Brewin, R. J. W., Platt, T., Sathyendranath, S., and Hoteit, I.: Phytoplankton phenology indices in coral reef ecosystems: Application to ocean color observations in the Red Sea, Remote Sens. Environ., 160, 222–234, https://doi.org/10.1016/j.rse.2015.01.019, 2015.
Raitsos, D. E., Pradhan, Y., Brewin, R. J. W., Stenchikov, G., and Hoteit. I.: Remote sensing the phytoplankton seasonal succession of the Red Sea, Plos One, 8, e64909, https://doi.org/10.1371/journal.pone.0064909, 2013.
Raitsos, D. E., Brewin, R. J. W., Zhan, P., Dreano, D., Pradhan, Y., Nanninga, G.-B., and Hoteit, I.: Sensing coral reef connectivity pathways from space, Sci. Rep., 7, 9338, https://doi.org/10.1038/s41598-017-08729-w, 2017.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G., Bloom, S., Chen, J., Collinc, D., Conaty, A., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648, https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E., Briggs, N., Bricaud, A., Schmechtig, C., Poteau, A., D'Ortenzio, F., Ras, J., Drapeau, S., Haëntjens, N., and Barbieux, M.: Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: A global analysis of WET Labs ECO sensors, Limnol. Oceanogr.-Meth., 15, 572–585, https://doi.org/10.1002/lom3.10185, 2017.
Sanikommu, S., Toye, H., Zhan, P., Langodan, S., Krokos, G., Knio, O., and Hoteit, I.: Impact of atmospheric and model physics perturbations on a high-resolution ensemble data assimilation system of the Red Sea, J. Geophys. Res.-Oceans, 125, e2019JC015611, https://doi.org/10.1029/2019JC015611, 2020.
Smeed, D.: Seasonal variation of the flow in the strait of Bab al Mandab, Oceanol. Acta, 20, 773–781, 1997.
Smeed, D. A.: Exchange through the Bab el Mandab, Deep Sea Res. Pt. II, 51, 455–474, https://doi.org/10.1016/J.Dsr2.2003.11.002, 2004.
Sofianos, S. and Johns, W.: An Oceanic General Circulation Model OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean, J. Geophys. Res., 107, 3196, https://doi.org/10.1029/2001JC001184, 2002.
Sofianos, S. and Johns, W. E.: An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea, J. Geophys. Res., 108, 1–15, https://doi.org/10.1029/2001JC001185, 2003.
Sofianos, S. and Johns, W. E.: Observations of the summer Red Sea circulation, J. Geophys. Res., 112, C06025, https://doi.org/10.1029/2006JC003886, 2007.
Sofianos, S., Johns, W., and Murray, S. P.: Heat and freshwater budgets in the Red Sea from direct observations at Bab el Mandeb, Deep-Sea Res. Pt. II, 49, 1323–1340, https://doi.org/10.1016/S0967-0645(01)00164-3, 2002.
TEOS, SCOR, and IAPSO: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, UNESCO, Paris, 196 pp., https://unesdoc.unesco.org/ark:/48223/pf0000188170 (last access: 10 May 2025), 2010.
Triantafyllou, G., Yao, F., Petihakis, G., Tsiaras, K. P., Raitsos, D. E., and Hoteit, I.: Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model, J. Geophys. Res.-Oceans, 119, 1791–1811, https://doi.org/10.1002/2013JC009641, 2014.
Werdell, P. J., Franz, B. A., Bailey, S. W., Feldman, G. C., Boss, E., Brando, V. E., Dowell, M., Hirata, T., Lavender, S. J., Lee, Z., Loisel, H., Maritorena, S., Mélin, F., Moore, T. S.. Smyth, T. J., Antoine, D., Devred, E., d'Andon, O. H. F., and Mangin, A.: Generalized Ocean color inversion model for retrieving marine inherent optical properties, Appl. Optics, 52, 2019–2037, https://doi.org/10.1364/Ao.52.002019, 2013.
Williams, R. G. and Meijers, A.: Ocean subduction, in: Encyclopedia of Ocean Sciences, 3rd Edn., edtied by: Cochran, J. K., Bokuniewicz, H. J., and Yager, P. L., Academic Press, Cambridge, Massachusetts, UDA, 141–157, https://doi.org/10.1016/B978-0-12-409548-9.11297-7, 2019.
