Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-151-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessing the thermohaline coherence of mesoscale eddies as described from in situ data
Yan Barabinot
CORRESPONDING AUTHOR
Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005, France
Sabrina Speich
Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, 24 rue Lhomond, Paris 75005, France
Xavier Carton
Laboratoire d'Océanographie Physique et Spatiale (LOPS), Université de Bretagne Occidentale (UBO), IUEM, rue Dumont Durville, Plouzané 29280, France
Related authors
No articles found.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1558, https://doi.org/10.5194/egusphere-2024-1558, 2024
Short summary
Short summary
The open ocean helps mitigate climate change by storing CO2 through the biological carbon pump (BCP). The BCP involves processes like phytoplankton capturing CO2 and sequestering it in the deep ocean via marine snow production. We found significant marine snow accumulation from the surface to 600 meters deep in frontal regions between eddies. We suggest that the coupling of hydrodynamics at eddy edges and biological activity (via planktonic organisms) may enhanced this process.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Saeed Hariri, Sabrina Speich, Bruno Blanke, and Marina Lévy
Ocean Sci., 19, 1183–1201, https://doi.org/10.5194/os-19-1183-2023, https://doi.org/10.5194/os-19-1183-2023, 2023
Short summary
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony, and Sabrina Speich
Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, https://doi.org/10.5194/essd-13-1499-2021, 2021
Short summary
Short summary
In the framework of the EUREC4A campaign, water vapour measurements were retrieved over the tropical west Atlantic Ocean from GNSS data acquired from three research vessels (R/Vs Atalante, Maria S. Merian and Meteor). The retrievals from R/Vs Atalante and Meteor are shown to be of high quality unlike the results for the R/V Maria S. Merian. These ship-borne retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Mathieu Morvan, Pierre L'Hégaret, Xavier Carton, Jonathan Gula, Clément Vic, Charly de Marez, Mikhail Sokolovskiy, and Konstantin Koshel
Ocean Sci., 15, 1531–1543, https://doi.org/10.5194/os-15-1531-2019, https://doi.org/10.5194/os-15-1531-2019, 2019
Short summary
Short summary
The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating in the Gulf of Oman and the Gulf of Aden, in the form of small features. We study the life cycle of intense and small vortices and their impact on the spread of Persian Gulf Water and Red Sea Water by using idealized numerical simulations. Small vortices are generated along the continental slopes, drift away, merge and form larger vortices. They can travel across the domain and participate in the tracer diffusion.
Siren Rühs, Franziska U. Schwarzkopf, Sabrina Speich, and Arne Biastoch
Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, https://doi.org/10.5194/os-15-489-2019, 2019
Short summary
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
Marion Kersalé, Tarron Lamont, Sabrina Speich, Thierry Terre, Remi Laxenaire, Mike J. Roberts, Marcel A. van den Berg, and Isabelle J. Ansorge
Ocean Sci., 14, 923–945, https://doi.org/10.5194/os-14-923-2018, https://doi.org/10.5194/os-14-923-2018, 2018
Pierre L'Hégaret, Xavier Carton, Stephanie Louazel, and Guillaume Boutin
Ocean Sci., 12, 687–701, https://doi.org/10.5194/os-12-687-2016, https://doi.org/10.5194/os-12-687-2016, 2016
Short summary
Short summary
The Persian Gulf produces high-salinity water spreading in the Indian Ocean through the Arabian Sea. Using measurements from the Phys-Indien 2011 experiments and satellite observations, the objective of this study is to follow the pathway and evolution of the salty water outflow in the northwestern Indian Ocean. It is shown that the outflow is strongly influenced by energetic eddies, shredding the water vein into filaments or lenses, and advecting them at their peripheries or in their cores.
