Articles | Volume 20, issue 3
https://doi.org/10.5194/os-20-759-2024
https://doi.org/10.5194/os-20-759-2024
Research article
 | 
11 Jun 2024
Research article |  | 11 Jun 2024

Dynamical reconstruction of the upper-ocean state in the central Arctic during the winter period of the MOSAiC expedition

Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout

Related authors

Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system
Itzel Ruvalcaba Baroni, Elin Almroth-Rosell, Lars Axell, Sam T. Fredriksson, Jenny Hieronymus, Magnus Hieronymus, Sandra-Esther Brunnabend, Matthias Gröger, Ivan Kuznetsov, Filippa Fransner, Robinson Hordoir, Saeed Falahat, and Lars Arneborg
Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024,https://doi.org/10.5194/bg-21-2087-2024, 2024
Short summary
A year of transient tracers (chlorofluorocarbon 12 and sulfur hexafluoride), noble gases (helium and neon), and tritium in the Arctic Ocean from the MOSAiC expedition (2019–2020)
Céline Heuzé, Oliver Huhn, Maren Walter, Natalia Sukhikh, Salar Karam, Wiebke Körtke, Myriel Vredenborg, Klaus Bulsiewicz, Jürgen Sültenfuß, Ying-Chih Fang, Christian Mertens, Benjamin Rabe, Sandra Tippenhauer, Jacob Allerholt, Hailun He, David Kuhlmey, Ivan Kuznetsov, and Maria Mallet
Earth Syst. Sci. Data, 15, 5517–5534, https://doi.org/10.5194/essd-15-5517-2023,https://doi.org/10.5194/essd-15-5517-2023, 2023
Short summary
Mesoscale observations of temperature and salinity in the Arctic Transpolar Drift: a high-resolution dataset from the MOSAiC Distributed Network
Mario Hoppmann, Ivan Kuznetsov, Ying-Chih Fang, and Benjamin Rabe
Earth Syst. Sci. Data, 14, 4901–4921, https://doi.org/10.5194/essd-14-4901-2022,https://doi.org/10.5194/essd-14-4901-2022, 2022
Short summary
Plume spreading test case for coastal ocean models
Vera Fofonova​​​​​​​, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021,https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Non-linear aspects of the tidal dynamics in the Sylt-Rømø Bight, south-eastern North Sea
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019,https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary

Related subject area

Approach: Data Assimilation | Properties and processes: Mesoscale to submesoscale dynamics
Convolutional Neural Networks for Sea Surface Data Assimilation in Operational Ocean Models: Test Case in the Gulf of Mexico
Olmo Zavala-Romero, Alexandra Bozec, Eric P. Chassignet, and Jose R. Miranda
EGUsphere, https://doi.org/10.5194/egusphere-2024-1293,https://doi.org/10.5194/egusphere-2024-1293, 2024
Short summary

Cited articles

Androsov, A., Rubino, A., Romeiser, R., and Sein, D. V.: Open-ocean convection in the Greenland Sea: preconditioning through a mesoscale chimney and detectability in SAR imagery studied with a hierarchy of nested numerical models, Meteorol. Z., 14, 693–702, https://doi.org/10.1127/0941-2948/2005/0078, 2005. a
Androsov, A., Nerger, L., Schnur, R., Schröter, J., Albertella, A., Rummel, R., Savcenko, R., Bosch, W., Skachko, S., and Danilov, S.: On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state, J. Geodesy, 93, 141–157, https://doi.org/10.1007/s00190-018-1151-1, 2018. a
Androsov, A., Fofonova, V., Kuznetsov, I., Danilov, S., Rakowsky, N., Harig, S., Brix, H., and Wiltshire, K. H.: FESOM-C v.2: coastal dynamics on hybrid unstructured meshes, Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019, 2019. a, b, c, d
Androsov, A., Boebel, O., Schröter, J., Danilov, S., Macrander, A., and Ivanciu, I.: Ocean Bottom Pressure Variability: Can It Be Reliably Modeled?, J. Geophys. Res.-Oceans, 125, e2019JC015469, https://doi.org/10.1029/2019JC015469, 2020.​​​​​​​ a
Barth, A., Beckers, J.-M., Troupin, C., Alvera-Azcárate, A., and Vandenbulcke, L.: divand-1.0: n-dimensional variational data analysis for ocean observations, Geosci. Model Dev., 7, 225–241, https://doi.org/10.5194/gmd-7-225-2014, 2014. a
Download
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.