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Abstract. Northern Europe is particularly vulnerable to ex-
treme sea level events as most of its large population and
financial and logistical centres are located by the coastline.
Policy-makers need information to plan for near- and longer-
term events. There is a consensus that, for Europe, in re-
sponse to climate change, changes to extreme sea level will
be caused by mean sea level rise rather than changes in its
drivers, meaning that determining current drivers will aid
such planning. Here we determine from explainable AI the
meteorological and hydrological drivers of high-frequency
extreme sea level at nine locations on the wider North Sea–
Baltic Sea coast using long short-term memory (LSTM, a
type of deep recurrent neural network) and the simpler ran-
dom forest regression on hourly tide gauge data. LSTM is
optimised for targeting the excess values or periods of pro-
longed high sea level, random forest, the block maxima, or
most extreme peaks in sea level. Through the permutation
feature of LSTM, we show that the most important drivers
of the periods of high sea level over the region are the west-
erly winds, whereas random forest reveals that the driver of
the most extreme peaks depends on the geometry of the local
coastline. LSTM is the most accurate overall, although pre-
dicting the highest values without overfitting the model re-
mains challenging. Despite being less accurate, random for-
est agrees well with the LSTM findings, making it suitable
for predictions of extreme sea level events at locations with
short and/or patchy tide gauge observations.

1 Introduction

About 50 million people live by the coast in Europe (Neu-
mann et al., 2015). In northern Europe in particular, many
strategically crucial financial and logistical hubs are also lo-
cated by the coast, making population and infrastructure vul-
nerable to extreme sea level events (see the review by van de
Wal et al., 2024, and references therein). As the global cli-
mate warms and the sea level rises, extreme sea level events
are projected to increase in both magnitude and frequency,
especially on the North Sea and Baltic coasts (Vousdoukas
et al., 2017). As recently reviewed by Melet et al. (2024),
there is a consensus that this increase is driven by the shifting
baseline of sea level rise rather than by changes in the mech-
anisms driving the extreme events. This means that identify-
ing these drivers now would aid policy-makers in better plan-
ning of near-term (van den Hurk et al., 2022) and longer-term
(Groeskamp and Kjellsson, 2020) needs for coastal defences.

The drivers of sea level in northern Europe have been ex-
tensively studied with hydrodynamic modelling (see the re-
view in Melet et al., 2024). These models showed that, from
seasonal to multi-decadal scales, variability is primarily con-
trolled by the atmosphere, especially westerly winds (e.g.
Frederikse and Gerkema, 2018; Tinker et al., 2020). Due
to the models’ coarse resolution, especially for the atmo-
sphere, data-driven approaches are more adapted for shorter
timescales. Using daily altimetry data over a small region of
the North Sea, Sterlini et al. (2016) found a similar relation-
ship between sea level and zonal winds but also that the wind
component most important for sea level is strongly depen-
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dent on the coast’s geometry. Sterlini et al. (2017) expanded
their region of study to the entire North Sea and found like-
wise that, for daily sea level, the location influenced whether
meteorological or steric components mattered most. From
hourly tide gauge data, Marcos and Woodworth (2017) found
the same strong relationship between the steric component
and extreme sea level values (although they did not investi-
gate any possible relationship with atmospheric variables).

Globally, some tide gauge records date back to the mid-
1800s (Haigh et al., 2023). This data richness means that
data-driven approaches involving machine learning are an
obvious choice for sea level research. Most often, these meth-
ods aim to forecast non-tidal residuals, using atmospheric
parameters as predictors. For example, Ishida et al. (2020)
reproduced hourly tide gauge data in Osaka, Japan, using a
type of recurrent neural network called long short-term mem-
ory (LSTM; see Sect. 2.4) and reanalysis-based time series of
wind speed, wind direction, sea level pressure, and air tem-
perature, together with global air temperature as a remote
global warming forcing. Hieronymus et al. (2019) used a
similar approach for nine tide gauge stations on the Swedish
coast, except that they used the full spatial fields of the re-
analysis variables instead of time series and showed that the
36 h forecasts they generated were faster and more accurate
than those of the best European hydrodynamics model. Using
the HIDRA2 (Rus et al., 2023) encoder-based deep network
to forecast sea level at five tide gauge stations along the Es-
tonian coast, Barzandeh et al. (2024) found the same result:
machine learning methods produce better forecasts that are
faster than those of state-of-the-art hydrodynamics models.
They do note that the network struggles to reproduce high-
frequency variability, producing overly smooth time series, a
result that Tadesse et al. (2020) also found for daily sea level
globally using random forest.

Predicting extreme values is not a problem unique to sea
level, and therefore the development of machine-learning-
based methods adapted to extreme values is ongoing for
many climate applications. One main direction is to use con-
volutional neural networks on spatial fields, e.g. for pre-
dicting extreme winds (Jiang et al., 2022a), precipitation
(Wilson et al., 2022), sudden stratospheric warming events
(Strahan et al., 2023), or tropical cyclones (Ascenso et al.,
2024). These topics benefit from the fact that researchers
can somewhat easily augment their data by rotating their im-
ages, hence generating new training points (Ascenso et al.,
2024). This cannot be done for 1D time series analysis,
which instead preferably uses LSTM. Recent examples of
this include predicting European river flooding (Jiang et al.,
2022b), storm intensity on the French Atlantic coast (Frifra
et al., 2024), or extreme precipitation at specific locations in
China (Tang et al., 2022). Note that Tang et al. (2022) also
used random forest.

What all of these studies have in common is that their
main objective is to predict extremes rather than identify
what drives them, even though both LSTM and random forest

can be made explainable. They also often rely on networks
that are overly fitted to a specific location and therefore of
limited use to a wider region. Here we develop LSTM and
random forest models to predict and identify the drivers of
sea level around the wider North Sea and Baltic Sea regions,
using hourly tide gauge data as predictands and atmospheric
and hydrological time series as predictors, focusing on ex-
treme sea level only, as we describe in Sect. 2. We present
the results of the LSTM- and random-forest-based analyses
in Sect. 3.1 and 3.2, respectively, before discussing their ap-
plicability to sea level monitoring and coastal defence plan-
ning in Sect. 3.3.

2 Methods

2.1 Hydrographic, meteorological, and hydrological
data

We use hourly tide gauge data from nine stations around
northern Europe (Fig. 1a): three on the North Sea coast (sta-
tion names Lowestoft, Den Helder, and Esbjerg), three in
the Baltic (Ratan/Umeå – hereafter referred to as Umeå –,
Helsinki, and Gedser), and three in the transition between
the two seas, i.e. the Skagerrak/Kattegat (Oslo, Gothen-
burg/Göteborg, and Klagshman/Malmö, hereafter referred to
as Göteborg and Malmö, respectively). For each region, we
tried to select locations that are major population centres
but had to compromise in order to obtain long enough, un-
interrupted time series (Table 1). We also excluded cities
where the water level is artificially controlled by humans,
such as London or Rotterdam, which have flood defence sys-
tems, or Stockholm, which is fed by a reservoir lake. For the
three Swedish cities Göteborg, Malmö, and Umeå, the tide
gauge data were provided by the Swedish Meteorological
and Hydrological Institute; for the other locations, we used
the Global Extreme Sea Level Analysis (GESLA) dataset
version 3, last updated in November 2021 (Woodworth et al.,
2016; Haigh et al., 2023).

To determine the potential drivers of extreme sea level, we
use meteorological and hydrological data. Ideally, we would
have used meteorological time series from weather stations
co-located with the tide gauge stations. Unfortunately, those
are often at different locations, their distribution managed by
different services, and their obtention requiring one to speak
the language of the country in order to understand the down-
load interface. In addition, the time series are often patchy,
missing data at different times to the tide gauge stations.
Therefore, we opted to use ERA5 instead (Hersbach et al.,
2020). The spatial resolution is 0.25° and the temporal reso-
lution hourly; the time period covered 1 January 1940 to 31
December 2023. We use the hourly 10 m u and v components
of the wind, evaporation, total precipitation, mean sea level
pressure, and sea surface temperature. Wind and sea level
pressure have a dynamic effect on the sea level; evaporation
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Figure 1. (a) The nine cities of this study, chosen for their data availability and to cover the three main maritime regions: the North Sea
(green), the Skagerrak/Kattegat (salmon), and the Baltic (grey). (b) Regions used for the creation of the remote predictors: the Icelandic Low
(blue) and Azores High (orange) sea level pressure and the eastern North Atlantic (pink) sea surface temperature.

and precipitation change the amount of water available and,
along with sea surface temperature, contribute to the steric
sea level. We compute the wind speed and direction from the
u and v components. As we want to determine the feasibility
of predicting sea level from in situ stations, for each city and
variable, we use the time series of the ERA5 grid cell clos-
est to the tide gauge station coordinates as provided by the
Swedish Meteorological and Hydrological Institute (SMHI)
or GESLA, similar to what Ishida et al. (2020) did. We also
generate the hourly time series of three “remote” drivers, rep-
resenting the state of the wider North Atlantic climate and its
storminess:

– the hourly spatial-minimum sea level pressure around
Iceland (Fig. 1b, blue), longitudes −30 to −10° E and
latitudes 56 to 66° N;

– the hourly spatial-maximum sea level pressure around
the Azores (Fig. 1b, orange), longitudes −37 to −22° E
and latitudes 32 to 42° N; and

– the hourly spatial-mean sea surface temperature over the
eastern North Atlantic (Fig. 1b, pink), longitudes−40 to
−10° E and latitudes 40 to 60° N.