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
G. Dulaquais, M. Boye, M. J. A. Rijkenberg, and X. Carton
Biogeosciences, 11, 1561–1580, https://doi.org/10.5194/bg-11-1561-2014, https://doi.org/10.5194/bg-11-1561-2014, 2014
Related subject area
Approach: In situ Observations | Properties and processes: Mesoscale to submesoscale dynamics
An estimate of the eddy diffusivity tensor from observed and simulated Lagrangian trajectories in the Benguela Upwelling System
An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
The Polar Front in the northwestern Barents Sea: structure, variability and mixing
Tipping of the double-diffusive regime in the southern Adriatic Pit in 2017 in connection with record high-salinity values
Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region
Relative dispersion and kinematic properties of the coastal submesoscale circulation in the southeastern Ligurian Sea
Stirring across the Antarctic Circumpolar Current's southern boundary at the prime meridian, Weddell Sea
Evaluating altimetry-derived surface currents on the south Greenland shelf with surface drifters
Ria Oelerich, Birte Gülk, Julia Dräger-Dietel, and Alexa Griesel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2806, https://doi.org/10.5194/egusphere-2024-2806, 2024
Short summary
Short summary
The study explores how unresolved motions in the Benguela upwelling region affect diffusivity estimates and the need for full diffusivity tensors in models. Using a scalar for lateral mixing can be inaccurate due to directional mixing. Analysis of buoys and simulations shows that diffusivity from particle pairs is lower than expected, and removing mean flow improves estimates. The study shows the importance of full diffusivity tensors for better model mixing and reducing warm biases in models.
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024, https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024, https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Short summary
Analysis of a high-frequency time series of thermohaline data measured at the EMSO-E2M3A regional facility in the southern Adriatic Pit (SAP) reveals a significant change in the double-diffusive regime in 2017 associated with the intrusion of extremely salty waters into the area, suggesting salt fingering as the dominant regime. The strong heat loss at the surface during this winter allowed deep convection to transport this high-salinity water from the intermediate to deep layers of the pit.
Ryan P. North, Julia Dräger-Dietel, and Alexa Griesel
Ocean Sci., 20, 103–121, https://doi.org/10.5194/os-20-103-2024, https://doi.org/10.5194/os-20-103-2024, 2024
Short summary
Short summary
The Benguela upwelling region off the coast of Namibia supplies cold water from the deep ocean that is transported offshore in finger-like structures called filaments. We investigate one major filament using measurements from a ship that crossed it multiple times and with mutiple buoys that follow the ocean currents. We find that the motions associated with the filament enhance the kinetic energy at small scales and provide a pathway for mixing of water and turbulent dissipation of energy.
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023, https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary
Short summary
Drifters and a profiling float were deployed in the coastal waters of the southeastern Ligurian Sea to characterize the near-surface circulation at a scale of ~10 km. The drifters were trapped in an offshore-flowing filament and a cyclonic eddy that developed at the southwestern extremity of the filament. Drifter velocities are used to estimate differential kinematic properties and relative dispersion statistics of the surface currents.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Arthur Coquereau and Nicholas P. Foukal
Ocean Sci., 19, 1393–1411, https://doi.org/10.5194/os-19-1393-2023, https://doi.org/10.5194/os-19-1393-2023, 2023
Short summary
Short summary
