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Abstract. This paper presents a methodological tool for dy-
namic reconstruction of the state of the ocean, based, as an
example, on observations from the Multidisciplinary drifting
Observatory for the Study of Arctic Climate (MOSAiC) ex-
periment. The data used in this study were collected in the
Amundsen Basin between October 2019 and January 2020.
Analysing observational data to assess tracer field and upper-
ocean dynamics is highly challenging when measurement
platforms drift with the ice pack due to continuous drift speed
and direction changes. We have equipped the new version
of the coastal branch of the global Finite-volumE sea ice–
Ocean Model (FESOM-C) with a nudging method. Model
nudging was carried out assuming a quasi-steady state. Over-
all, the model can reproduce the lateral and vertical structure
of the temperature, salinity, and density fields, which allows
for projecting dynamically consistent features of these fields
onto a regular grid. We identify two separate depth ranges of
enhanced eddy kinetic energy located around two maxima in
buoyancy frequency: the depth of the upper halocline and the
depth of the warm (modified) Atlantic Water. Simulations re-
veal a notable decrease in surface layer salinity and density
in the Amundsen Basin towards the north but no significant
gradient from east to west. However, we find a mixed-layer
deepening from east to west, with a 0.084 m km−1 gradient
at 0.6 m km−1 standard deviation, compared to a weak deep-
ening from south to north. The model resolves several sta-

tionary eddies in the warm Atlantic Water and provides in-
sights into the associated dynamics. The model output can be
used to further analyse the thermohaline structure and related
dynamics associated with mesoscale and submesoscale pro-
cesses in the central Arctic, such as estimates of heat fluxes
or mass transport. The developed nudging method can be uti-
lized to incorporate observational data from a diverse set of
instruments and for further analysis of data from the MO-
SAiC expedition.

1 Introduction

Mesoscale and submesoscale eddies have been observed
in many of the world’s oceans, including the Arctic. The
fluxes driven by those eddies play a significant role in Arc-
tic Ocean dynamics, such as the ventilation of the halocline
and the transport of organic and inorganic matter (Dmitrenko
et al., 2008; Meneghello et al., 2021; Marcinko et al., 2015;
Pnyushkov et al., 2018; Mahadevan, 2016; Mahadevan et al.,
2010; Gula et al., 2022; Nishino et al., 2018; Watanabe,
2011). Most studies on under-ice eddy dynamics in the Arc-
tic focus on the ice edge or the shelf break zone, where the
eddy activity is maximal. Still, little is known about eddies
in the ice-covered central Arctic Ocean.
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Any mesoscale activity is inevitably linked to subme-
soscale dynamics, such as filaments around mesoscale ed-
dies (e.g. Della Penna and Gaube, 2019; Mahadevan, 2016).
The intensity of mesoscale dynamics can be represented by
the eddy kinetic energy (EKE), found to be stronger in areas
with low sea ice concentration (von Appen et al., 2022) and
weakened by friction under sea ice, e.g. in the Arctic inte-
rior and/or in winter (Meneghello et al., 2021). Vertical eddy
diffusivity of mass and heat and associated fluxes, as well
as vertical velocity, can be enhanced significantly by under-
ice eddies (Manucharyan and Thompson, 2017); conversely,
submesoscale flows can both enhance those fluxes and sup-
press them by restratifying the mixed layer (Mensa and Tim-
mermans, 2017). Observations and simulations have shown
that the occurrence of eddies varies on monthly (Pnyushkov
et al., 2018) to interannual (Zhao et al., 2016) timescales,
and individual eddies may persist up to several months (Scott
et al., 2019). Despite the intensification of eddy dynamics at
the basin boundaries, von Appen et al. (2022) note that in
the central Eurasian Basin, EKE is significant in both the
halocline and the Atlantic Water layer, according to high-
resolution simulations.

