Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1813-2025
https://doi.org/10.5194/os-21-1813-2025
Research article
 | 
26 Aug 2025
Research article |  | 26 Aug 2025

Drivers of high-frequency extreme sea levels around northern Europe – synergies between recurrent neural networks and random forest

Céline Heuzé, Linn Carlstedt, Lea Poropat, and Heather Reese

Related authors

CMIP7 Data Request: Ocean and Sea Ice Priorities and Opportunities
Baylor Fox-Kemper, Patricia DeRepentigny, Anne Marie Treguier, Christian Stepanek, Eleanor O’Rourke, Chloe Mackallah, Alberto Meucci, Yevgeny Aksenov, Paul J. Durack, Nicole Feldl, Vanessa Hernaman, Céline Heuzé, Doroteaciro Iovino, Gaurav Madan, André L. Marquez, François Massonnet, Jenny Mecking, Dhrubajyoti Samanta, Patrick C. Taylor, Wan-Ling Tseng, and Martin Vancoppenolle
EGUsphere, https://doi.org/10.5194/egusphere-2025-3083,https://doi.org/10.5194/egusphere-2025-3083, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Automatic detection of Arctic polynyas using hybrid supervised-unsupervised deep learning
Céline Heuzé and Carmen Hau Man Wong
EGUsphere, https://doi.org/10.5194/egusphere-2025-2747,https://doi.org/10.5194/egusphere-2025-2747, 2025
Short summary
The distribution and abundance of planktonic foraminifera under summer sea ice in the Arctic Ocean
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
Biogeosciences, 22, 2261–2286, https://doi.org/10.5194/bg-22-2261-2025,https://doi.org/10.5194/bg-22-2261-2025, 2025
Short summary
Continued warming of deep waters in the Fram Strait
Salar Karam, Céline Heuzé, Mario Hoppmann, and Laura de Steur
Ocean Sci., 20, 917–930, https://doi.org/10.5194/os-20-917-2024,https://doi.org/10.5194/os-20-917-2024, 2024
Short summary
Unsupervised classification of the northwestern European seas based on satellite altimetry data
Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé
Ocean Sci., 20, 201–215, https://doi.org/10.5194/os-20-201-2024,https://doi.org/10.5194/os-20-201-2024, 2024
Short summary

Cited articles

Ascenso, G., Palcic, G., Scoccimarro, E., and Castelletti, A.: A systematic framework for data augmentation for tropical cyclone intensity estimation using deep learning, Journal of Geophysical Research: Machine Learning and Computation, 1, e2024JH000206, https://doi.org/10.1029/2024JH000206, 2024. a, b
Ayinde, A., Yu, H., and Wu, K.: Sea level variability and modeling in the Gulf of Guinea using supervised machine learning, Sci. Rep., 13, 21318, https://doi.org/10.1038/s41598-023-48624-1, 2023. a
Barzandeh, A., Rus, M., Ličer, M., Maljutenko, I., Elken, J., Lagemaa, P., and Uiboupin, R.: Application of HIDRA2 Deep Learning Model for Sea Level Forecasting Along the Estonian Coast of the Baltic Sea, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3691, 2024. a, b
Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Radu, R., Schepers, D., and Soci, C.: The ERA5 global reanalysis: Preliminary extension to 1950, Q. J. Roy. Meteor. Soc., 147, 4186–4227, https://doi.org/10.1002/qj.4174, 2021. a
Chollet, F. and The Keras Team: Keras, Github [code], https://github.com/fchollet/keras (last access: 11 August 2025), 2015. a
Download
Short summary
Extreme sea levels will worsen under climate change. In northern Europe, what drives these extreme events will not change, so determining these drivers is of use for planning coastal defences. Here, using two machine learning methods on hourly tide gauge and weather data at nine locations around the North and Baltic seas, we determine that the drivers of prolonged periods of high sea level are westerly winds, whereas the drivers of the most extreme peaks depend on the coastline geometry.
Share