Understanding meltwater circulation around Greenland is crucial as it could influence climate variability but difficult as data are scarce. Here, we use 34 surface drifters to evaluate satellite-derived surface currents and show that satellite data recover the general structure of the flow and can recreate the pathways of particles around the southern tip of Greenland. This result permits a wide range of work to proceed looking at long-term changes in the circulation of the region since 1993.
Cited articles
Abernathey, R. and Haller, G.: Transport by Lagrangian vortices in the eastern Pacific, J. Phys. Oceanogr., 48, 667–685, 2018. a
Aguedjou, H. M. A., Chaigneau, A., Dadou, I., Morel, Y., Pegliasco, C., Da-Allada, C. Y., and Baloïtcha, E.: What can we learn from observed temperature and salinity isopycnal anomalies at eddy generation sites? Application in the Tropical Atlantic Ocean, J. Geophys. Res.-Oceans, 126, e2021JC017630, https://doi.org/10.1029/2021JC017630, 2021. a, b, c
Andrade-Canto, F., Karrasch, D., and Beron-Vera, F. J.: Genesis, evolution, and apocalypse of Loop Current rings, Phys. Fluids, 32, 11, https://doi.org/10.1063/5.0030094, 2020. a
Bars, M. L., Aubert, O., Gal, P. L., and Marcus, P. S.: Forme et persistance de tourbillons lenticulaires dans les écoulements stratifiés tournants: du laboratoire à la Tâche Rouge de Jupiter!, Congrès français de mécanique, hal-03421360, August 2011, Besançon, France, 2011. a
Beron-Vera, F. J., Hadjighasem, A., Xia, Q., Olascoaga, M. J., and Haller, G.: Coherent Lagrangian swirls among submesoscale motions, P. Natl. Acad. Sci. USA, 116, 18251–18256, 2019. a
Bosse, A., Fer, I., Lilly, J. M., and Søiland, H.: Dynamical controls on the longevity of a non-linear vortex : The case of the Lofoten Basin Eddy, Sci. Rep., 9, 202580306, https://doi.org/10.1038/s41598-019-49599-8, 2019. a, b
Bretherton, F. P.: Critical layer instability in baroclinic flows, Q. J. Roy. Meteor. Soc., 92, 325–334, 1966. a
Bueno, L. F., Costa, V. S., Mill, G. N., and Paiva, A. M.: Volume and heat transports by North Brazil Current rings, Frontiers in Marine Science, 9, 831098, https://doi.org/10.3389/fmars.2022.831098, 2022. a
Carton, X. and McWilliams, J. C.: Barotropic and Baroclinic Instabilities of Axisymmetric Vortices in a Quasigeostrophic Model, Elsevier Oceanography series, 50, 225–244, https://doi.org/10.1016/S0422-9894(08)70188-0, 1989. a
Carton, X., Daniault, N., Alves, J., Cherubin, L., and Ambar, I.: Meddy dynamics and interaction with neighboring eddies southwest of Portugal: Observations and modeling, J. Geophys. Res.-Oceans, 115, C06017, https://doi.org/10.1029/2009JC005646, 2010a. a
Charney, J. G.: Geostrophic turbulence, J. Atmos. Sci., 28, 1087–1095, 1971. a
Chen, G., Han, G., and Yang, X.: On the intrinsic shape of oceanic eddies derived from satellite altimetry, Remote Sens. Environ., 228, 75–89, https://doi.org/10.1016/j.rse.2019.04.011, 2019. a, b, c, d
Chen, Y., Speich, S., and Laxenaire, R.: Formation and transport of the South Atlantic subtropical mode water in Eddy-Permitting observations, J. Geophys. Res.-Oceans, 127, e2021JC017767, https://doi.org/10.1029/2021JC017767, 2022. a
Chong, M. S., Perry, A. E., and Cantwell, B. J.: A general classification of three-dimensional flow fields, Phys. Fluids, 2, 765–777, 1990. a
Chouksey, A.: Long-lived deep coherent vortices in the Atlantic Ocean, PhD thesis, Université de Bretagne occidentale-Brest, https://theses.hal.science/tel-04608577 (last access: 21 January 2025), 2023. a
Crow, S. C. and Champagne, F.: Orderly structure in jet turbulence, J. Fluid Mech., 48, 547–591, 1971. a
Cushman-Roisin, B.: Introduction to Geophysical Fluid Dynamics, https://api.semanticscholar.org/CorpusID:118874344 (last access: 21 January 2025), 1994. a
de Marez, C., Meunier, T., Morvan, M., L’hégaret, P., and Carton, X.: Study of the stability of a large realistic cyclonic eddy, Ocean Model., 146, 101540, https://doi.org/10.1016/j.ocemod.2019.101540, 2020. a, b
Denes, M. C., Froyland, G., and Keating, S. R.: Persistence and material coherence of a mesoscale ocean eddy, Phys. Rev. Fluids, 7, 034501, https://doi.org/10.1103/PhysRevFluids.7.034501, 2022. a, b
