Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-1183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-1183-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synoptic patterns associated with high-frequency sea level extremes in the Adriatic Sea
Krešimir Ruić
CORRESPONDING AUTHOR
Faculty of Science, University of Split, 21000 Split, Croatia
Jadranka Šepić
Faculty of Science, University of Split, 21000 Split, Croatia
Marin Vojković
Faculty of Science, University of Split, 21000 Split, Croatia
Related authors
Krešimir Ruić, Jadranka Šepić, and Marin Vojković
EGUsphere, https://doi.org/10.5194/egusphere-2024-1601, https://doi.org/10.5194/egusphere-2024-1601, 2024
Preprint withdrawn
Short summary
Short summary
Identifying the driving processes of intense sea-level (SL) oscillations has been the goal of many scientific endeavors. Our study focuses on intense SL oscillations in the Adriatic Sea resulting from atmospheric processes. Using machine learning methods, we identified several synoptic situations during which these oscillations occur. This can aid future predictions of extreme SL events, potentially reducing infrastructure damage and protecting lives.
Krešimir Ruić, Jadranka Šepić, and Marin Vojković
EGUsphere, https://doi.org/10.5194/egusphere-2024-1601, https://doi.org/10.5194/egusphere-2024-1601, 2024
Preprint withdrawn
Short summary
Short summary
Identifying the driving processes of intense sea-level (SL) oscillations has been the goal of many scientific endeavors. Our study focuses on intense SL oscillations in the Adriatic Sea resulting from atmospheric processes. Using machine learning methods, we identified several synoptic situations during which these oscillations occur. This can aid future predictions of extreme SL events, potentially reducing infrastructure damage and protecting lives.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Ivica Vilibić, Petra Zemunik, Jadranka Šepić, Natalija Dunić, Oussama Marzouk, Hrvoje Mihanović, Clea Denamiel, Robert Precali, and Tamara Djakovac
Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, https://doi.org/10.5194/os-15-1351-2019, 2019
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Cited articles
Bechle, A. J., Wu, C. H., Kristovich, D. A. R., Anderson, E. J., Schwab, D. J., and Rabinovich, A. B.: Meteotsunamis in the Laurentian Great Lakes, Sci. Rep.-UK, 6, 37832, https://doi.org/10.1038/srep37832, 2016.
Belušić, D., Grisogono, B., and Klaić, Z. B.: Atmospheric origin of the devastating coupled air-sea event in the east Adriatic, J. Geophys. Res., 112, D17111, https://doi.org/10.1029/2006JD008204, 2007.
Bertin, X., Bakker, A., van Dongeren, A., Coco, G., Andre, G., Ardhuin, F., Bonneton, P., Bouchette, F., Castelle, B., Crawford, W., Davidson, M., Deen, M., Dodet, G., Guérin, T., Inch, K., Leckler, F., McCall, R., Muller, H., Olabarrieta, M., and Tissier, M.: Infragravity waves: From driving mechanisms to impacts, Earth-Sci. Rev., 177, 774–799, https://doi.org/10.1016/j.earscirev.2018.01.002, 2018.
Copernicus Climate Change Service: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2017.
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami forecast component, Ocean Model., 135, 71–93, https://doi.org/10.1016/j.ocemod.2019.02.003, 2019.
Di Bernardino, A., Iannarelli, A. M., Casadio, S., Pisacane, G., Mevi, G., and Cacciani, M.: Classification of synoptic and local-scale wind patterns using k-means clustering in a Tyrrhenian coastal area (Italy), Meteorol. Atmos. Phys., 134, 30, https://doi.org/10.1007/s00703-022-00871-z, 2022.
Dodet, G., Melet, A., Ardhuin, F., Bertin, X., Idier, D., and Almar, R.: The Contribution of Wind-Generated Waves to Coastal Sea-Level Changes, Surv. Geophys., 40, 1563–1601, https://doi.org/10.1007/s10712-019-09557-5, 2019.
Dusek, G., DiVeglio, C., Licate, L., Heilman, L., Kirk, K., Paternostro, C., and Miller, A.: A meteotsunami climatology along the U. S. East Coast, B. Am. Meteorol. Soc., 100, 1329–1345, https://doi.org/10.1175/BAMS-D-18-0206.1, 2019.