Note that combining the Icelandic Low and Azores High time
series yields the North Atlantic Oscillation index (e.g. Hur-
rell, 1995).

The last potential driver of extreme sea level used in this
study is hydrological. Data obtention and quality issues are
similar to those of the meteorological data described in the
previous paragraph. We therefore use the river discharge time
series from the Global Runoff Data Centre (GRDC). We
manually selected the station(s) of the rivers that discharge
in the city; some had none, and some had up to three (Ta-
ble 1). The GRDC data are daily, meaning that we linearly
interpolated them to generate hourly data. We acknowledge
that daily mean data are not ideal for detecting and predicting

extreme hourly values of sea level, and we can only lament
the fact that hourly products are not available. Even as daily
means, hydrological data often have a shorter time cover-
age than hydrographic ones (Table 1); for the few locations
around Sweden where we found hourly data, their time cov-
erage was too short and patchy to be of use.

2.2 Further data preparation

We de-tided the tide gauge data using the UTide package for
MATLAB (Codiga, 2024). Although some machine learning
methods have used the tide gauge data, including their tide
signal (e.g. Rus et al., 2023), we chose to remove them as
they are the predictable part of the signal, and we are inter-
ested in explaining the rest.

All of the datasets have been detrended, assuming a linear
trend and using a 95 % significance threshold. The excep-
tions are the u and v components of the wind, which were
first split into their positive (westerly or southerly) and nega-
tive (easterly or northerly) parts such that{

u+ = u if u > 0,

u+ = 0 otherwise,
(1)

and{
u− = 0 if u > 0,

u− = u otherwise.
(2)

Then these positive and negative components were detrended
and used as predictors instead of the u and v components.
The other exception is the wind direction, which was not de-
trended. We purposely keep variables that are correlated with
each other (see Table A1) to test compound events. We ac-
knowledge that this may result in an underestimation of the
importance of the individual predictors. The correlations will
be discussed in the Results section when relevant. The pre-
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Table 1. Maximum time period for which the hydrographic data are available for each city, together with the corresponding hydrological
data: river names, river station numbers in the Global Runoff Data Centre (GRDC), and common time periods of the rivers if there is more
than one. See the Methods and “Data availability” sections. Note that “n/a” stands for “not applicable”.

Station name (country) Sea level period Rivers GRDC station Rivers’ common period

Den Helder (NL) 1932–2017 n/a

Esbjerg (DK) 1950–2019
Kongea 6934370

1934–2023
Ribe 6934350

Gedser (DK) 1892–2012 n/a

Gothenburg/Göteborg (SE) 1968–2022 Säveån 6233326 1979–2023

Helsinki (FI) 1971–2019 Vantaanjoki 6854115 1937–2023

Lowestoft (UK) 1964–2020 Waveney 6606900 1964–2020

Klagshamn/Malmö (SE) 1930–2023
Huje 6233190

1965–2023
Segeå 6233367

Oslo (NO) 1915–2020
Grytbekken 6729360

1968–2018Saternbekken 6729425
Sandvikselva 6729420

Ratan/Umeå (SE) 1892–2023 Umeälven 6233501 1919–2017

dictor short names and their definitions are summarised in
Table 2.

As we describe in Sect. 2.4, we use these data in two types
of machine learning models: LSTM and random forest. Ran-
dom forest requires no data normalisation, so the variables
are used directly after de-tiding and detrending. For LSTM,
we use a min–max normalisation so that all variables are be-
tween 0 and 1. Prior to normalisation, we convert all of the
time series to their absolute values; this only affects u− and
v−. This is to preserve their shape as zero-inflated, heavy-
tailed distributions after normalisation, similar to that of the
other variables.

All of the datasets are in UTC; no re-timing is needed. Any
missing value in the hydrographic or hydrological series was
set to 0. We only select the time period common to all three
data sources (Table 1; ERA5 is 1940–2023). The shortest pe-
riod is 43 years for Göteborg; the longest is 77 years for Den
Helder and Umeå.

2.3 Extreme sea level events – definitions

Two types of events are investigated here:

– peaks in sea level, or absolute maxima of a given block,
for which random forest is most suited (see the Intro-
duction section); and

– prolonged periods of high sea level, for which LSTM is
most suited.

For the first type of event, we select all values in excess of the
mean sea level plus 3 standard deviations (or above 0.75 in
the normalised series used for illustration in Fig. 2). We use a

block size of 7 d: that is, if more than one value is above the
threshold within a 7 d period, we only select the maximum
value. For all of the cities, we obtain 200 to 300 events during
the time period common to all three types of variables (black
stars in Fig. 2).

For the second type of event, we first compute the 30 d
running mean time series and then select the values in that
running mean series that are above its mean plus 3 standard
deviations. The value of 30 d was chosen as a compromise:
it yields enough points for training, it is long enough com-
pared to our hourly data according to extreme value theory
(Ólafsdóttir, 2024), and it is longer than the memory of the
system (2–3 d, Hieronymus et al., 2019). For all of the cities,
we obtain several thousand hourly data points during the time
period common to all three types of variables (red crosses in
Fig. 2).

2.4 Machine learning models: LSTM and random
forest

2.4.1 LSTM and permutation feature importance

Sea level is the result of current and past cumulative forcings.
To take this temporal dependency into account, we use the
type of recurrent neural network (RNN) called long short-
term memory (Hochreiter, 1997). A standard RNN uses as
input not only the predictors at the same time step as the tar-
get, but also its hidden state variables of the previous time
step. Each time the network moves forward, the hidden state
is overwritten. LSTM in contrast uses a set of “gates” to reg-
ulate which information is forgotten and which is stored and
passed as input, allowing the network to build a sophisticated
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Table 2. Summary of the 14 predictors used in this study, by alphabetical order of the short names used in the figures. See Fig. 1 for the
region definitions and Table 1 for the rivers.

Predictor Definition

evap Local value of the evaporation
m.s.l. Local value of the sea level pressure
m.s.l.azo Remote driver, sea level pressure over the Azores High region
m.s.l.ice Remote driver, sea level pressure over the Icelandic Low region
rivers Runoff of the local rivers (if any) summed
sst Local value of the sea surface temperature
sstENA Remote driver, sea surface temperature over the eastern North Atlantic region
tprecip Local value of the total precipitation
u− Local value of the u component of the wind, negative/easterly values only
u+ Local value of the u component of the wind, positive/westerly values only
v− Local value of the v component of the wind, negative/northerly values only
v+ Local value of the v component of the wind, positive/southerly values only
wdir Local value of the wind direction
wspeed Local value of the wind speed

Figure 2. Illustration of the two extreme sea level detection methods, using the complete time series of sea level for Umeå min–max-
normalised after de-tiding and detrending. The 212 black stars are the hourly values detected as peaks and the 5828 red crosses the hourly
values detected as belonging to a period of high sea level. The actual detection is done on the shortened time series and on the non-normalised
series for the peaks (see the text).

combination of all of the past time steps that it considers rel-
evant.

We split the detrended, normalised time series, merging
the prolonged periods of high sea level into a validation set
(first 15 %), a test set (second 15 %), and a training set (last
70 %). We performed a hyperparameter search on the Göte-
borg time series using the following hyperparameter space:

– window size 2, 3, 6, 12, 18, 24, 36, 48, 72, 120, and
168 h;

– number of layers 1, 2, 3, 4, and 5;

– number of units per layer 10, 20, 33, 50, 100, and 200;

– learning rate 0.001, 0.005, and 0.01;

– batch size 20, 50, and 100; and

– dropout rate 0.005, 0.01, and 0.015.

After this hyperparameter search, we settled for a network
with three LSTM layers with a hyperbolic tangent activa-
tion function of 100 units each and one dense layer with a
dropout rate of 0.015 in between each layer. We used the
Keras Python package (Chollet and The Keras Team, 2015).
The input batch size is 20, and the network’s overall learning
rate is 0.01. We found the best performance with a window
of 12 h, except for Helsinki (24 h) and Malmö (36 h). These
short windows were expected given that extreme sea level is
a short-lived event, and they are consistent with the findings
of Hieronymus et al. (2019) for the Swedish coast. The per-
formance for Helsinki was markedly improved by using 10
units per layer and a batch size of 100. These settings min-
imised the mean square error while resulting in a correlation
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between the target and the predicted value of at least 0.81, i.e.
explaining more than two-thirds of the signal. For each city
we then generated 100 models with a random initial state and
selected the best model following these steps:

– The models have equally good mean square errors by
design. We prioritise those that successfully explain
most of the signal and therefore select the subset of
models with a correlation within 0.2 of the maximum
correlation of all 100 models.

– Within this subset, we rank the models based on their
overall root mean square error (RMSE) but also their
RMSE for normalised sea level values larger than 0.66,
as we noticed during training that LSTM struggled to
reproduce these high values without overestimating the
rest of the series.

– We select the model with the lowest sum of these two
ranks; at equal value, we take the one with the highest
correlation.

To determine the contribution of each predictor to the over-
all prediction, we perform a permutation feature importance
test. That is, for each predictor, we run the model again af-
ter having set this predictor to an array of random values.
The difference between the explained variance (correlation
squared) of the default prediction and that with the random
values directly gives the contribution of that predictor to the
signal’s variance.