Dengler, M., Fischer, T., Körtzinger, A., and Krahmann, G.: ADCP current measurements (38 and 75 kHz) during METEOR cruise M160, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.943409, 2022a. a
Dengler, M., Körtzinger, A., and Krahmann, G.: Physical oceanography (CTD) during METEOR cruise M160, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.943432, 2022b. a
Dengler, M., Körtzinger, A., and Krahmann, G.: Underway CTD data collected during METEOR cruise M160, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.943657, 2022c. a
Dong, C. and McWilliams, J. C.: A numerical study of island wakes in the Southern California Bight, Cont. Shelf Res., 27, 1233–1248, 2007. a
Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294, 2014. a
D'asaro, E., Lee, C., Rainville, L., Harcourt, R., and Thomas, L.: Enhanced turbulence and energy dissipation at ocean fronts, Science, 332, 318–322, 2011. a
Eliassen, A.: Slow thermally or frictionally controlled meridional circulation in a circular vortex, Astrophisica Norvegica, 5, p. 19, 1951. a
Ertel, H.: Ein neuer hydrodynamischer Erhaltungssatz, Naturwissenschaften, 30, 543–544, 1942. a
Fer, I., Bosse, A., Søiland, H., Ferron, B., and Bouruet-Aubertot, P.: Ocean currents, hydrography and microstructure data from PROVOLO cruises, NMDC [data set], https://doi.org/10.21335/NMDC-1093031037, 2019. a
Fjörtoft, R.: Application of integral theorems in deriving criteria of stability for laminar flow and for the baroclinic circular vortex, Geofysiske Publicationer, 17, 1–52, 1950. a
Flierl, G. R.: Particle motions in large-amplitude wave fields, Geophys. Astro. Fluid, 18, 39–74, 1981. a
Fratantoni, D. M., Johns, W. E., and Townsend, T. L.: Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation, J. Geophys. Res.-Oceans, 100, 10633–10654, 1995. a
Froyland, G.: An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, Physica D, 250, 1–19, 2013. a
Froyland, G. and Padberg-Gehle, K.: A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, Chaos, 25, 8, https://doi.org/10.1063/1.4926372, 2015. a
Froyland, G., Santitissadeekorn, N., and Monahan, A.: Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos, 20, https://doi.org/10.1063/1.3502450, 2010. a
Gent, P. R. and McWilliams, J. C.: The instability of barotropic circular vortices, Geophys. Astro. Fluid, 35, 209–233, 1986. a
Goldsworth, F. W., Marshall, D. P., and Johnson, H. L.: Symmetric instability in cross-equatorial western boundary currents, J. Phys. Oceanogr., 51, 2049–2067, 2021. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Submesoscale dynamics of a Gulf Stream frontal eddy in the South Atlantic Bight, J. Phys. Oceanogr., 46, 305–325, 2016a. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Topographic generation of submesoscale centrifugal instability and energy dissipation, Nat. Commun., 7, 12811, https://doi.org/10.1038/ncomms12811, 2016b. a
Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., and Haller, G.: A critical comparison of Lagrangian methods for coherent structure detection., Chaos, 27, 053104, https://doi.org/10.1063/1.4982720, 2017. a
Haine, T. W. and Marshall, J.: Gravitational, symmetric, and baroclinic instability of the ocean mixed layer, J. Phys. Oceanogr., 28, 634–658, 1998. a
Halle, C. and Pinkel, R.: Internal wave variability in the Beaufort Sea during the winter of 1993/1994, J. Geophys. Res., 108, 3210, https://doi.org/10.1029/2000JC000703, 2003. a
Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields, Chaos, 10, 99–108, 2000. a
Haller, G.: An objective definition of a vortex, J. Fluid Mech., 525, 1–26, 2005. a
Haller, G. and Beron‐Vera, F. J.: Coherent Lagrangian vortices: the black holes of turbulence, J. Fluid Mech., 731, https://doi.org/10.1017/jfm.2013.391, 2013. a
Herring, J. R.: Statistical theory of quasi-geostrophic turbulence, J. Atmos. Sci., 37, 969–977, 1980. a
Hoskins, B. J. and Bretherton, F. P.: Atmospheric Frontogenesis Models: Mathematical Formulation and Solution, J. Atmos. Sci., 29, 11–37, 1972. a