Elken, J., Zujev, M., She, J., and Lagemaa, P.: Reconstruction of Large-Scale Sea Surface Temperature and Salinity Fields Using Sub-Regional EOF Patterns From Models, Front. Earth Sci., 7, 296-6463, https://doi.org/10.3389/feart.2019.00232, 2019.
Ferrarin, C., Bajo, M., Benetazzo, A., Cavaleri, L., Chiggiato, J., Davison, S., Davolio, S., Lionello, P., Orlić, M., and Umgiesser, G.: Local and large-scale controls of the exceptional Venice floods of November 2019, Prog. Oceanogr., 197, 102628, https://doi.org/10.1016/j.pocean.2021.102628, 2021.
Ferrarin, C., Lionello, P., Orlić, M., Raicich, F., and Salvadori, G.: Venice as a paradigm of coastal flooding under multiple compound drivers, Sci. Rep.-UK, 12, 5754, https://doi.org/10.1038/s41598-022-09652-5, 2022.
Gao, M., Yang, Y., Shi, H., and Gao, Z.: SOM-based synoptic analysis of atmospheric circulation patterns and temperature anomalies in China, Atmos. Res., 220, 46–56, https://doi.org/10.1016/j.atmosres.2019.01.005, 2019.
Grisogono, B. and Belušić, D.: A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind, Tellus A, 61, 1–16, https://doi.org/10.1111/j.1600-0870.2008.00369.x, 2009.
Heidarzadeh, M. and Rabinovich, A. B.: Combined hazard of typhoon-generated meteorological tsunamis and storm surges along the coast of Japan, Nat. Hazards, 106, 1639–1672, https://doi.org/10.1007/s11069-020-04448-0, 2021.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hodžić, M.: Long gravity waves on the sea surface caused by cyclones and free oscillations (seiches) in the Vela Luka Bay on the Adriatic, Riv. Meteorol. Aeronau., 48, 47–52, 1988.
Hoffmann, P., Lehmann, J., Fallah, B., and Hattermann, F. F.: Atmosphere similarity patterns in boreal summer show an increase of persistent weather conditions connected to hydro-climatic risks, Sci. Rep.-UK, 11, 22893, https://doi.org/10.1038/s41598-021-01808-z, 2021.
Jansà, A. and Ramis, C.: The Balearic rissaga: from pioneering research to present-day knowledge, Nat. Hazards, 106, 1269–1297, https://doi.org/10.1007/s11069-020-04221-3, 2021.
Jansa, A., Monserrat, S., and Gomis, D.: The rissaga of 15 June 2006 in Ciutadella (Menorca), a meteorological tsunami, Adv. Geosci., 12, 1–4, https://doi.org/10.5194/adgeo-12-1-2007, 2007.
Kaufman, L. and Rousseeuw, P. J.: Partitioning Around Medoids (Program PAM), in: Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., 68–125, https://doi.org/10.1002/9780470316801.ch2, 1990.
Kesslitz, W.: Die Gezeitenerscheinungen in der Adria, I. Teil: Die Beobachtungsergebnisse der Flutstationen, Denkschriften der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, 96, 175–275, 1919.
Kodinariya, T. M. and Makwana, P. R.: Review on determining number of Cluster in K-Means Clustering, Int. J. Adv. Res. Comput. Sci. Manag. Stud., 1, 90–95, 2013.
Lewis, C., Smyth, T., Williams, D., Neumann, J., and Cloke, H.: Meteotsunami in the United Kingdom: the hidden hazard, Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, 2023.
Lionello, P., Cavaleri, L., Nissen, K. M., Pino, C., Raicich, F., and Ulbrich, U.: Severe marine storms in the Northern Adriatic: characteristics and trends, Phys. Chem. Earth Pt. a/b/c, 40–41, 93–105, https://doi.org/10.1016/j.pce.2010.10.002, 2012.
Marcos, M., Tsimplis, M. N., and Shaw, A. G. P.: Sea level extremes in southern Europe, J. Geophys. Res., 114, C01007, https://doi.org/10.1029/2008JC004912, 2009.