2.4.2 Random forest and feature importance

To investigate the peaks in more detail, we move away from
neural networks and instead use a method that is simpler but
more adapted to point measurements: a random forest regres-
sion. Random forest is an ensemble of decision or regression
trees, which makes it a preferable method for identifying the
drivers of sea level as the trees directly choose the most rel-
evant predictors at each split. The random forest feature im-
portance is calculated using the Gini importance measure. An
inconvenient aspect is that the feature importance returned by
the trees is relative to the parameters used in the model, un-
like that of LSTM, which is absolute. Another limitation of
random forest is that temporal relationships are not consid-
ered, even though we know that sea level does not only de-
pend on synchronous forcings. We remedy this by providing
as input the predictors (listed in Table 2) at the same hourly
time step as the target sea level values, but also 1, 3, 6, 12,
24, and 48 h as well as 3, 5, and 7 d prior, resulting in a total
of 140 predictors.

We randomly split the values into a training set (80 %) and
a test set (20 %). Here too we performed a hyperparameter
search on the Göteborg series, with the following hyperpa-
rameter space:

– number of trees 100, 200, 500, 1000, and 2000;

– number of splits 1, 2, 3, and 4;

– number of leaves 2, 3, 4, and 5;

– bootstrapping true or false; and

– if bootstrapping true, maximum number of samples 0.1,
0.2, 0.5, 0.75, and 1.

After this hyperparameter search, we chose the settings
that minimised the square error, which was 200 trees with
a minimum of two leaves (minimum leaf samples) and four
splits (minimum split samples), with bootstrapping or “bag-
ging” set to true and the maximum number of samples set to
0.5 (maximum samples). The optimum settings and results
were the same when minimising a weighted mean error to
favour the most extreme values instead. We used the Python
package Scikit-learn (Pedregosa et al., 2011). To determine
the contribution of each predictor to the overall prediction,
we used the built-in regression feature estimator, limiting the
selection to 35 features (i.e. one-fourth of all those possible).
For each city we produced an ensemble of 100 models with
feature estimation and analysed their mean results.

3 Results and discussion

3.1 North-westerly winds contribute most to periods of
prolonged high sea levels

Starting with LSTM applied to periods of high sea levels, the
correlation between the test dataset and its predicted values
is 0.8 or higher for all of the cities (correlation squared in
Table A2). The root mean square error between the test and
prediction is around 5 % for all of the locations except Es-
bjerg (9 %, Table A3). Likewise, the root mean square error
for only the highest third of the values is around 2.5 % for
all of the locations except Esbjerg (4 %, Table A4). We could
not see an obvious reason for Esbjerg’s difference, and the
RMSE there remains acceptably low, so we do not investi-
gate this further.

The feature permutation from LSTM directly returns the
absolute contribution of each predictor to the variance of the
signal. Unsurprisingly, for all of the cities and all of the pre-
dictors, the explained variance is less if a predictor is set to
random values instead of its series (bottom-left triangles in
Fig. 3, Table A2). On average, the northerly and westerly
winds v− and u+ are the first- and second-most important
predictors for the majority of the cities, with v− contributing
more than 50 % of the signal in Gedser, Helsinki, and Low-
estoft (dark red in Fig. 3). Interestingly, these wind values
themselves are not extreme over the periods used by LSTM
(Table 3): for all of the cities, the median of their normalised
values is low to very low, but the series also includes nor-
malised values larger than 0.9. That is, contrary to expecta-
tions, the westerly and northerly winds are not anomalously
weak or strong during periods of prolonged high sea level.
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Table 3. For each city, median± standard deviation, and maximum
value in parentheses, the normalised westerly u+ and northerly v−
wind subsets of the complete time series used as predictors for
LSTM are shown. The normalisation was done on the complete time
series.

City u+ median (max) v− median (max)

Den Helder 0.17± 0.15 (0.92) 0.051± 0.09 (0.78)
Esbjerg 0.14± 0.14 (0.88) 0.001± 0.07 (0.63)
Gedser 0.27± 0.17 (0.89) 0.003± 0.14 (0.86)
Göteborg 0.13± 0.14 (0.81) 0.002± 0.08 (0.67)
Helsinki 0.16± 0.15 (0.90) 0.002± 0.13 (0.67)
Lowestoft 0.22± 0.16 (0.91) 0.003± 0.11 (0.72)
Malmö 0.30± 0.15 (0.78) 0.002± 0.08 (0.59)
Oslo 0.05± 0.10 (0.72) 0.005± 0.07 (0.91)
Umeå 0.12± 0.15 (0.82) 0.000± 0.15 (0.72)

This demonstrates the strength of LSTM, which is capable
of detecting patterns beyond the usual human statistics.

Most of the predictors are important for some cities but
negligible for others. The local evaporation for example con-
tributes 38 % of the variance in sea level for Gedser, 10 %
and 1 % for Helsinki and Umeå (the other two cities in the
Baltic), and 0 % for Malmö, the nearest neighbour. In addi-
tion, in all these cases the evaporation is only weakly or not
at all correlated with the other predictors (Table A1). That
is, its signal is not diffused within the other predictors. Over-
all, the importance of a predictor is not similar for cities in
the same sea, and the importance of remote predictors does
not increase with proximity to their source (e.g. m.s.l.ice con-
tributes 5 % to Umeå and 2 % to Den Helder).

For some predictors, their contribution is negligible re-
gardless of the city, i.e. lower than 10 %. This is the case
with e.g. m.s.l.azo or the southerly winds v+, which is not
surprising given that these variables are rather indicative of
good weather conditions over the region, or with the rivers
with the exception of Oslo (19 %), which may be because
of their original daily resolution. These variables are not
strongly correlated with any of the strong predictors either
(Table A1). Similarly, the strong contribution of sstENA to
Umeå and nowhere else, along with the low correlation of
sstENA with anything except the local sst, suggests rather
that we are missing a potential driver for Umeå that could
be correlated with sstENA, such as the sea ice concentra-
tion or thickness. Unfortunately for weather observations,
the simpler-to-monitor compound variables (m.s.l., wdir and
wspeed) do not contribute significantly more than the indi-
vidual predictors.

Using the root mean square error of the entire prediction
set yields broadly the same results as using the explained
variance (Table A3). Using that of the highest sea level values
RMSE0.66 by contrast gives surprising results: some predic-
tions are improved when a predictor is replaced with random
values (blue top-right triangles in Fig. 3, Table A4). In most

cases, this predictor did not contribute much to the explained
variance anyway, such as the evaporation for Den Helder or
Esbjerg (contributions to the variance R2 of 3 % and 1 %, re-
spectively; RMSE0.66 improved by 19 % and 33 %, Fig. 3)
or the rivers for Malmö (R2 of 3 %; RMSE0.66 improved
by 30 %). These are not strongly correlated with other vari-
ables (Table A1), so this is not an artefact of our method.
More surprisingly, there are also six cases where the north-
westerly winds are the main contributors to the time series,
as described in the previous paragraph, yet removing them
improves the prediction of the highest sea level values. For
v−, these are Den Helder, Gedser, and Malmö; for u+ they
are Göteborg, Lowestoft, and Oslo (Fig. 3).

Our results suggest that periods of prolonged sea level and
peaks in sea level have different drivers, at least in our region
of interest. We investigate this further in the next section, fo-
cusing on the individual most extreme values in sea level for
each city. We also move to a method more adapted to point
measurements: random forest regression.

3.2 The main drivers of the most extreme peaks
depend on the coastline’s geometry

For the extreme peaks of sea level, as expected from the liter-
ature (see the Introduction section), the performance of ran-
dom forest when including all predictors is slightly lower
than that of LSTM for the prolonged periods of high sea
level. The average root mean square error is less than 20 cm
for all of the cities (Table A5) compared to an average non-
normalised sea level anomaly of more than 1 m. The corre-
lation between test and predicted series is around 0.8, except
for Helsinki and Oslo, where it is 0.7. This lower correlation
is most likely because the sea level depths in these cities’
respective bay and fjord are influenced by local weather pro-
cesses that are not captured by ERA5’s comparatively coarse
resolution.

For the extreme peaks of sea level at all of the locations,
there is no predictor in the random forest model that stands
out as most important (Fig. 4), unlike the results for the pe-
riods of high sea level. In fact, the most important drivers
at each location seem related to the local coastline geometry
and geography:

– For Den Helder, Esbjerg, Göteborg, and Lowestoft, the
westerly wind (u+) is most important. This is proba-
bly because all these locations are relatively close to the
source of the main Atlantic storms, especially so Low-
estoft. For Den Helder and Esbjerg, this finding is in
agreement with Sterlini et al. (2016), who argued that
westerly winds indirectly matter because of induced Ek-
man transport that accumulates water on the coast. In
the case of Esbjerg and Göteborg, the north–south orien-
tation of the coastline also makes it vulnerable to west-
erly winds.
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Figure 3. For each city on the x axis, using LSTM, the change in the explained variance (R2, bottom left) and the root mean square error
of the normalised sea level values larger than 0.66 (RMSE0.66, top right) between the default run with all of the predictors and that where
the one predictor on the y axis was set to random values are shown. Red means that the sea level prediction is worse when the predictor
is randomised, blue that the prediction is improved. See Table 2 for the predictor definitions. For readability, we actually show RMSE0.66
normalised by the value of the default run. See Tables A2–A4 for the actual values.

– For Gedser and Malmö, the northerly wind (v−) is most
important, which most likely is because it controls the
flow of water between the Kattegat and the Baltic or
because both stations are protected from the westerlies
by extensive land to the west (Fig. 1).