Woelk, S. and Quadfasel, D.: Renewal of deep water in the Red Sea during 1982–1987, J. Geophys. Res.-Oceans, 101, 18155–18165, https://doi.org/10.1029/96JC01148, 1996.
Yao, F. and Hoteit, I.: Rapid Red Sea Deep Water renewals caused by volcanic eruptions and the North Atlantic Oscillation, Sci. Adv., 4, eaar5637, https://doi.org/10.1126/sciadv.aar5637, 2018.
Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Zhai, P., Köhl, A., and Gopalakrishnan, G.: Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation, J. Geophys. Res.-Oceans, 119, 2238–2262, https://doi.org/10.1002/2013JC009004, 2014a.
Yao, F., Hoteit, I., Pratt, L. J., Bower, A. S., Köhl, A., Gopalakrishnan, G., and Rivas, D.: Seasonal overturning circulation in the Red Sea: 2. Winter circulation, J. Geophys. Res.-Oceans,119, 2263–2289, https://doi.org/10.1002/2013JC009331, 2014b.
Zarokanellos, N. D. and Jones, B. H.: Influences of physical and biogeochemical variability of the central Red Sea during winter, J. Geophys. Res.-Oceans, 126, e2020JC016714, https://doi.org/10.1029/2020JC016714, 2021.
Zarokanellos, N. D., Kürten, B., Churchill, J. H., Roder, C., Voolstra, C. R., Abualnaja, Y., and Jones, B. H.: Physical Mechanisms Routing Nutrients in the Central Red Sea, J. Geophys. Res.-Oceans, 122, 9032–9046, https://doi.org/10.1002/2017JC013017, 2017a.
Zarokanellos, N. D., Papadopoulos, V. P., Sofianos, S., and Jones, B. H.: Physical and biological characteristics of the winter-summer transition in the Central Red Sea, J. Geophys. Res.-Oceans, 122, 6355–6370, https://doi.org/10.1002/2017JC012882, 2017b.
Zarokanellos, N. D., Rudnick, D. L., Garcia-Jove, M., Mourre, B., Ruiz, S., Pascual, A., and Tintoré, J.: Frontal dynamics in the Alboran Sea: 1. Coherent 3D pathways at the Almeria-Oran front using underwater glider observations, J. Geophys. Res.-Oceans, 127, e2021JC017405, https://doi.org/10.1029/2021JC017405, 2022.
Zhai, P., Bower, A. S., Smethie, W. M., and Pratt, J. L.: Formation and spreading of Red Sea Outflow Water in the Red Sea, J. Geophys. Res., 120, 6542–6563, https://doi.org/10.1002/2015JC010751, 2015.
Zhan, P., Subramanian, A. C., Yao, F., and Hoteit, I.: Eddies in the Red Sea: A statistical and dynamical study, J. Geophys. Res.-Oceans, 119, 3909–3925, https://doi.org/10.1002/2013JC009563, 2014.
Zhan, P., Subramanian, A. C., Yao, F., Kartadikaria, A. R., Guo, D., and Hoteit, I.: The eddy kinetic energy budget in the Red Sea, J. Geophys. Res., 121, 4732–4747, https://doi.org/10.1002/2015JC011589, 2016.
Zhang, Z. and Moore, J. C.: Chapter 6: empirical orthogonal functions, in: Mathematical and Physical Fundamentals of Climate Change, edited by: Zhang, Z. and Moore, J. C., Elsevier, Boston, 161–197, https://doi.org/10.1016/B978-0-12-800066-3.00006-1, 2015.
Short summary
This study examines how multiple processes in the northern Red Sea form Red Sea Outflow Water and affect biogeochemical fluxes. Using glider data, wind and air–sea flux reanalysis, and satellite observations, it highlights seasonal evolution. Eddy-driven upwelling exposes cool water to heat loss and evaporation, fueling primary productivity. Circulation patterns block inflows, extend cooling, and subduct water into the ocean interior, influencing regional dynamics.
This study examines how multiple processes in the northern Red Sea form Red Sea Outflow Water...
Special issue