Eddy dynamics impact not only ocean physics but also
biochemical and ecosystem processes in the Arctic Ocean.
Llinás et al. (2009) illustrate the possible mechanism of zoo-
plankton transport from the Chukchi Shelf into the interior
Canada Basin by eddies. O’Brien et al. (2013) find a signifi-
cant role of eddies in the particle flux, and Oziel et al. (2022)
demonstrate in a modelling study that lateral submesoscale
eddy transport is one of the dominating processes control-
ling the nitrate supply in the central Arctic Ocean. Omand
et al. (2015) show that small-scale vorticity could be respon-
sible for high particulate organic carbon concentrations in
deeper layers. According to their calculations, submesoscale,
eddy-driven fluxes can contribute as much as half of the to-
tal springtime export of particulate organic carbon from the
upper ocean to deeper layers in the subpolar region.

Despite ongoing efforts to develop and improve cli-
mate models, accurately representing mesoscale and sub-
mesoscale dynamics remains challenging. Androsov et al.
(2020) compared ocean models with various horizontal res-
olutions to observed ocean bottom pressure and found only
a modest correlation between the models and observations.
They conclude that high resolution is necessary for areas
with high mesoscale eddy activity. According to Zhao et al.
(2014), the radii of observed halocline mesoscale eddies are
of the order of a few kilometres in the Arctic Ocean, where
the first baroclinic Rossby deformation radius varies between
1 and 15 km (Nurser and Bacon, 2014). The necessity to re-
solve such small scales makes it challenging to explicitly
model mesoscale and submesoscale features in global cli-
mate models due to the lack of horizontal resolution. Recent
developments in the ocean and coupled climate models, soft-
ware, and hardware give a possibility for simulations with
a very high horizontal resolution, for example, Wang et al.

(2020), Maslowski et al. (2008), Regan et al. (2020), Lyu
et al. (2022), and Hordoir et al. (2022).

Most studies on eddy dynamics in the Arctic have focused
on the marginal ice zone or coastal currents, the main lim-
itation of mesoscale and submesoscale research in the cen-
tral Arctic being observational data. Unfortunately, standard
methods for observing eddies, such as satellite remote sens-
ing or glider and transect campaigns, have been challeng-
ing in near-perennially ice-covered seas. To fill this gap, the
Multidisciplinary drifting Observatory for the Study of Arc-
tic Climate (MOSAiC; e.g. Rabe et al., 2022) designed a dis-
tributed network (DN; Rabe et al., 2024) of autonomous ice-
tethered systems (hereafter referred to as “buoys”) around
the MOSAiC Central Observatory (CO). The CO included a
series of buoys and mostly manual ocean observations at the
R/V Polarstern and a site about 300 m away from the ship
(“Ocean City”; OC). This setup enabled us to obtain regu-
lar, non-autonomous measurements during the MOSAiC ex-
pedition. Many extremely diverse observations, from point
measurements to profiles, differ significantly in temporal fre-
quency, from irregular weekly measurements to measure-
ments every 2 min, and in spatial resolution, from tens of
kilometres to tens of metres. Moreover, looping the DN
drift trajectory and the intersection of the trajectories of dif-
ferent buoys adds complexity to the observed data. Never-
theless, using relatively simple data analysis methods, sev-
eral mesoscale eddies have been identified in the Amundsen
Basin (Hoppmann et al., 2022; Fang et al., 2024; Zurita et al.,
2024). However, these methods have limitations in show-
ing the overall three-dimensional picture due to the above-
mentioned complex drift trajectories, and analysing the buoy
measurements spatially can be challenging, particularly in
estimating lateral gradients of tracers or velocity shear. This
poses the question of best analysing such scattered data and
dynamics and their role in vertical transport. One possible
approach is to use interpolation techniques, such as optimal
interpolation (Bretherton et al., 1976) or data interpolation
variational analysis (Troupin et al., 2012; Barth et al., 2014).
However, the lateral scales of phenomena on interpolated
maps can be limited by distances between the observing buoy
systems or parameters of the interpolation algorithm rather
than physical processes.