– For Helsinki and Oslo, it is the local sea level pressure
(m.s.l.) that is most important, probably because both
locations are located deep in their respective fjord or
bay, and therefore they are sheltered from the wind or
the wind components from ERA5 are not representative
of the extreme local weather that can develop in fjords.

– For Umeå, southerly wind (v+) and precipitation are
most important. Similar to Gedser and Malmö, the
meridional wind most likely matters because Umeå lies
on the western coast of its sea and therefore is not af-
fected by westerly winds. Alternatively, since the net-
work also has high importance for precipitation, it could
be because southerly winds bring warm moist air there.

Unlike for LSTM, the values of the predictor variables at
these locations are noticeably different during the peaks of
extreme sea level compared to the rest of the time series (Ta-
ble 4). The westerly wind is more than 5 times stronger than
usual for Den Helder, Esbjerg, Göteborg, and Lowestoft (me-
dians larger than 6 m s−1 compared to the usual 1 m s−1). For
Gedser and Malmö, the northerly wind is more than twice
as strong, reaching a median of 16.5 m s−1 for Gedser. The
sea level pressure is anomalously low in Helsinki and Oslo,
with medians lower than 1000 hPa. Umeå is the one city with
anomalous southerly winds more than 3 times as strong as

Figure 4. For each city on the x axis, using random forest for each
predictor on the y axis, the average importance over the 100 runs
is summed for all of the predictors’ delays (i.e. simultaneous values
and nine delays). See Table 2 for the predictor definitions. See Ta-
ble A6 for the individual values for each delay rather than the sum
and the ensemble standard deviations.

usual. Additionally, for most of the cities, the wind speed is
anomalously high (Table 4). This may be why LSTM could
not predict the most extreme sea level values well: the pre-
dictands have a different distribution at these peaks.
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Table 4. For each city, the median± standard deviation of the sea level pressure (m.s.l., hPa) and the westerly (u+, m s−1), northerly (v−,
m s−1), and southerly (v+, m s−1) winds and wind speeds (wspeed, m s−1) for the subsets of the complete time series used as predictors for
the random forest (“RF” columns, left) are compared to the complete time series (“All” columns, right).

City m.s.l. u+ v− v+ wspeed

RF All RF All RF All RF All RF All

Den Helder 1005± 11 1020± 11 9.8± 4.0 1.3± 3.9 −2.0± 4.8 1.0± 2.9 2.5± 3.4 1.9± 3.3 11.6± 3.1 3.5± 3.4
Esbjerg 1001± 11 1021± 11 7.2± 3.3 0.9± 2.9 −1.6± 2.6 −1.6± 1.9 0.4 ± 3.9 1.3± 2.4 9.8± 2.6 3.4± 2.5
Gedser 1017± 13 1017± 10 3.2± 2.4 1.3± 3.7 −16.5± 3.7 −9.3± 2.1 2.1 ± 0.8 1.3± 2.6 14.3± 2.9 10.5± 3.0
Göteborg 999± 11 1021± 12 7.9± 4.0 1.3± 2.9 −2.4± 2.2 −2.4± 1.7 0.3± 3.5 0.9± 2.5 10.9± 2.7 4.4± 2.5
Helsinki 996± 13 1020± 12 3.9± 2.7 0.7± 1.9 −1.6± 1.5 −1.7± 1.5 1.1± 3.4 0.9± 1.9 7.3± 2.3 3.7± 1.7
Lowestoft 1016± 11 1020± 11 6.5± 3.4 0.6± 3.1 −4.6± 4.8 −0.6± 2.8 2.6± 1.9 1.5± 3.2 6.9± 3.2 2.6± 2.9
Malmö 1017± 13 1017± 11 1.6± 2.6 1.0± 2.7 −9.4± 2.6 −5.7± 1.5 1.6 ± 1.9 1.0± 2.1 7.7± 2.5 6.5± 2.3
Oslo 998± 11 1024± 12 1.1± 1.8 0.3± 1.0 −1.4± 0.8 −1.5± 1.3 2.2 ± 2.5 1.0± 1.5 4.5± 2.0 2.1± 1.3
Umeå 994± 13 1020± 12 4.3± 4.2 1.2± 2.4 0.0± 2.2 0.0± 2.6 6.9± 4.3 2.0± 3.0 9.2± 3.0 4.0± 2.6

In agreement with Sterlini et al. (2017), the steric compo-
nent, represented here by the local sea surface temperature
(sst, Fig. 4), is important for some locations but not as im-
portant as the meteorological component. Similarly, the re-
mote drivers seem more important than for the periods of
prolonged sea level: both m.s.l.azo and m.s.l.ice have some
importance at all of the locations, which is consistent with
the importance of their combined index, the North Atlantic
Oscillation, for extremes in the region (Hurrell, 1995; Melet
et al., 2024). sstENA, which can be considered a proxy for
overall warming, also has a relative importance of more than
20% for more than half of the locations, which is consis-
tent with the local relationship between global warming, the
mean sea level value, and extreme sea levels (Vousdoukas
et al., 2017).

Finally, it is worth noting that the LSTM results when us-
ing the error on the high sea level values (RMSE0.66 in Fig. 3)
and the random forest results (Fig. 4) agree quite well. There
is a minority of cases where removing the predictor from
LSTM improved the performance, even though that predic-
tor is deemed important by random forest (blue triangles in
Fig. 3 and red boxes in Fig. 4, e.g. sea level pressure for Esb-
jerg or westerly wind for Lowestoft). However, in most cases,
either the two methods agree that the predictor is important
for extreme values (red in both figures, e.g. rivers for Helsinki
or wind speed for Malmö) or they both agree that it is not and
can or should be removed from the prediction (blue in Fig. 3
and pale in Fig. 4, e.g. evaporation in Den Helder or m.s.l.azo
in Esbjerg). Therefore, the two methods are more comple-
mentary than they first appeared, as long as one chooses the
most relevant evaluation metric for LSTM.

3.3 Applicability to sea level monitoring

We confirmed, with a data-driven approach and at a higher
temporal resolution, that the hydrodynamics models were
correct: extreme sea level around northern Europe is primar-
ily a result of westerly winds (Melet et al., 2024, and refer-
ences therein). This is excellent news since hydrodynamics

models, despite their many property and process biases, are
to date the best tools for projecting future sea level (Vous-
doukas et al., 2017) and its impacts (van de Wal et al., 2024)
and therefore informing policy-makers. By developing two
machine-learning-based methods for different situations, we
provide a cheaper and faster (Hieronymus et al., 2019) al-
ternative for shorter-term decisions. Although we did not test
this here, it should be feasible to detect an upcoming extreme
peak during a period of high sea level using the disagree-
ment in predictor importance between the two methods dur-
ing such peaks. Since we worked with the non-tidal residuals
of sea level, this method should remain functioning even as
the background sea level increases (Melet et al., 2024) and
tides keep on changing non-linearly (e.g. Idier et al., 2017;
Schindelegger et al., 2018), as long as no tipping point of the
climate system changes the importance of the extreme sea
level drivers. One might however have to change the defini-
tion of the remote drivers as air and oceans warm and storm
tracks shift (Shaw et al., 2016). Future work could also con-
sider developing a hybrid LSTM–random forest model for
extreme sea level, as was done recently for weather forecast-
ing (Magesh et al., 2024).

Although this is common practice (e.g. Hieronymus et al.,
2019; Ishida et al., 2020; Jiang et al., 2022b), a limitation
of this study is the use of reanalysis data instead of mete-
orological observations. Reanalyses, and ERA5 in particu-
lar, are known to underestimate extreme values (Bell et al.,
2021), and they provide multi-kilometre average values in-
stead of those at the location of the tide gauge station. Un-
fortunately, most tide gauge stations do not have co-located
meteorological observations. This is even worse for hydro-
logical observations, which are not at the same location, and,
in this study, for daily averages instead of instantaneous val-
ues. This is probably the reason, surprisingly and contrary to
common knowledge, why our models found that rivers are
not important for extreme sea level. There are also observa-
tions that we wish we could have included but which, to the
best of our knowledge, do not exist for the long time period
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needed for the training, such as the sea ice for Umeå. This
could explain why our predictions never explained all of the
variance in the time series. However, since all of our LSTM
predictions explained more than two-thirds of the signal, we
are confident that we included the main predictors. Relocat-
ing or creating new observation stations is a policy decision.
Policy-makers should also consider whether to relocate or
create new tide gauge stations, as the current ones are often
at locations sheltered from waves (Melet et al., 2024). We
observed that they are sometimes located so deep in the city
centre that the sea level becomes too artificial to be predicted
by atmospheric variables, such as in Bergen on the south-
western Norwegian coast (not shown). Depending on local
vulnerabilities or flood defence systems, other locations on
the nearby coast might be more representative (van de Wal
et al., 2024).

Although our data covered three seas and some stations
were relatively close to each other, we did not find any re-
gional coherence at the hourly timescale, unlike what was
found by Poropat et al. (2024) for the monthly variability.
In fact, locations with similar coastline geometry behaved
very similarly. We acknowledge that our region is compar-
atively large for a machine learning study where single tide
gauge (Ishida et al., 2020) or single sea (Ayinde et al., 2023;
Ruić et al., 2025) series are the norm but still too small for us
to dare extrapolate our findings too much. In the Baltic, Hi-
eronymus et al. (2019) and Barzandeh et al. (2024) demon-
strated the potential of LSTM and CNNs on the western and
eastern coasts, respectively. However, on a larger scale, data
scarcity remains the limiting factor. Although the RMSE was
significantly larger for random forest, amounting to up to
20 % of the sea level value compared to less than 5 % for
LSTM, we still recommend using random forest when tide
gauge observations are short and/or patchy, as we showed
that random forest can work well with individual points, is
extremely fast to train, and mostly agreed with the LSTM
findings.