Hua, B. L. and Haidvogel, D. B.: Numerical simulations of the vertical structure of quasi-geostrophic turbulence, J. Atmos. Sci., 43, 2923–2936, 1986. a
Hunt, J. C., Wray, A. A., and Moin, P.: Eddies, streams, and convergence zones in turbulent flows, Studying turbulence using numerical simulation databases, 2. Proceedings of the 1988 summer program, NASA, Document ID: 19890015184, 1988. a
Hussain, A. and Zaman, K.: Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics, J. Fluid Mech., 101, 493–544, 1980. a
Hussain, A. F.: Coherent structures and turbulence, J. Fluid Mech., 173, 303–356, 1986. a
Ioannou, A., Stegner, A., Tuel, A., LeVu, B., Dumas, F., and Speich, S.: Cyclostrophic corrections of AVISO/DUACS surface velocities and its application to mesoscale eddies in the Mediterranean Sea, J. Geophys. Res.-Oceans, 124, 8913–8932, 2019. a
Ioannou, A., Speich, S., and Laxenaire, R.: Characterizing mesoscale eddies of eastern upwelling origins in the Atlantic Ocean and their role in offshore transport, Frontiers Mar. Sci., 9, 835260, https://doi.org/10.3389/fmars.2022.835260, 2022. a
Johns, W. E., Zantopp, R. J., and Goni, G. J.: Cross-gyre transport by North Brazil Current rings, in: Elsevier oceanography series, 68, 411–441, Elsevier, https://doi.org/10.1016/S0422-9894(03)80156-3, 2003. a
Joyce, T. M.: A Note on the Lateral Mixing of Water Masses, J. Phys. Oceanogr., 7, 626–629, 1977. a
Joyce, T. M.: Velocity and Hydrographic Structure of a Gulf Stream Warm-Core Ring, J. Phys. Oceanogr., 14, 936–947, 1984. a
Karstensen, J.: Lowered ADCP data during MARIA S. MERIAN cruise MSM60/1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.915879, 2020a. a
Karstensen, J.: Physical oceanography (CTD) during Maria S. Merian cruise MSM60/1, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.915898, 2020b. a
Karstensen, J. and Czeschel, R.: ADCP current measurements (38 and 75 kHz) during Maria S. Merian cruise MSM74, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.929000, 2021. a
Karstensen, J. and Krahmann, G.: Physical oceanography during METEOR cruise M124, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.863015, 2016. a
Karstensen, J. and Krahmann, G.: Physical oceanography (CTD) during Maria S. Merian cruise MSM74, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.928976, 2021. a
Karstensen, J. and Wölfl, A.-C.: Raw multibeam EM122 data: METEOR cruise M124 (SE Atlantic), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.869740, 2016. a
Karstensen, J., Speich, S., Morard, R., Bumke, K., Clarke, J., Giorgetta, M., Fu, Y., Köhn, E., Pinck, A., Manzini, E., Lübben, B., Baumeister, A., Reuter, R., Scherhag, A., de Groot, T., Louropoulou, E., Geißler, F., and Raetke, A.: Oceanic & atmospheric variability in the South Atlantic Cruise No. M124 29. February–18. March 2016 Cape Town (Republic South Africa)–Rio de Janeiro (Brazil), Meteor-Berichte [Cruise Report], https://doi.org/10.3289/CR_M124 2016. a
Karstensen, J., Czeschel, R., and Krahmann, G.: ADCP current measurements (38 and 75 kHz) during Maria S. Merian cruise MSM60/1 PANGAEA [data set], https://doi.org/10.1594/PANGAEA.915906, 2020. a
Kline, S. J., Reynolds, W. C., Schraub, F., and Runstadler, P.: The structure of turbulent boundary layers, J. Fluid Mech., 30, 741–773, 1967. a
Laxenaire, R., Speich, S., Blanke, B., Chaigneau, A., Pegliasco, C., and Stegner, A.: Anticyclonic Eddies Connecting the Western Boundaries of Indian and Atlantic Oceans, J. Geophys. Res.-Oceans, 123, 7651–7677, https://doi.org/10.1029/2018JC014270, 2018. a, b, c, d
L'Hégaret, P. and Carton, X.: Physindien 2011 Seasoar measurements, SEANOE [data set], https://doi.org/10.17882/77351, 2011. a
L'Hégaret, P., Carton, X., Ambar, I., Ménesguen, C., Hua, B. L., Chérubin, L., Aguiar, A., Le Cann, B., Daniault, N., and Serra, N.: Evidence of Mediterranean water dipole collision in the Gulf of Cadiz, J. Geophys. Res.-Oceans, 119, 5337–5359, 2014. a