Reconstructing temperature, salinity, and density fields
with a model by data assimilation allows estimating dynam-
ically consistent lateral features of these fields on a regular
grid. Androsov et al. (2005) and Rubino et al. (2007) used
in situ observations with three-dimensional non-hydrostatic
modelling to investigate the non-stationarity of the dynam-
ics and evolution of mesoscale chimneys in the Green-
land Sea. Together with an analytical solution, this allowed
the authors to investigate these eddies’ inertial pulsations,
shape, and velocity structure, as well as their significant ef-
fect on open-ocean deep-penetrating convection. Assimilat-
ing high-frequency variability data presents significant chal-
lenges: first, the assimilation time (usually once every 10 d
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or even daily averaging in extreme cases) significantly in-
creases computation time. Second, the assimilation process
involves averaging over a significant data radius, resulting in
a smoothing effect on the assimilated data (Androsov et al.,
2018). The nature of the data has to be considered when em-
ploying advanced methods such as the four-dimensional vari-
ational method (Courtier et al., 1994; Mogensen et al., 2009)
or the Parallel Data Assimilation Framework (Nerger et al.,
2020). Unfortunately, the high-frequency variability and the
scales of the observations inherent in the MOSAiC data make
it impractical to apply these methods to eddy analysis. Al-
ternatively, nudging has several advantages for ocean data
assimilation, including its ease of implementation in com-
plex numerical models, low computational demands, and the
smoothness of the solution over time (Ruggiero et al., 2015).

Our study aims to extend current knowledge of eddy dy-
namics in the central Arctic by using the three-dimensional
regional model FESOM-C with very high vertical (up to 1 m)
and horizontal (up to 250 m) resolution. We utilize observed
temperature and salinity data from the MOSAiC DN buoys
as part of the forcing for the numerical model, employing
a nudging method with a quasi-steady-state approximation.
Our objective is to present a newly developed modelling tool
to reconstruct gridded fields of water properties based on
MOSAiC DN observational temperature and salinity. Addi-
tionally, we aim to estimate the properties of mesoscale and
submesoscale dynamics and their potential variability during
the MOSAiC expedition.

This paper is organized as follows. Section 2 presents the
numerical model, observations, new nudging methodology,
and experimental design. In Sect. 3, we present the results
of the simulations and model validation. The analysis of
(sub)mesoscale dynamics and distribution of eddy kinetic en-
ergy from the reconstructed dynamical fields are discussed in
Sect. 4. In Sect. 5 we summarize the results.

2 Methods

2.1 Observational data

Here, we use an observational data set obtained as part
of the physical oceanography work programme during the
field phase of the Multidisciplinary drifting Observatory for
the Study of Arctic Climate (MOSAiC) in 2019/20 (Shupe
et al., 2020). A description of the physical oceanography part
of the experiment with a general description of the instru-
ments and methodology is presented in Rabe et al. (2022).
Various instruments obtained temperature and salinity ob-
servations used in this work: most of the data were mea-
sured by autonomous ice-tethered systems (buoys) within
the DN, originally deployed by the icebreaker Akademik Fe-
dorov (Krumpen and Sokolov, 2020), radially around the
icebreaker Polarstern tethered to the sea ice at the Central
Observatory. Eight buoys termed “salinity ice tether” (SIT)

measured temperature, conductivity, and pressure, with de-
rived salinity and depth, at five depths of 10, 20, 50, 75,
and 100 m with a sampling interval of 2 to 10 min and a
distance between subsequent data points as small as 80 m.
The sensors used on these buoys have an initial accuracy of
±0.003 mS cm−1 for conductivity, ±0.002 °C for tempera-
ture, and ±0.1 % of the full range for pressure. The sensor
stability rating is 0.003 mS cm−1 and 0.0002 per month for
conductivity and temperature, respectively, with a yearly rat-
ing of 0.05 % of the full scale for pressure. A detailed de-
scription of the instruments and the data obtained is given
by Hoppmann et al. (2022). We further used data from three
ice-tethered profilers (ITPs; Toole and Krishfield, 2016). The
time between subsequent profiles varied from several hours
to days, depending on the specific system. The maximum
depth reached by these profilers was about 700 m, with the
minimum depth varying from 5 to 8 m. Thus, the measure-
ments with profilers cover depths in the warm waters of At-
lantic origin (referred to as warm Atlantic Water) and be-
yond. A total of 1114 profiles were used to nudge the model.
The nudging process included additional profiles from CTD
rosette casts at the Central Observatory, both from Polarstern
(PS-CTD; 25 profiles with a depth range from 2 to up to
4450 m) (Tippenhauer et al., 2023a) and from a location a
few hundred metres away from the ship, at the Ocean City
(OC-CTD; 44 profiles with a depth range from 2 to up to
500 m) (Tippenhauer et al., 2023b). ITP profiles with unsta-
ble stratification or a vertical range of less than 10 m were
excluded from the analysis. Data from the profiles were av-
eraged with a standard pressure interval of 1 dbar (a depth
interval of about 1 m) as indicated in the data sources. All
devices’ measurement accuracy is much higher than the er-
ror introduced by interpolation and the nudging scheme.