4 Conclusions

We used explainable AI to identify the drivers of extreme sea
level events around northern Europe from hourly tide gauge
data, hourly reanalysis meteorological time series, and daily
river runoff. We found that periods of high sea levels are
driven by westerly winds, but the short-lived peaks of the
highest sea level values depend on the local coastline ge-
ometry. To the best of our knowledge, this is the first data-
driven confirmation of the results found by hydrodynamic
models (as reviewed in Melet et al., 2024). This means that,
despite their many biases, these model-based projections of
future sea levels can be trusted for policy-making. Our results
also potentially open the way for physics-informed machine-
learning-based sea level predictions.

We found that the more advanced long short-term mem-
ory recurrent neural network performed best, with a correla-
tion with the test time series exceeding 0.8 and a low RMSE,
yet the simpler random forest, despite its higher RMSE, per-
forms well enough to predict and explain the most extreme
sea level values. That is, random forest is suitable for loca-
tions with short and/or incomplete sea level time series. This
is good news as there is no obvious reason why our models
could not be used, with minimum re-training and the poten-
tial addition of more relevant remote drivers (e.g. one indica-
tive of cyclone formation at low latitudes) in other parts of the
world regardless of the status of their tide gauge network. As
Europe’s and the world’s coastline vulnerability to extreme
sea level will only increase with ongoing global-warming-
induced sea level rise (Vousdoukas et al., 2017; van de Wal
et al., 2024), if priority is not given to developing a better
monitoring station network, implementing this simple ran-
dom forest method could be an easy and low-cost way of
detecting and preparing for upcoming peaks in sea level.
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Appendix A

Table A1. For each city, the correlation (R, %) between the time series of the predictors used for LSTM is shown. Only correlations significant
at 95% are shown.

m.s.l. m.s.l.azo m.s.l.ice rivers sst sstENA tprecip u− u+ v− v+ wdir wspeed

Den Helder

evap −26 14 16 – 34 26 – 17 33 19 −8 3 28
m.s.l. −4 8 – 7 15 −16 2 −32 – −26 −8 −49
m.s.l.azo −8 – −22 −29 3 −14 20 11 −4 17 19
m.s.l.ice – 22 32 −5 17 4 19 −36 – −21
rivers – – – – – – – – –
sst 80 – 18 – – −8 −12 −8
sstENA – 26 −7 2 −13 −15 −15
tprecip – – −6 16 −6 10
u− −13 – −8 −64 −18
u+ – −24 31 67
v− −14 23 12
v+ −27 43
wdir 21

Esbjerg

evap −8 −6 4 −15 25 25 6 −18 – −10 12 5 6
m.s.l. −4 23 −45 5 4 −13 12 −36 – −29 −10 −56
m.s.l.azo −23 12 – −32 4 −18 12 −4 5 15 14
m.s.l.ice −21 17 25 −16 – – 13 −33 10 −26
rivers −38 −48 8 −22 27 11 10 28 35
sst 82 – −22 – – – 14 –
sstENA – −8 −11 −6 – – −13
tprecip −6 −9 −11 22 −6 10
u− −11 −10 −12 −71 −11
u+ 21 −19 32 69
v− −17 42 11
v+ −23 47
wdir 19

Gedser

evap −35 – 38 – 22 16 −13 3 23 39 – 15 29
m.s.l. −5 −19 – – −15 −6 −9 −20 – −24 6 −32
m.s.l.azo −4 – −20 −36 – −7 −5 3 9 4 4
m.s.l.ice – 10 24 −8 – 15 24 −22 11 9
rivers – – – – – – – – –
sst 54 13 3 5 – 3 −8 8
sstENA 12 – −9 – 6 −11 −6
tprecip – −13 −12 9 −9 −8
u− −14 – 10 −58 −18
u+ −12 −25 22 82
v− −13 38 5
v+ −35 16
wdir 23
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Table A1. Continued.

m.s.l. m.s.l.azo m.s.l.ice rivers sst sstENA tprecip u− u+ v− v+ wdir wspeed

Göteborg

evap −31 19 – 19 5 −7 7 6 14 10 12 3 26
m.s.l. – – −56 −5 16 −12 −24 −17 −8 −8 6 −20
m.s.l.azo −12 −5 17 – – – 16 −12 3 – 22
m.s.l.ice −27 −8 21 −16 – 18 15 −36 12 −12
rivers 15 −49 17 12 4 – 22 −9 19
sst −19 – – 18 −6 – 9 17
sstENA – −8 −6 4 −13 6 −12
tprecip 5 −14 −9 27 −16 6
u− −12 – 8 −53 –
u+ 4 −39 43 65
v− −15 19 −6
v+ −41 35
wdir 18

Helsinki

evap 19 −18 −15 4 – – 7 −15 – −16 −6 5 −7
m.s.l. −26 −21 −39 −13 −7 −12 −17 −5 – −19 12 −18
m.s.l.azo 8 −7 23 16 8 −11 6 – 10 – 13
m.s.l.ice −11 −15 9 −10 −10 – 20 −11 11 −5
rivers 15 −31 9 – 14 −8 −8 −7 –
sst −39 8 −19 20 −13 14 – 16
sstENA – −7 −15 – 5 – –
tprecip 7 −7 −14 24 −12 13
u− −15 −9 – −65 −11
u+ −18 −6 11 58
v− −14 39 5
v+ −21 62
wdir 9

Lowestoft

evap −7 −12 12 −21 38 35 – – 27 32 – 23 23
m.s.l. – 50 −49 40 33 −16 −13 −29 20 −34 24 −57
m.s.l.azo −45 32 −35 −48 – – 13 −15 6 – 17
m.s.l.ice −47 48 47 −12 – −16 33 −24 20 −34
rivers −62 −66 10 – 27 −17 25 −9 42
sst 94 −7 – – 19 −25 13 −28
sstENA −7 – −8 17 −31 13 −31
tprecip – – −10 20 −19 12
u− – – −7 −15 –
u+ – −7 43 65
v− −12 53 –
v+ −35 61
wdir –
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Table A1. Continued.

m.s.l. m.s.l.azo m.s.l.ice rivers sst sstENA tprecip u− u+ v− v+ wdir wspeed

Malmö

evap 13 −9 – −10 −13 −8 – – −21 3 −8 7 −25
m.s.l. −21 −11 −29 11 −19 −11 −12 −34 – −20 5 −42
m.s.l.azo 11 3 – −5 3 5 4 – 13 −4 12
m.s.l.ice 21 – 15 −11 – 15 30 −29 28 4
rivers 22 52 16 – 11 – 7 – 11
sst 23 – −9 11 −5 – – 8
sstENA 9 – 4 4 3 – 4
tprecip 7 −10 −11 20 −15 –
u− −11 3 – −52 −6
u+ – −15 20 82
v− −14 43 7
v+ −33 33
wdir 10

Oslo

evap 11 – −22 16 – – 24 – −29 −21 17 −13 5
m.s.l. −19 35 −31 −5 15 −13 −27 −19 – −9 18 −29
m.s.l.azo −17 −18 −9 −20 – 4 10 4 −4 – –
m.s.l.ice −26 5 27 −18 −16 9 26 −25 27 −28
rivers 17 – 22 28 −16 −16 19 −21 23
sst 88 5 8 −8 – −5 −6 –
sstENA – – −9 – −11 – −13
tprecip 26 −14 −8 7 −21 11
u− −10 – −4 −22 24
u+ −7 −5 23 30
v− −30 18 −21
v+ −14 82
wdir −15

Umeå

evap −19 19 19 9 16 16 −5 – 21 46 −20 11 29
m.s.l. −22 −16 – −9 – −5 −8 −23 −5 – – −26
m.s.l.azo 19 −11 20 18 8 −8 14 8 −6 9 10
m.s.l.ice – – 11 −7 −19 11 22 −26 11 −6
rivers 39 12 – 7 −6 5 −4 – −6
sst 64 8 −9 – – – 8 –
sstENA 5 −8 −5 7 −10 7 −9
tprecip 16 −12 −14 27 −13 12
u− −22 −13 16 −55 –
u+ – −22 30 51
v− −51 28 10
v+ −34 49
wdir 11
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Table A2. For each city and for LSTM, the explained variance (R2,
%) of the default run with all of the predictors (top row) is shown,
together with each run with feature permutation, where the predictor
was set to random values.

Predictor Den Helder Esbjerg Gedser Göteborg Helsinki Lowestoft Malmö Oslo Umeå

default 68.7 75.3 69.1 76.3 62.5 65.4 62.6 65.8 67.3
evap 65.6 74.5 30.9 63.9 52.5 57.8 62.3 54.7 66.1
m.s.l. 57.6 60.0 45.9 35.5 57.3 58.0 57.2 26.3 61.5
m.s.l.azo 69.8 72.7 68.2 71.1 57.3 60.8 63.4 65.0 67.3
m.s.l.ice 66.7 75.3 58.9 73.4 52.3 43.5 62.4 64.1 61.9
rivers 68.6 73.7 69.1 70.8 60.5 58.3 59.4 46.5 63.6
sst 68.6 75.9 63.2 76.3 18.0 45.9 59.7 60.7 62.8
sstENA 68.7 76.0 49.4 65.4 44.7 47.8 54.6 57.1 15.8
tprecip 53.4 71.7 3.9 64.5 45.7 53.9 45.1 32.1 62.1
u− 30.5 51.7 20.0 37.2 58.3 59.3 52.7 48.8 57.7
u+ 31.7 58.0 35.2 59.1 50.9 39.5 38.0 42.5 61.2
v− 55.0 71.1 13.9 52.5 16.3 9.9 26.1 36.6 48.5
v+ 65.7 72.9 63.5 66.5 66.0 59.0 54.2 59.1 56.7
wdir 65.0 74.0 56.1 75.1 61.4 46.9 60.6 65.9 65.9
wspeed 57.9 69.5 46.1 53.0 50.5 56.7 59.4 48.5 67.5

Table A3. Same as Table A2 but for the overall root mean square error.