Medvedev, I. P., Rabinovich, A. B., and Šepić, J.: Destructive coastal sea level oscillations generated by Typhoon Maysak in the Sea of Japan in September 2020, Sci. Rep.-UK, 12, 8463, https://doi.org/10.1038/s41598-022-12189-2, 2022.
Milligan, G. W. and Cooper, M. C.: A study of standardization of variables in cluster analysis, J. Classif., 5, 181–204, https://doi.org/10.1007/bf01897163, 1988.
Monserrat, S. and Thorpe, A. J.: Use of ducting theory in an observed case of gravity waves, J. Atmos. Sci., 53, 1724–1736, https://doi.org/10.1175/1520-0469(1996)053<1724:UODTIA>2.0.CO;2, 1996.
Monserrat, S., Vilibić, I., and Rabinovich, A. B.: Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band, Nat. Hazards Earth Syst. Sci., 6, 1035–1051, https://doi.org/10.5194/nhess-6-1035-2006, 2006.
Mourre, B., Santana, A., Buils, A., Gautreau, L., Ličer, M., Jansà, A., Casas, B., Amengual, B., and Tintoré, J.: On the potential of ensemble forecasting for the prediction of meteotsunamis in the Balearic Islands: sensitivity to atmospheric model parameterizations, Nat. Hazards, 106, 1315–1336, https://doi.org/10.1007/s11069-020-03908-x, 2021.
Muller, R. A.: A Synoptic Climatology for Environmental Baseline Analysis: New Orleans, J. Appl. Meteorol. Clim., 16, 20–33, https://doi.org/10.1175/1520-0450(1977)016<0020:ASCFEB>2.0.CO;2, 1977.
Orlić, M.: About a possible occurrence of the Proudman resonance in the Adriatic, Thalassia Jugoslavica, 16, 78–88, 1980.
Orlić, M. and Pasarić, M.: How to disentangle sea-level rise and a number of other processes influencing coastal floods?, Rend. Lincei-Sci. Fis., 35, 371–380, https://doi.org/10.1007/s12210-024-01242-z, 2024.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Pellikka, H., Šepić, J., Lehtonen, I., and Vilibić, I.: Meteotsunamis in the northern Baltic Sea and their relationship to atmospheric synoptic patterns, Weather and Climate Extremes, 38, 100527, https://doi.org/10.1016/j.wace.2022.100527, 2022.
Pérez-Gómez, B., García-León, M., García-Valdecasas, J., Clementi, E., Mösso Aranda, C., Pérez-Rubio, S., Masina, S., Coppini, G., Molina-Sánchez, R., Muñoz-Cubillo, A., García Fletcher, A., Sánchez González, J. F., Sánchez-Arcilla, A., and Álvarez Fanjul, E.: Understanding sea level processes during western Mediterranean storm Gloria, Front. Mar. Sci., 8, 647437, https://doi.org/10.3389/fmars.2021.647437, 2021.
Pérez-Gómez, B., Vilibić, I., Šepić, J., Međugorac, I., Ličer, M., Testut, L., Fraboul, C., Marcos, M., Abdellaoui, H., Álvarez Fanjul, E., Barbalić, D., Casas, B., Castaño-Tierno, A., Čupić, S., Drago, A., Fraile, M. A., Galliano, D. A., Gauci, A., Gloginja, B., Martín Guijarro, V., Jeromel, M., Larrad Revuelto, M., Lazar, A., Keskin, I. H., Medvedev, I., Menassri, A., Meslem, M. A., Mihanović, H., Morucci, S., Niculescu, D., Quijano de Benito, J. M., Pascual, J., Palazov, A., Picone, M., Raicich, F., Said, M., Salat, J., Sezen, E., Simav, M., Sylaios, G., Tel, E., Tintoré, J., Zaimi, K., and Zodiatis, G.: Coastal sea level monitoring in the Mediterranean and Black seas, Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, 2022.
Philippopoulos, K., Deligiorgi, D., and Kouroupetroglou, G.: Performance Comparison of Self-Organizing Maps and k-means Clustering Techniques for Atmospheric Circulation Classification, International Journal of Energy and Environment, 8, 171–180, 2014.