L'Hégaret, P., Carton, X., Louazel, S., and Boutin, G.: Mesoscale eddies and submesoscale structures of Persian Gulf Water off the Omani coast in spring 2011, Ocean Sci., 12, 687–701, https://doi.org/10.5194/os-12-687-2016, 2016. a, b
L'Hégaret, P., Speich, S., and Karstensen, J.: Concatenated Temperature, Salinity, and Velocity measurements from EUREC4A_OA/ATOMIC (CTD, uCTD, MVP and S-ADCP data from the R/Vs L'Atalante and Maria S. Merian), SEANOE [data set], https://doi.org/10.17882/92071, 2020. a
Liu, T., Abernathey, R. P., Sinha, A., and Chen, D.: Quantifying Eulerian Eddy Leakiness in an Idealized Model, J. Geophys. Res., 124, 8869–8886, 2019. a
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Reagan, J. R., Boyer, T. P., Seidov, D., Wang, Z., Garcia, H. E., Bouchard, C., Cross, S. L., Paver, C. R., and Dukhovskoy, D.: World Ocean Atlas 2023, Volume 1: Temperature, National Centers for Environmental Information (U.S.), NOAA Atlas NESDIS, 89, https://doi.org/10.25923/54bh-1613, 2024 (data available at: https://www.ncei.noaa.gov/access/world-ocean-atlas-2023/, last access: 20 November 2024). a, b
Manta, G., Speich, S., Karstensen, J., Hummels, R., Kersalé, M., Laxenaire, R., Piola, A., Chidichimo, M. P., Sato, O., Cotrim da Cunha, L., Ansorge, I., Lamont, T., van den Berg, M. A., Schuster, U., Tanhua, T., Kerr, R., Guerrero, R., Campos, E., and Meinen, C. S.: The South Atlantic meridional overturning circulation and mesoscale eddies in the first GO-SHIP section at 34.5° S, J. Geophys. Res.-Oceans, 126, e2020JC016962, https://doi.org/10.1029/2020JC016962, 2021. a
Marshall, D. P., Williams, R. G., and Lee, M.-M.: The Relation between Eddy-Induced Transport and Isopycnic Gradients of Potential Vorticity, J. Phys. Oceanogr., 29, 1571–1578, 1999. a
Marshall, D. P., Maddison, J. R., and Berloff, P.: A Framework for Parameterizing Eddy Potential Vorticity Fluxes, J. Phys. Oceanogr., 42, 539–557, 2012. a
McWilliams, J. C.: Submesoscale, coherent vortices in the ocean, Rev. Geophys., 23, 165–182, 1985. a
Meunier, T., Sanz, E. P., de Marez, C., Pérez, J., Tenreiro, M. F., Angulo, A. R., and Bower, A.: The Dynamical Structure of a Warm Core Ring as Inferred from Glider Observations and Along-Track Altimetry, Remote. Sens., 13, 2456, https://doi.org/10.3390/rs13132456, 2021. a, b, c
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021 (data available at: https://resources.marine.copernicus.eu, last access: 19 January 2021). a
Okubo, A.: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep-Sea Research and Oceanographic Abstracts, 17, 445–454, 1970. a
Pedlosky, J.: The Stability of Currents in the Atmosphere and the Ocean: Part I, J. Atmos. Sci., 21, 201–219, 1964. a
Pegliasco, C., Chaigneau, A., and Morrow, R.: Spatio-temporal evolution of two key processes impacting the observed vertical structure of the mesoscale eddies in the 4 major Eastern Boundary Upwelling Systems, American Geophysical Union, Ocean Sciences Meeting 2016, abstract no. PO14D-2836, 2016. a
Pegliasco, C., Chaigneau, A., Morrow, R., and Dumas, F.: Detection and tracking of mesoscale eddies in the Mediterranean Sea: A comparison between the Sea Level Anomaly and the Absolute Dynamic Topography fields, Adv. Space Res., 68, 401–419, 2021. a
Penven, P., Halo, I., Pous, S., and Marié, L.: Cyclogeostrophic balance in the Mozambique Channel, J. Geophys. Res.-Oceans, 119, 1054–1067, 2014. a
Reagan, J. R., Seidov, D., Wang, Z., Dukhovskoy, D., Boyer, T. P., Locarnini, R. A., Baranova, O. K., Mishonov, A. V., Garcia, H. E., Bouchard, C., Cross, S. L., and Paver, C. R.: World Ocean Atlas 2023, Volume 2: Salinity, National Centers for Environmental Information (U.S.), NOAA Atlas NESDIS, 90, https://doi.org/10.25923/70qt-9574, 2024 (data available at: https://www.ncei.noaa.gov/access/world-ocean-atlas-2023/, last access: 20 November 2024). a, b
Rio, M., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res.-Oceans, 116, C07018, https://doi.org/10.1029/2010JC006505, 2011. a
Rio, M.-H., Pascual, A., Poulain, P.-M., Menna, M., Barceló, B., and Tintoré, J.: Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data, Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, 2014. a