Predictor Den Helder Esbjerg Gedser Göteborg Helsinki Lowestoft Malmö Oslo Umeå

default 0.044 0.098 0.062 0.051 0.049 0.052 0.053 0.050 0.052
evap 0.048 0.080 0.187 0.120 0.070 0.050 0.054 0.094 0.059
m.s.l. 0.049 0.102 0.084 0.086 0.051 0.052 0.058 0.080 0.054
m.s.l.azo 0.043 0.087 0.063 0.057 0.052 0.052 0.050 0.050 0.056
m.s.l.ice 0.045 0.096 0.080 0.054 0.049 0.055 0.051 0.052 0.055
rivers 0.044 0.105 0.063 0.057 0.050 0.053 0.061 0.074 0.055
sst 0.044 0.107 0.076 0.051 0.158 0.057 0.063 0.062 0.052
sstENA 0.048 0.112 0.141 0.062 0.120 0.054 0.186 0.074 0.119
tprecip 0.063 0.262 0.152 0.215 0.177 0.054 0.177 0.105 0.065
u− 0.094 0.105 0.141 0.190 0.096 0.055 0.098 0.091 0.083
u+ 0.071 0.175 0.103 0.084 0.058 0.067 0.095 0.124 0.042
v− 0.054 0.140 0.140 0.077 0.090 0.084 0.191 0.108 0.093
v+ 0.051 0.092 0.078 0.063 0.053 0.056 0.080 0.055 0.046
wdir 0.048 0.096 0.099 0.053 0.058 0.058 0.058 0.051 0.054
wspeed 0.050 0.141 0.087 0.074 0.043 0.053 0.055 0.065 0.046
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Table A4. Same as Table A2 but for the root mean square error of the normalised sea level values larger than 0.66 (RMSE0.66).

Predictor Den Helder Esbjerg Gedser Göteborg Helsinki Lowestoft Malmö Oslo Umeå

default 0.024 0.042 0.031 0.026 0.021 0.016 0.012 0.019 0.032
evap 0.019 0.029 0.049 0.025 0.029 0.019 0.015 0.039 0.036
m.s.l. 0.025 0.031 0.033 0.041 0.022 0.016 0.013 0.028 0.033
m.s.l.azo 0.020 0.034 0.032 0.036 0.023 0.016 0.009 0.018 0.035
m.s.l.ice 0.024 0.041 0.033 0.030 0.016 0.018 0.013 0.018 0.036
rivers 0.025 0.043 0.031 0.029 0.024 0.019 0.009 0.035 0.034
sst 0.024 0.047 0.026 0.029 0.050 0.016 0.009 0.016 0.021
sstENA 0.028 0.047 0.034 0.028 0.058 0.017 0.038 0.031 0.081
tprecip 0.028 0.114 0.022 0.044 0.051 0.019 0.019 0.018 0.035
u− 0.058 0.067 0.026 0.076 0.038 0.014 0.007 0.038 0.050
u+ 0.025 0.063 0.035 0.023 0.030 0.010 0.026 0.017 0.025
v− 0.016 0.080 0.027 0.038 0.027 0.016 0.011 0.042 0.062
v+ 0.029 0.041 0.032 0.041 0.023 0.020 0.018 0.019 0.025
wdir 0.027 0.041 0.034 0.024 0.023 0.021 0.013 0.020 0.034
wspeed 0.025 0.048 0.032 0.034 0.020 0.016 0.017 0.019 0.029

Table A5. For each city and for random forest, the mean performance over 100 runs with all predictors (RMSE, m) and the correlation
between the test set and its predicted values are shown.

Den Helder Esbjerg Gedser Göteborg Helsinki Lowestoft Malmö Oslo Umeå

RMSE 0.14 0.19 0.13 0.10 0.10 0.19 0.13 0.12 0.08
Corr (R) 0.86 0.77 0.79 0.79 0.70 0.81 0.76 0.72 0.78
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Table A6. For each city and for random forest, the average feature importance and its standard deviation (%) across the 100 ensemble
members of the random forest regression are shown for each tested delay (second column) of each predictor (first column). No value means
that the feature was never selected as important; see the Methods section.

Predictor Delay (h) Den Helder Esbjerg Gedser Göteborg Helsinki Lowestoft Malmö Oslo Umeå

evap

0 – 1.4± 0.1 2.0± 0.2 – – 2.0± 0.3 2.0± 0.2 1.9± 0.3 –
1 – 1.5± 0.2 2.0± 0.3 – – 1.9± 0.3 1.9± 0.3 2.1± 0.3 –
3 1.3± 0.1 1.7± 0.2 2.1± 0.4 – – 1.9± 0.2 2.1± 0.3 1.9± 0.3 –
6 1.3± 0.2 1.8± 0.2 2.7± 0.5 1.7± 0.3 – 2.1± 0.3 2.1± 0.3 – 1.5± 0.0

12 1.3± 0.2 1.6± 0.2 3.4± 0.6 – 2.1± 0.4 2.6± 0.5 2.0± 0.4 2.0± 0.0 2.0± 0.5
24 – 1.4± 0.1 1.8± 0.4 – 1.9± 0.4 – 2.1± 0.3 – 2.2± 0.5
48 – – 2.1± 0.2 – 2.5± 0.7 2.0± 0.2 2.1± 0.3 1.8± 0.1 1.9± 0.0
72 – – 2.2± 0.3 – 3.6± 1.2 2.0± 0.3 1.4± 0.2 1.7± 0.2 –

120 – 1.5± 0.1 2.1± 0.3 – 2.2± 0.5 – 1.9± 0.1 1.7± 0.2 1.7± 0.1
168 1.3± 0.3 1.1± 0.0 2.1± 0.3 – 2.2± 0.5 – 2.2± 0.4 4.2± 1.1 1.8± 0.3

m.s.l.

0 1.3± 0.1 3.2± 0.4 2.0± 0.3 2.7± 0.5 2.9± 0.8 2.3± 0.2 2.0± 0.3 6.1± 0.9 2.6± 0.6
1 1.3± 0.1 3.6± 0.5 2.2± 0.0 2.9± 0.6 3.1± 0.8 2.4± 0.3 1.9± 0.2 5.2± 0.9 2.8± 0.8
3 1.4± 0.2 4.4± 0.6 1.9± 0.2 2.3± 0.5 3.8± 0.9 2.2± 0.2 – 3.4± 0.6 2.2± 0.4
6 1.6± 0.2 4.9± 0.6 – 2.6± 0.7 4.4± 1.0 2.2± 0.2 1.6± 0.3 2.6± 0.5 2.2± 0.5

12 1.8± 0.2 3.9± 0.6 2.1± 0.3 3.5± 0.9 2.1± 0.4 2.0± 0.2 2.2± 0.3 3.2± 0.7 3.0± 0.8
24 – 2.0± 0.3 2.2± 0.3 2.4± 0.4 2.2± 0.5 2.7± 0.4 2.1± 0.3 1.9± 0.3 2.0± 0.4
48 – 1.7± 0.2 1.7± 0.0 1.4± 0.2 3.3± 1.2 2.5± 0.4 2.0± 0.3 2.1± 0.4 1.9± 0.5
72 1.3± 0.1 1.6± 0.2 – – 4.4± 1.3 2.2± 0.3 – 1.8± 0.2 2.3± 0.5

120 – – 1.9± 0.3 1.4± 0.3 2.2± 0.5 2.2± 0.3 – 1.9± 0.3 2.1± 0.5
168 1.4± 0.2 – 1.9± 0.3 – 1.6± 0.2 3.0± 0.5 2.6± 0.5 1.9± 0.2 2.1± 0.5

m.s.l.azo

0 1.3± 0.1 – 2.0± 0.0 1.5± 0.2 – 2.0± 0.2 1.8± 0.0 – 1.8± 0.5
1 1.3± 0.1 – 1.8± 0.0 1.1± 0.0 1.5± 0.0 2.1± 0.2 – – 1.8± 0.3
3 1.3± 0.1 – 1.8± 0.2 1.8 ± 0.4 1.9± 0.0 2.0± 0.2 – – 1.8± 0.3
6 1.3± 0.2 – 1.9± 0.3 1.6 ± 0.0 – 2.1± 0.2 – 1.8± 0.3 –

12 1.3± 0.2 – 1.9± 0.0 2.0± 0.4 1.8± 0.6 2.2± 0.2 2.3± 0.3 2.1± 0.5 1.2± 0.0
24 1.3± 0.2 1.6± 0.2 2.1± 0.3 1.9± 0.4 2.0± 0.3 2.1± 0.3 2.1± 0.3 2.7± 0.6 1.8± 0.3
48 1.7± 0.3 1.6± 0.2 – 2.3± 0.5 1.5± 0.0 2.2± 0.3 2.4± 0.3 3.0± 0.7 3.4± 0.9
72 1.4± 0.2 1.7± 0.2 – 1.7± 0.2 – 2.0± 0.2 2.2± 0.3 1.9± 0.2 3.0± 1.0