Poje, D.: Wind persistence in Croatia, Int. J. Climatol., 12, 569–586, https://doi.org/10.1002/joc.3370120604, 1992.
Proudman, J.: The effects on the sea of changes in atmospheric pressure, Geophysical Supplement to Monthly Notices of the Royal Astronomical Society, 2, 197–209, 1929.
Pugh, D. and Woodworth, P.: Sea-level science: understanding tides, surges, tsunamis and mean sea-level changes, Cambridge University Press, 395 pp., ISBN 9781107028197, 2014.
Rabinovich, A. B.: Seiches and Harbor Oscillations, in: Handbook of Coastal and Ocean Engineering, World Scientific, 193–236, https://doi.org/10.1142/9789812819307_0009, 2009.
Rabinovich, A. B.: Twenty-seven years of progress in the science of meteorological tsunamis following the 1992 Daytona Beach event, Pure Appl. Geophys., 177, 1193–1230, https://doi.org/10.1007/s00024-019-02349-3, 2020.
Rabinovich, A. B., Šepić, J., and Thomson, R.: Strength in numbers: the tail end of Typhoon Songda combines with local cyclones to generate extreme sea level oscillation on the British Columbia and Washington coasts during mid-October 2016, J. Phys. Oceanogr., 53, 131–155, https://doi.org/10.1175/JPO-D-22-0096.1, 2023.
Ramis, C. and Jansà, A.: Condiciones meteorológicas simultáneas a la aparición de oscilaciones del nivel del mar de amplitud extraordinaria en el Mediterráneo Occidental, Rev. Geofisc., 39, 35–42, 1983.
Reusch, D. B., Alley, R. B., and Hewitson, B. C.: North Atlantic climate variability from a self-organizing map perspective, J. Geophys. Res., 112, D02104, https://doi.org/10.1029/2006jd007460, 2007.
Rousseeuw, J. P.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math., 20, 53–65, 1987.
Ruić, K., Šepić, J., Mlinar, M., and Međugorac, I.: Contribution of high-frequency (T<2 h) sea level oscillations to the Adriatic sea level maxima, Nat. Hazards, 116, 3747–3777, https://doi.org/10.1007/s11069-023-05834-0, 2023.
Ruić, K., Šepić, J., and Vojković, M.: Data set, Zenodo [data set], https://doi.org/10.5281/zenodo.15745740, 2025a.
Ruić, K., Šepić, J., and Vojković, M.: KMedoid_for_atmospheric_variables, Zenodo [code], https://doi.org/10.5281/zenodo.15738252, 2025b.
Šepić, J. and Orlić, M.: Adriatic meteotsunami catalogue, https://projekti.pmfst.unist.hr/floods/meteotsunamis/, last access:: 21 April 2024.
Šepić, J. and Rabinovich, A. B.: Meteotsunami in the Great Lakes and on the Atlantic coast of the United States generated by the “derecho” of June 29–30, 2012, Nat. Hazards, 74, 75–107, https://doi.org/10.1007/s11069-014-1310-5, 2014.
Šepić, J., Vilibić, I., and Monserrat S.: Teleconnections between the Adriatic and the Balearic meteotsunamis, Phys. Chem. Earth, 34, 928–937, https://doi.org/10.1016/j.pce.2009.08.007, 2009.
Šepić J., Vilibić, I., Lafon, A., Macheboueuf, L., and Ivanović, Z.: High-frequency sea level oscillations in the Mediterranean and their connection to synoptic patterns, Prog. Oceanogr., 137, 284–298, https://doi.org/10.1016/j.pocean.2015.07.005, 2015a.
Šepić J., Vilibić, I., Rabinovich, A. B., and Monserrat, S.: Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing, Sci. Rep.-UK, 5, 11682, https://doi.org/10.1038/srep11682, 2015b.
Šepić, J., Vilibić, I., and Monserrat, S.: Quantifying the probability of meteotsunami occurrence from synoptic atmospheric patterns, Geophys. Res. Lett., 43, 10377–10384, https://doi.org/10.1002/2016GL070754, 2016.