Ripa, P.: General stability conditions for a multi-layer model, J. Fluid Mech., 222, 119–137, 1991. a
Roshko, A.: Structure of turbulent shear flows: a new look, AIAA J., 14, 1349–1357, 1976. a
Ruddick, B. R., Oakey, N. S., and Hebert, D.: Measuring lateral heat flux across a thermohaline front: A model and observational test, J. Mar. Res., 68, 523–539, 2010. a
Rudnick, D. L.: On the skewness of vorticity in the upper ocean, Geophys. Res. Lett., 28, 2045–2048, https://doi.org/10.1029/2000GL012265, 2001. a, b
Sandalyuk, N. V., Bosse, A., and Belonenko, T. V.: The 3-D structure of mesoscale eddies in the Lofoten Basin of the Norwegian Sea: A composite analysis from altimetry and in situ data, J. Geophys. Res.-Oceans, 125, e2020JC016331, https://doi.org/10.1029/2020JC016331, 2020. a
Serra, M. and Haller, G.: Forecasting long-lived Lagrangian vortices from their objective Eulerian footprints, J. Fluid Mech., 813, 436–457, 2017. a
Shcherbina, A. Y., D'Asaro, E. A., Lee, C. M., Klymak, J. M., Molemaker, M., and McWilliams, J. C.: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field, Geophys. Res. Lett., 40, 4706–4711, 2013. a
Stammer, D.: Global Characteristics of Ocean Variability Estimated from Regional TOPEX/POSEIDON Altimeter Measurements, J. Phys. Oceanogr., 27, 1743–1769, 1997. a
Subirade, C., L'Hégaret, P., Speich, S., Laxenaire, R., Karstensen, J., and Carton, X.: Combining an Eddy Detection Algorithm with In-Situ Measurements to Study North Brazil Current Rings, Remote Sens., 15, 1897, https://doi.org/10.3390/rs15071897, 2023. a, b, c, d
Tabor, M. and Klapper, I.: Stretching and alignment in chaotic and turbulent flows, Chaos Soliton. Fract., 4, 1031–1055, 1994. a
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, 2019 (data available at: https://resources.marine.copernicus.eu, last access: 19 January 2021). a
Thomas, L. N., Taylor, J. R., D'Asaro, E. A., Lee, C. M., Klymak, J. M., and Shcherbina, A.: Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front, J. Phys. Oceanogr., 46, 197–217, 2016. a
Vortmeyer-Kley, R., Holtermann, P., Feudel, U., and Gräwe, U.: Comparing Eulerian and Lagrangian eddy census for a tide-less, semi-enclosed basin, the Baltic Sea, Ocean Dynam., 69, 701–717, 2019. a
Wang, Y., Olascoaga, M. J., and Beron-Vera, F. J.: Coherent water transport across the South Atlantic, Geophys. Res. Lett., 42, 4072–4079, 2015. a
Wang, Y., Beron-Vera, F. J., and Olascoaga, M. J.: The life cycle of a coherent Lagrangian Agulhas ring, J. Geophys. Res.-Oceans, 121, 3944–3954, 2016. a
Weiss, J.: The dynamics of entropy transfer in two-dimensional hydrodynamics, Physica D, 48, 273–294, 1991. a
Wölfl, A.-C. and Schade, M.: AtlantOS data products from multibeam EM122 data: METEOR cruise M124 (Atlantic), PANGAEA [data set], https://doi.org/10.1594/PANGAEA.902947, 2019. a
Wunsch, C.: Where do ocean eddy heat fluxes matter, J. Geophys. Res., 104, 13235–13249, 1999. a
Xia, Q., Li, G., and Dong, C.: Global oceanic mass transport by coherent eddies, J. Phys. Oceanogr., 52, 1111–1132, https://doi.org/10.1175/JPO-D-21-0103.1, 2022. a, b
Zaman, K. and Hussain, A.: Taylor hypothesis and large-scale coherent structures, J. Fluid Mech., 112, 379–396, 1981. a
Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., and Wan, X.: Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea, Sci. Rep., 6, 24349, https://doi.org/10.1038/srep24349, 2016. a
Short summary
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies, called "materially coherent", are able to transport a different water mass from the surrounding water. By analyzing 3D eddy structures sampled during oceanographic cruises, we found that eddies can be nonmaterially coherent, accounting only for their surface properties, but materially coherent considering their properties at depth. Future studies cannot rely solely on satellite data to evaluate heat and salt transport.
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies, called "materially...