120 – 1.5± 0.2 2.1± 0.3 1.7± 0.3 2.0± 0.5 – 2.1± 0.3 2.0± 0.2 3.0± 0.9
168 – 1.5± 0.0 2.2± 0.3 1.7± 0.4 2.2± 0.5 1.9± 0.0 1.9± 0.2 2.0± 0.3 1.9± 0.3

m.s.l.ice

0 1.2± 0.1 1.5± 0.0 – 1.7± 0.3 2.2± 0.7 2.2± 0.3 – 2.3± 0.4 –
1 1.3± 0.2 1.5± 0.1 1.6± 0.0 1.6± 0.3 2.4± 0.5 2.4± 0.3 2.0± 0.2 2.2± 0.3 –
3 1.3± 0.1 1.4± 0.2 1.9± 0.2 1.9± 0.4 1.6± 0.2 2.7± 0.4 2.0± 0.2 2.2± 0.4 –
6 1.2± 0.1 1.5± 0.2 2.0± 0.3 2.3± 0.4 1.9± 0.2 2.7± 0.4 1.8± 0.0 2.7± 0.5 2.5± 0.0

12 1.3± 0.1 2.0± 0.3 2.2± 0.3 2.6± 0.6 2.0± 0.3 2.0± 0.4 2.1± 0.3 2.0± 0.3 –
24 1.4± 0.2 3.1± 0.5 2.1± 0.3 2.1± 0.4 2.3± 0.5 2.3± 0.3 1.9± 0.2 2.0± 0.3 –
48 – 1.9± 0.3 2.1± 0.3 1.6± 0.3 – 1.9± 0.2 1.9± 0.2 1.9± 0.2 2.1± 0.0
72 1.1± 0.0 1.8± 0.2 2.1± 0.3 2.2± 0.4 2.1± 0.5 – 2.3± 0.4 6.5± 1.5 1.9± 0.3

120 1.3± 0.2 1.7± 0.2 2.0± 0.2 – 2.2± 0.5 2.1± 0.3 2.0± 0.2 2.0± 0.3 2.1± 0.7
168 1.4± 0.2 1.7± 0.3 1.9± 0.3 2.8± 0.6 – 2.0± 0.2 – 5.7 ± 1.2 2.5± 0.6

rivers

0 – 1.8± 0.3 – – 2.4± 0.5 – 2.1± 0.0 2.4± 0.4 –
1 – 1.8± 0.2 – – 2.3± 0.5 – 2.1± 0.0 2.2± 0.3 –
3 – 1.7± 0.2 – – 2.4± 0.5 – – 1.9± 0.4 –
6 – 1.6± 0.2 – – 2.5± 0.6 – 1.9± 0.2 2.2± 0.3 1.8± 0.6

12 – 1.5± 0.2 – – 2.8± 0.7 – 1.6± 0.0 – 1.9± 0.3
24 – – – – 2.5± 0.6 – – 2.1± 0.3 2.2± 0.5
48 – – – – 2.0± 0.3 – 2.1± 0.0 2.1± 0.3 2.0± 0.4
72 – – – – 1.9± 0.3 – 1.9± 0.2 1.9± 0.3 2.1± 0.4

120 – – – – 1.8± 0.4 1.8± 0.0 2.2± 0.3 2.0± 0.0 2.1± 0.4
168 – – – – 1.9± 0.4 – 2.1± 0.3 2.0± 0.4 1.7± 0.0

Ocean Sci., 21, 1813–1832, 2025 https://doi.org/10.5194/os-21-1813-2025



C. Heuzé et al.: Extreme sea levels and machine learning 1829

Table A6. Continued.

Predictor Delay (h) Den Helder Esbjerg Gedser Göteborg Helsinki Lowestoft Malmö Oslo Umeå

sst

0 1.3± 0.1 – 1.7± 0.0 1.2± 0.0 2.0± 0.4 2.2± 0.3 1.9± 0.0 – 1.9± 0.4
1 1.3± 0.1 – 1.5± 0.0 1.8± 0.5 2.1± 0.5 1.9± 0.3 2.2± 0.0 – 2.1± 0.7
3 1.2± 0.2 – – 1.8± 0.4 2.0± 0.6 2.0± 0.0 1.9± 0.0 – 2.0± 0.7
6 1.2± 0.1 – – 1.4± 0.3 2.2± 0.4 2.1± 0.2 1.7± 0.1 – 2.1± 0.5

12 1.3± 0.1 – – 1.6± 0.0 2.2± 0.1 2.0± 0.2 – 1.6± 0.0 1.9± 0.6
24 1.2± 0.1 – – 1.4± 0.1 1.9± 0.6 2.2± 0.1 1.9± 0.1 2.0± 0.0 1.8± 0.4
48 1.2± 0.1 – – 1.4± 0.0 – – 1.8± 0.0 1.6± 0.0 2.2± 0.6
72 – – 1.9± 0.0 1.6± 0.3 2.0± 0.4 2.0± 0.0 1.7± 0.2 – 2.4± 0.7

120 – – – 1.4± 0.0 1.8± 0.2 2.0± 0.3 2.0± 0.1 – 2.4± 0.7
168 1.3± 0.0 – – 1.6± 0.2 2.2± 0.3 2.0± 0.1 2.2± 0.0 1.9± 0.0 2.3± 0.7

sstENA

0 – – 2.1± 0.0 1.8± 0.3 2.5± 0.6 2.1± 0.2 1.6± 0.0 1.9± 0.3 2.3± 0.5
1 – – 2.0± 0.2 1.7± 0.3 2.4± 0.5 2.1± 0.3 – 1.9± 0.2 2.2± 0.5
3 1.3± 0.0 – 2.2± 0.2 1.6 ± 0.3 2.5± 0.6 2.0± 0.2 – 1.9 ± 0.3 2.3± 0.5
6 1.4± 0.0 – 2.1± 0.1 1.7 ± 0.4 2.5± 0.5 2.1± 0.1 – 2.1 ± 0.3 2.3± 0.5

12 – – 1.9± 0.2 1.7± 0.3 2.4± 0.6 1.9± 0.1 – 2.1± 0.2 2.3± 0.4
24 – – 2.0± 0.4 1.7± 0.3 2.4± 0.5 2.0± 0.3 – 1.6± 0.2 2.3± 0.5
48 1.3± 0.0 – 1.9± 0.3 1.7± 0.3 2.7± 0.7 2.0± 0.2 – 2.0± 0.3 2.5± 0.6
72 – – 1.8± 0.1 1.9± 0.3 2.5± 0.6 2.1± 0.3 – 1.8± 0.2 2.3± 0.6

120 – – – 1.7± 0.4 2.4± 0.6 2.0± 0.2 1.8± 0.0 1.8± 0.4 2.1± 0.6
168 – – 2.0± 0.0 1.9± 0.4 2.4± 0.5 2.0± 0.2 1.9± 0.0 2.0± 0.2 1.9± 0.3

tprecip

0 – 1.6± 0.2 2.2± 0.3 1.5± 0.3 – 2.1± 0.3 1.9± 0.2 – 2.0± 0.5
1 – 1.5± 0.2 2.2± 0.3 1.6± 0.3 2.0± 0.5 1.8± 0.2 – – 2.7± 0.8
3 1.3± 0.0 – 2.7± 0.4 1.2± 0.0 – – 1.8± 0.2 – 4.9± 1.5
6 – 1.4± 0.0 2.1± 0.2 – 2.1± 0.4 – – 1.9± 0.3 –

12 – – 2.3± 0.3 1.7± 0.0 2.3± 0.4 – – 2.6± 0.5 2.8± 0.8
24 1.1± 0.0 – 1.9± 0.2 – 2.0± 0.5 – 2.0± 0.3 1.8± 0.2 1.7± 0.3
48 – – 1.9± 0.3 – 2.0± 0.5 2.0± 0.0 2.3± 0.4 1.8± 0.2 2.1± 0.4
72 1.3± 0.1 – – – 3.5± 1.1 – 2.2± 0.0 1.7± 0.0 1.9± 0.5

120 1.4± 0.2 1.3± 0.0 2.0± 0.1 1.5± 0.2 2.2± 0.5 – – – 2.4± 0.6
168 1.4± 0.0 1.5± 0.1 – 1.6± 0.3 3.7± 1.0 – 1.9± 0.3 – 2.1± 0.5

u−

0 – – 2.0± 0.2 – – – 2.1± 0.3 1.8± 0.2 –
1 – – 1.8± 0.3 – – – 1.7± 0.1 1.8± 0.0 2.1± 0.7
3 – – 2.0± 0.3 – – – 2.0± 0.3 2.0± 0.4 1.9± 0.3
6 – 1.6± 0.2 1.9± 0.2 – – 2.1± 0.0 2.0± 0.2 1.8± 0.2 1.4± 0.0

12 – 1.6± 0.0 1.7± 0.0 – – – 2.0± 0.3 2.3± 0.4 –
24 – 1.6± 0.2 – – 2.4± 0.0 2.0± 0.5 2.1± 0.3 2.0± 0.3 –
48 1.3± 0.1 – – – – 2.2± 0.2 – 1.8± 0.0 1.8± 0.2
72 – – 1.9± 0.2 – 2.0± 0.0 2.1± 0.2 – – 1.6± 0.1