The observations used for model nudging covered the re-
gion between 87.6 and 139.5° E and 84.5 and 87.5° N, corre-
sponding to the MOSAiC drift from October 2019 to January
2020. During this period, the MOSAiC expedition drifted
from the southeast to the northwest. During the initial phase
of the drift, the trajectories of the DN buoys, shown in Fig. 1
by coloured dots, exhibited predominantly straight paths.
The later part is characterized by the presence of overlap-
ping loops in the trajectories when the regional sea ice cover
changed drift direction. These loops of the trajectories of dif-
ferent measurement platforms increase the area of the data
coverage compared to the straight drift, while, at the same
time, introducing uncertainty in the spatiotemporal interpre-
tation of the data. Measured parameters could differ between
data measured at the same position at different times, lead-
ing to the aliasing of the observed signal. The average ice
drift speed during the observation period was 12 cm s−1.

To validate the model results, we used independent tem-
perature and salinity data from a turbulence microstructure
profiler (MSS; Schulz et al., 2022). The model did not use
these data for nudging. MSS profiles were obtained at Ocean
City, at a near-daily resolution, in sets of at least three pro-
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Figure 1. (a) Model domain resolution with the position of the observational data used in this study, covering a period of ≈ 2.5 months.
The positions of the observational data used for nudging are separated by instrument type: blue – five SIT buoys, with CTDs at 10, 20, 50,
75, and 100 m depth (Hoppmann et al., 2022). Red – PS- and OC-CTD casts (Tippenhauer et al., 2023a; Tippenhauer et al., 2023b), as well
as ITP profiles (Toole and Krishfield, 2016). Black crosses – position of MSS profiles used for validation (Schulz et al., 2022). The green
polygon indicates an area with mainly straight drift trajectories, whereas the orange polygon indicates an area with often overlapping buoy
trajectories. The magenta rectangle shows the area of Fig. 11. (b) The border situation map with the ship’s drift trajectory is marked in red.
© Google Earth 2019.

files. The profiles are averaged to 1 m vertical resolution and
corrected against CTD profiles, calibrated with water sam-
ples. For comparison to the model fields, we used 305 pro-
files (see black crosses in Fig. 1). The MSS data, while not
included in the nudging process and thus considered inde-

pendent to a degree, inevitably exhibit some degree of auto-
correlation with DN and PS measurements. This is particu-
larly due to the spatial distances between DN buoys and the
temporal and spatial dispersion of data from PS and MSS.
Consequently, we acknowledge the data as independent with
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the caveat that a certain level of autocorrelation is present,
reflecting the inherent spatial and temporal structures within
the observational network.

2.2 FESOM-C model

The FESOM-C model used in this work (Danilov and An-
drosov, 2015; Androsov et al., 2019) is a coastal branch of
the global Finite-volumE sea ice–Ocean Model (FESOM2)
(Danilov et al., 2017). In addition to the partially common
interface of the models, FESOM-C has specific features that
are important for our work. The model was originally devel-
oped for applications with a high horizontal resolution as fine
as several metres (Neder et al., 2022; Kuznetsov et al., 2020;
Fofonova et al., 2019). This model uses the discretization of
cells and vertices of a finite volume, which allows the use
of unstructured computational grids. We use this function to
move the boundary of the computational domain away from
the region of interest, the “core” of the model grid, with-
out creating a system of nested grids. At the same time, the
horizontal resolution outside the core is quite coarse, which
allows us to reduce the influence of the boundary on our
solution inside the core. The most important distinguishing
feature from the global FESOM2 is the possibility of us-
ing hybrid grids consisting of triangles and squares. This ap-
proach’s effectiveness in enhancing stability and using larger
time steps is shown by Danilov and Androsov (2015) and
Androsov et al. (2019). Additionally, this model branch uses
sigma layers in the vertical direction.