Šepić, J., Pasarić, M., Međugorac, I., Vilibić, I., Karlović, M., and Mlinar, M.: Climatology and processoriented analysis of the Adriatic Sea level extremes, Prog. Oceanogr., 209, 102908, https://doi.org/10.1016/j.pocean.2022.102908, 2022.
Sheridan, S. C.: The redevelopment of a weather-type classification scheme for North America, Int. J. Climatol., 22, 51–68, https://doi.org/10.1002/joc.709, 2002.
Suursaar, Ü., Kullas, T., Otsmann, M., Saaremäe, I., Kuik, J., and Merilain, M.: Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters, Boreal Environ. Res., 11, 143–159, 2006.
Thomson, R. E. and Emery, W. J.: Data analysis methods in physical oceanography, Elsevier, Amsterdam, ISBN 9780123877826, 2014.
Ursell, F.: Edge waves on a sloping beach, P. Roy. Soc. A-Math. Phy., 214, 79–97, https://doi.org/10.1098/rspa.1952.0152, 1952.
Vich, MdM. and Romero, R.: Forecasting meteotsunamis with neural networks: the case of Ciutadella harbour (Balearic Islands), Nat. Hazards, 106, 1299–1314, https://doi.org/10.1007/s11069-020-04041-5, 2021.
Vilibić, I. and Šepić, J.: Destructive meteotsunamis along the eastern Adriatic coast: overview, Phys. Chem. Earth, 34, 904–917, https://doi.org/10.1016/j.pce.2009.08.004, 2009.
Vilibić, I. and Šepić J.: Global mapping of nonseismic sea level oscillations at tsunami timescales, Sci. Rep.-UK, 7, 40818, https://doi.org/10.1038/srep40818, 2017.
Vilibić I., Šepić J., Rabinovich A. B., and Monserrat S.: Modern Approaches in Meteotsunami Research and Early Warning, Frontiers in Marine Science, 3, 2296–7745, https://doi.org/10.3389/fmars.2016.00057, 2016.
Vilibić, I., Šepić, J., Pasarić, M., and Orlić, M.: The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies, Pure Appl. Geophys., 174, 3765–3811, https://doi.org/10.1007/s00024-017-1625-8, 2017.
Wang, X. D., Chen, R. C., Yan, F., Zeng, Z. Q., and Hong, C. Q.: Fast Adaptive K-Means Subspace Clustering for High-Dimensional Data, IEEE Access, 7, 42639–42651, https://doi.org/10.1109/ACCESS.2019.2907043, 2019.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.: Image quality assessment: from error visibility to structural similarity, IEEE T. Image Process., 13, 600–612, https://doi.org/10.1109/tip.2003.819861, 2004.
Wilson, B.: Seiches, Adv, Hydrosci., 8, 1–94, https://doi.org/10.1016/B978-0-12-021808-0.50006-1, 1972.
Winderlich, K., Dalelane, C., and Walter, A.: Classification of synoptic circulation patterns with a two-stage clustering algorithm using the modified structural similarity index metric (SSIM), Earth Syst. Dynam., 15, 607–633, https://doi.org/10.5194/esd-15-607-2024, 2024.
Zemunik, P., Denamiel, C., Šepić, J., and Vilibić, I.: High-frequency sea-level analysis: global distributions, Global Planet. Change, 210, 103775, https://doi.org/10.1016/j.gloplacha.2022.103775, 2022a.
Zemunik, P., Denamiel, C., Williams, J., and Vilibić, I.: High-frequency sea-level extremes: Global correlations to synoptic atmospheric patterns, Weather and Climate Extremes, 38, 100516, https://doi.org/10.1016/j.wace.2022.100516, 2022b.
Short summary
This study investigates the synoptic weather patterns that cause extreme high-frequency sea level oscillations in the Adriatic Sea. Using synoptic data, 17 years of tide gauge data, and advanced clustering techniques, we identify distinct weather patterns linked to these events, some of which were previously unknown. These insights improve the understanding of sea level variability and have potential applications in forecasting coastal hazards.
This study investigates the synoptic weather patterns that cause extreme high-frequency sea...