120 1.3± 0.2 – 2.1± 0.3 – 2.0± 0.2 2.1± 0.3 2.0± 0.5 2.2± 0.4 1.8± 0.5
168 – 1.5± 0.0 1.8± 0.1 1.6± 0.3 – 2.0± 0.2 1.9± 0.0 1.5± 0.1 1.4± 0.1

u+

0 4.6± 0.8 4.2± 0.7 2.1± 0.2 4.6± 1.1 1.9± 0.6 2.6± 0.4 1.8± 0.1 2.5± 0.5 –
1 4.3± 0.6 4.2± 0.7 2.0± 0.0 2.3± 0.5 1.9± 0.1 2.6± 0.4 – 2.0± 0.0 –
3 4.7± 0.7 3.3± 0.6 – 2.9± 0.8 1.7± 0.0 3.3± 0.6 1.9± 0.3 2.0± 0.0 –
6 2.9± 0.5 2.7± 0.5 – 2.5± 0.6 2.6± 0.7 3.6± 0.5 2.1± 0.2 2.2± 0.3 2.2± 0.4

12 2.8± 0.5 1.7± 0.2 – 3.4± 0.9 – 6.5± 0.9 4.2± 0.7 2.1± 0.3 –
24 1.3± 0.2 – 2.2± 0.3 1.3± 0.0 2.3± 0.5 2.3± 0.3 3.5± 0.7 1.8± 0.3 2.0± 0.5
48 1.5± 0.3 – – 1.8± 0.3 3.8± 1.0 2.1± 0.2 2.2± 0.3 1.9± 0.4 2.3± 0.5
72 1.2± 0.1 1.5± 0.1 1.9± 0.3 1.5± 0.2 2.6± 0.6 2.1± 0.3 2.0± 0.2 2.1± 0.4 2.1± 0.9

120 1.1± 0.1 1.6± 0.2 2.0± 0.3 1.9± 0.5 2.3± 0.6 2.0± 0.0 2.5± 0.4 – 2.1± 0.5
168 1.4± 0.0 1.5± 0.1 2.0± 0.3 1.5± 0.2 3.5± 1.2 2.1± 0.2 2.3± 0.3 – 2.6± 0.6
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Table A6. Continued.

Predictor Delay (h) Den Helder Esbjerg Gedser Göteborg Helsinki Lowestoft Malmö Oslo Umeå

v−

0 1.5± 0.2 – 3.4± 0.6 – 2.1± 0.4 2.2± 0.2 2.5± 0.5 – –
1 1.5± 0.2 – 3.7± 0.7 – 2.0± 0.4 2.0± 0.3 3.0± 0.6 – –
3 1.7± 0.2 – 4.6± 0.8 – 2.1± 0.1 2.4± 0.3 4.6± 0.9 – –
6 1.9± 0.3 – 5.0± 1.0 – – 1.8± 0.5 2.0± 0.2 6.2± 1.1 – –

12 1.5± 0.0 – 4.1± 0.8 – – 2.1± 0.1 3.3± 0.7 – –
24 – 1.6± 0.0 2.0± 0.2 – 2.0± 0.4 2.2± 0.1 2.5± 0.4 – –
48 1.2± 0.1 – 2.3± 0.4 – – 2.0± 0.2 2.0± 0.3 – –
72 – – 2.0± 0.1 – – – – 1.8± 0.0 –

120 1.4± 0.2 1.6± 0.2 1.7± 0.0 – – – 2.1± 0.3 1.9± 0.3 –
168 1.2± 0.0 – 1.9± 0.2 – – 2.1± 0.1 1.4± 0.0 – –

v+

0 1.3± 0.2 1.4± 0.2 – 1.5± 0.2 1.8± 0.6 – – 2.1± 0.3 2.1± 0.5
1 1.3± 0.2 1.4± 0.0 2.3± 0.0 1.8± 0.3 2.0± 0.0 – – 2.0± 0.3 2.1± 0.4
3 1.2± 0.4 1.4± 0.1 1.9± 0.3 1.3± 0.4 – 1.7± 0.1 – 2.0± 0.2 2.3± 0.6
6 1.5± 0.2 1.5± 0.1 2.0± 0.2 – 2.1± 0.2 1.8± 0.0 – 1.7± 0.2 2.6± 0.7

12 – 1.4± 0.2 – 1.6± 0.3 2.1± 0.4 – 1.9± 0.2 2.2± 0.3 4.4± 1.5
24 1.3± 0.1 2.4± 0.3 2.1± 0.3 1.5± 0.2 3.1± 0.8 – 2.3± 0.4 2.4± 0.5 6.1± 1.6
48 – – 1.8± 0.0 – 2.3± 0.6 – – – –
72 – 1.5± 0.1 2.0± 0.1 1.5± 0.2 1.9± 0.3 – 2.0± 0.2 2.0± 0.3 2.3± 0.5

120 1.2± 0.1 1.5± 0.3 – 1.6± 0.3 – – – 2.0± 0.3 2.2± 0.0
168 – – 2.1± 0.3 2.8± 0.8 2.4± 0.6 – 2.0± 0.3 2.2± 0.4 –

wdir

0 1.4± 0.2 1.2± 0.0 2.1± 0.3 – 2.4± 0.8 – 2.8± 0.5 2.0± 0.4 –
1 1.5± 0.2 – 1.9± 0.2 – 2.6± 0.6 – 2.3± 0.4 – –
3 1.5± 0.2 – 1.9± 0.3 – 2.2± 0.4 2.0± 0.2 2.1± 0.3 – –
6 1.8± 0.2 1.4± 0.0 3.2± 0.6 – 2.0± 0.4 2.2± 0.3 2.7± 0.5 1.8± 0.0 1.8± 0.2

12 1.1± 0.0 1.4± 0.1 2.2± 0.4 1.5± 0.0 1.9± 0.0 1.8± 0.3 2.2± 0.3 1.9± 0.3 –
24 1.3± 0.0 1.6± 0.1 1.9± 0.2 – 3.3± 0.9 – 2.2± 0.1 – 2.5± 0.0
48 – – 1.8± 0.2 – 2.2± 0.4 2.2± 0.2 2.0± 0.2 – 2.0± 0.4
72 – – 2.4± 0.4 – 2.0± 0.4 – 2.0± 0.0 – 2.2± 0.5

120 – – 2.4± 0.4 – – 1.9± 0.0 2.1± 0.4 1.5± 0.0 -
168 1.2± 0.1 – 2.0± 0.2 1.5± 0.2 2.0± 0.2 – 2.2± 0.3 – –

wspeed

0 9.5± 1.2 6.9± 0.9 3.2± 0.6 8.3± 1.4 2.1± 0.5 4.3± 0.6 2.0± 0.2 2.2± 0.4 1.7± 0.2
1 9.0± 1.1 5.7± 0.8 4.7± 0.8 7.8± 1.4 1.9± 0.0 4.1± 0.6 1.6± 0.3 2.2± 0.4 1.4± 0.0
3 11.1± 1.3 6.2± 0.8 6.0± 1.0 5.9± 1.2 2.0± 0.5 5.8± 0.8 1.9± 0.3 2.8± 0.5 2.1± 0.5
6 8.6± 1.1 4.5± 0.8 3.0± 0.6 3.6± 0.9 2.4± 0.5 3.9± 0.6 4.1± 0.8 2.2± 0.4 2.3± 0.7

12 4.0± 0.6 2.4± 0.4 3.1± 0.6 3.0± 0.8 2.3± 0.5 3.2± 0.5 6.2± 1.0 – 4.6± 0.9
24 1.5± 0.2 2.1± 0.3 2.4± 0.3 2.0± 0.4 2.4± 0.6 1.9± 0.1 4.1± 0.9 2.7± 0.6 6.2± 1.8
48 1.7± 0.3 1.5± 0.1 2.0± 0.3 1.6± 0.3 2.6± 0.7 2.5± 0.4 – – 2.0± 0.4
72 1.3± 0.2 1.5± 0.1 2.1± 0.2 1.8± 0.3 2.1± 0.3 1.8± 0.1 1.8± 0.2 2.6± 0.5 2.2± 0.6

120 – 1.7± 0.2 2.1± 0.3 2.1± 0.7 2.0± 0.4 1.9± 0.2 2.4± 0.4 1.6± 0.0 2.1± 0.5
168 1.3± 0.1 1.5± 0.2 2.1± 0.2 2.0± 0.5 2.7± 0.6 1.6± 0.0 2.6± 0.4 1.4± 0.0 –

Code and data availability. The codes are available via Zen-
odo https://doi.org/10.5281/zenodo.15754554 (Heuzé, 2025).
The tide gauge data for Sweden are freely available via the
Swedish Meteorological and Hydrological Institute’s web-
site: https://www.smhi.se/data/sok-oppna-data-i-utforskaren/
se-of-oceanografiska-observationer-havsvattenstand-rh2000-timvarde
(last access: 5 November 2024). The tide gauge data for the other
cities come from the GESLA dataset version 3 (Woodworth et al.,
2016) freely available at https://www.icloud.com/iclouddrive/
08e3IrYfVsHqjk-9eOuO9XdJg#GESLA4_ALL (Haigh et al.,
2023). The reanalysis data from ERA5 are freely available

via the Copernicus Climate Data Store:
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2020). The
river runoff data are provided by the GRDC and are freely available
at https://grdc.bafg.de/ (last access: 27 November 2024).
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