The parallel Algebraic Recursive Multilevel Solver
(pARMS; Z. Li et al., 2003) used in FESOM2 was used to
calculate the sea level using a semi-implicit method. Since
we study the processes in the deep-water region, where the
effect of bottom friction is minimal, and the barotropic mode
does not play a key role, we modified the scheme to a semi-
implicit calculation of the sea level, omitting the solution of
the block of average equations.

The thermodynamics of the sea ice model component has
not been used in the current work. Alteration of the ocean
surface temperature and salinity due to ice formation and
melting has been implemented through model nudging to-
wards observational data. The minimum depth of the obser-
vational data from instruments ranged from 2 to 10 m. Con-
sidering that the mixed-layer depth exceeded 20 m, the tem-
perature and salinity within the mixed layer were well rep-
resented in the data. The effect of sea ice presence on the
dynamics of the ocean surface layer has been parameterized
by the friction between ice and ocean. Thus, we do not con-
sider the additional momentum transfer due to ice drift. The
effect of ice drift has been accounted for in the turbulence
closure and is described in the following section.

In contrast to previous publications, we have implemented
parallel calculations based on the message passing interface
(MPI). For the dynamic part of the model, the MPI scheme
is similar to that of FESOM2 but applied to hybrid grids. In

contrast to the global model, the organization of parallel out-
put and input for boundary conditions at open surface bound-
aries was written using the PnetCDF library (J. Li et al.,
2003). This made it possible to take advantage of the flex-
ibility of the previous openMP FESOM-C I/O version.

2.3 Turbulence closure

The turbulence closure equation based on the Prandtl–
Kolmogorov hypothesis described in Androsov et al. (2019)
calculates turbulent vertical flows. Compared to the origi-
nal version of the FESOM-C model, the modification of this
equation concerned only the parametrization of the turbu-
lence scale l. The need for this change is associated primarily
with the parametrization of the ice-water layer and a more
dynamic description of the moving mixed layer (ML). At the
preliminary stage, an average upper bound ice drift velocity
is estimated at 0.7 m s−1, which is used as an upper bound-
ary condition for the dynamic wind speed in the turbulent
energy budget equation. This parameter is used across the en-
tire domain and throughout the entire period of the model’s
nudging. Since we use a quasi-steady-state approximation
(see nudging in Sect. 2.5), this parameter remains unchanged
throughout the computation process but does not represent
individual storm or lead events. We compensate for these
with model nudging to observations. In the second stage, the
thickness of the ML (hml) is estimated as the depth at which
the practical salinity increases by 0.5 from its surface value.
Estimates of hml less than 20 m are set to 20 m. This is one
of the commonly used definitions of the ML depth. The ex-
act definition of ML depth does not play a crucial role in our
task. Then, the scale of turbulence in the upper ML is deter-
mined by

l =
κ

hml
·ZH ·Zζ , (1)

where ZH = z+hml, Zζ = z+zζ , κ ∼ 0.4 is the von Kármán
constant, z is the depth (positive downwards), and zζ is the
roughness parameter for the ice-water layer. Underneath the
surface ML, hml, the scale of turbulence is given by

l =
κ

H −hml
·ZH ·Zml ·C, (2)

where H = h+ ζ is the full water depth, Zml =−z+ (H −

hml)+ zb, zb is the roughness parameter for the bottom, and
the constant C ∼ 0.01 is set to reduce the scale of turbulence
underneath the ML. This approach to determining the scale
of turbulence ensures the smoothness and minimization of
turbulent exchange at the boundary of the ML and the water
column underneath the ML.

2.4 Model domain

The model domain is a parallelepiped in Cartesian coordi-
nates with a solid boundary. Since the FESOM-C model al-
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lows computing on mixed unstructured meshes, we can ad-
just the spatial resolution without using nested grids. For the
final computations, two spatial configurations of the model
are used. The general conditions for these configurations
were that, near the horizontal boundaries of the domain, the
spatial resolution was relatively coarse, about 5 km. Such a
coarse resolution at the boundaries serves two purposes: first,
absorption due to the stronger dissipation of the uncertainty
in the boundary information and its levelling to calculations
in the model’s core is the most important in our applica-
tion. Second, there are significant savings in computational
resources. The first configuration of the model has a resolu-
tion of up to 1 km in the area of interest and contains 96 000
nodes. This setup is mainly used at the initial modelling stage
to form the initial conditions for a spatially detailed config-
uration of the study domain. For the coarse-resolution initial
condition, a single profile was applied throughout the entire
model domain; details are provided in Sect. 2.6. The second
configuration has a resolution of up to 250 m at the model’s
core and contains about 1.3 million nodes (see Fig. 1). This
setup is used for the final computations and data analysis. A
more detailed description of the experiments on these two
grids is presented in Sect. 2.6 and Fig. 2. The vertical struc-
ture is the same for both configurations and contains 240
vertical σ layers. The model domain covers the entire water
column, reaching a maximum depth of 4450 m, representing
this region’s average depth. At the same time, the upper layer
up to 150 m has an effective resolution of up to 1 m, which
makes it possible to significantly improve the representation
of the vertical aspects of the submesoscale dynamics of sur-
face ML compared to global models. The model domain is
about 660 by 525 km and limited geographically to between
83 and 87.7° N latitude and 90 and 140° E longitude.

2.5 Nudging

Nudging, along with the specifics of its application, plays
a key role in our study. Model nudging was conducted un-
der the assumption of a quasi-steady state, ensuring that the
model was nudged with all observational data simultane-
ously. The model does not consider the time the observations
were taken, which is a reasonable approximation at high drift
speed relative to the water velocity. At the same time, we as-
sume no significant relation of the submesoscale baroclinic
structure at different ends of the model domain. Thus, we
obtain a quasi-stationary solution by nudging the model to
observations that are not separated in time. This approach
can be viewed as the outcome of dynamically justified in-
terpolation. In analysing the obtained fields, it should be re-
membered that the nudging data span 4 months. This dura-
tion impacts various system parameters, such as the depth of
the mixed layer. Atmospheric influences on the flows are cap-
tured solely through nudging, with the data density shaping
a smoothed pattern. Given the months-long temporal span
of the observational data in a quasi-stationary setting, this

Figure 2. (a, b, d) Schematic of interpolation and masking on the
mesh. The blue and yellow circles are vertices of 0.25 and 1 km res-
olution meshes. The red lines and circles represent the paths and
measurement positions of SIT buoys in (a) and of ITP and PS and
OC CTDs in (d). (c) Vertical relaxation weight distribution. (e) Ver-
tical interpolation of observed profile. Linear interpolation coeffi-
cients are denoted by an and bn. Mesh vertices marked in red are
influenced by the measurement marked with a blue circle.

method may introduce horizontal gradients in the tempera-
ture and salinity fields. The caveats of this approach are fur-
ther discussed in Sect. 4.3.

We applied a simple nudging algorithm: this method adds
a nudging term to the evolution equation proportional to the
difference between the model temperature and salinity and
the observational data at a given location. The full formula-
tion of the model is given in Androsov et al. (2019). Here,
we present only the tracer equations in which changes have
been made and where the last term represents nudging,

∂2j

∂t
+

∂

∂xi

(
ui2j

)
+
∂

∂z

(
w2j

)
=

∂

∂z
ϑ2
∂2j

∂z
+∇2 (K2∇2)2j +Ck

(
2oj −2j

)
. (3)

Here, i = 1, 2, where x1 = x and x2 = y correspond to the
spatial coordinates, and u1 = u and u2 = v represent the
components of a vector field, in these coordinates. Summa-
tion over the repeating indices i and j is implied. Addi-
tionally, j = 1, 2 is used where 21 = T represents the po-
tential temperature, and 22 = S represents salinity. ∇2 is a
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two-dimensional gradient operator. ϑ2 and K2 are the cor-
responding vertical and horizontal diffusion coefficients.2oj
is the observational data interpolated on mesh (see below).
Ck is the spatiotemporal relaxation coefficient different for
different sources of observed data, and k = 1, 2 represents
the point sources (SIT) and profiles (ITP, PS-CTD, and OC-
CTD). The term responsible for nudging was included only
for grid nodes near observations. To do this, a mask of nodes
has been precalculated for each type of observation, which
is explained below. While this nudging method breaches the
principle of continuity, its use is limited to distinct observa-
tional sites rather than uniformly applied across the entire
area. This focused approach helps prevent significant issues
when setting initial conditions for a free simulation.

The observed data were separated into two groups divided
by the nature of these data: the first group of data was ob-
tained using the SIT buoys. Data from these buoys have a
high temporal resolution of up to 2 min and a horizontal spa-
tial resolution of up to 80 m, both high compared to the tem-
poral and spatial resolution of ITP profiles. At the same time,
each buoy provided data from a maximum of five different
depths. The second data group comprises profiles obtained
from ITP and PS and OC STD instruments.
2o1 was precalculated, and the data from the SIT buoys

were interpolated onto the computational grid. Interpolation
was made for two-dimensional fields for the corresponding
depths of SIT buoy sensors 10, 20, 50, 75, and 100 m. We
used a modified inverse distance weighting method (Shep-
ard, 1968) combined with a fast spatial search structure kd-
tree (Maneewongvatana and Mount, 1999). Interpolation was
done within a maximum distance of 1 km from each obser-
vation position and a maximum number of 30 grid nodes af-
fected by particular measurements (Fig. 2a). The rest of the
mesh nodes were masked as nodes that did not participate in
nudging. These up to four model nodes are affected by one
particular observation for the model mesh with 1 km resolu-
tion. At the same time, one particular measurement affects
the surrounding model mesh nodes up to 750 m away for the
mesh with 250 m resolution due to a limit of a maximum
of 30 nodes. When multiple data values were present, such
as when the buoy trajectories intersected, a weighted aver-
age was calculated for a particular grid point (see Fig. 2b).
The model then used the interpolated two-dimensional fields
for nudging. The model nudges the simulated fields to the
observation fields for each of the five depths with a spread
of 3 m from the observation depths (see Fig. 2c). Thus, the
spatiotemporal relaxation coefficient for SIT buoys takes the
following form:

C1 =

{
Trelax/

(
1+ 0.25 · |Zobs−Z|

2)
: |Z−Zobs|6 3

0 : |Z−Zobs|> 3 , (4)

where Trelax is the temporal relaxation coefficient equal to
1.1574× 10−5 s−1 (1 d), Z is a depth of the sigma layer, and
Zobs is one of five depths of the CTDs at the SIT buoys.
Thus, the model’s nudging occurs near the observation point

of ±3 m, but the strength of the nudging decreases with dis-
tance along the vertical from the observation point.

As a sensitivity study, a larger number of possible maxi-
mum values of neighbouring nodes was also used. However,
this does not significantly affect the final result. The total
number of measurements was about 630 000 for each param-
eter of salinity and temperature.

In contrast to the SIT buoys, the model was nudged to
the profiles by the ITP profilers and the PS- and OC-CTD
only at the three nodes closest to the observation position
(see Fig. 2d). If more than one profile belonged to one node,
then, as in the case of SIT buoys, the inverse distance weight-
ing method was used to average the profiles. The remaining
nodes of the computational grid did not participate in nudg-
ing. Vertically, the model was nudged only at the horizons
where the data from the profiles were present. Linear inter-
polation coefficients a(z) and b(z) were precalculated for
each cell between the standard depths where observed pro-
files have data (see Fig. 2e). The model only reads the inter-
polation coefficients and reconstructs the measured values at
each model depth. This approach adds flexibility in setting
the vertical arrangement of model sigma layers and avoids
data interpolation in model calculations. In this way, the spa-
tiotemporal relaxation coefficient for profiles wasC2 = Trelax
and 2o2 = a(z)z+ b(z).

The significant difference in the radius of influence of the
data arises from the horizontal resolution of the measurement
data from the first and second groups (see prior definition).
An increased radius for the SIT buoys is necessary to smooth
the fields when crossing the trajectories of the buoys. In the
case of a small radius, this leads to artificial fronts. In the
case of profiles, the probability of finding measurements at
different times in one place is extremely small due to the
low-frequency sampling of these instruments. SIT buoys pro-
vide data every 2 min, offering high-frequency observations.
In contrast, instruments that record incomplete vertical pro-
files do so once daily, while those capturing full-depth pro-
files from the ship CTD do so at most once a week. Con-
sequently, the influence of these profiles on nudging the sur-
face layers is notably less compared to the more frequent data
provided by SIT buoys. At the same time, zones deeper than
100 m are determined exclusively by profiles. The dynamics
activity and variability in the upper 100 m of the ocean are
significantly higher compared to deeper regions. The abun-
dance of data in this upper layer allows for a detailed repre-
sentation of submesoscale processes, leveraging the system’s
dynamic nature. Conversely, the deeper zones exhibit less
variability, making them amenable to accurate representation
with fewer data points. This differential data density aligns
with the varying dynamical characteristics of these oceanic
layers, ensuring the model’s efficacy across depths. It is im-
portant to note that nudging can lead to a violation of the
continuity principle. However, data nudging is restricted to
specific observation locations rather than applied across the
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entire area. This localized application prevents significant is-
sues from arising.

Several storm events were observed during the measure-
ments, including one strong storm (Fang et al., 2024). Strong
storms alter the dynamic nature of the surface layer and lead
to the ventilation of the upper mixed layer (ML). In our
quasi-stationary approach, the simulation results do not di-
rectly capture the dynamics during a storm. However, the
model indirectly considers the effects of storms through
nudging changes in temperature and salinity, albeit in a more
smoothed manner.

2.6 Experiment description

The deep PS-CTD profile (PS122/1_10-44) conducted from
Polarstern during November, from the surface down to the
seafloor, was used as an initial condition for the whole model
domain (see bold lines in Fig. 4). To avoid instability in
the initial conditions, the measured temperature and salinity
of the surface layer were changed to constant values corre-
sponding to a depth of 30 m. To reduce computing time, the
initial run with nudging was conducted on the coarse mesh
(1 km) described in Sect. 2.4 (see Fig. 3). This “spin-up”
simulation spans approximately 1 year of model time and
ends at the point where convergence for coarse resolution
is achieved. In such a way, temperature and salinity differ-
ences between two successive time steps do not vary sig-
nificantly. The resulting three-dimensional temperature and
salinity fields from the spin-up simulation were then used
as the initial conditions for the simulation with higher res-
olution (250 m). This high-resolution simulation, including
nudging, lasted for 4 months of model time until convergence
of the numerical solution was reached again.

Our nudging method violates the continuity principle and
results in a disturbance of the velocity fields. To resolve this
issue and satisfy continuity, an additional experiment was
performed: a simulation with the high-resolution mesh and
without nudging was run using as initial conditions the dy-
namical and tracer fields derived from the simulation with
nudging, hereafter termed the “free run”. The duration of the
free run was 19 real days. Results of the free run are used
to analyse the dynamical field, which is based on the nudged
run and shows a structure similar to that constrained by the
observational data. This approach reduces disturbances and
violations of continuity, as described above.

In the following, we used the results from high-resolution
mesh experiments, including the end of the nudging experi-
ment and the free run after 2.5 d of free simulation, to com-
pare these results with independent data. We also used the
free run at the 2.5 d time step to present the temperature and
salinity reconstruction. The 2.5 d time step was chosen as
sufficient time to distance from the moment when the last
continuity violation occurred while ensuring the model did
not drift too far from the observations. We exclusively used

Figure 3. Schematic of conducted simulations. T /S/U are abbrevi-
ations for temperature, salinity, and velocity. The rectangles repre-
sent individual simulations.

Figure 4. Bold lines – temperature, salinity, density, and buoyancy
frequency (N2) profiles used as initial conditions in the model; thin
lines – profiles of the independent MSS data used for the model
validation (see Sect. 3.1). The buoyancy frequency is defined as
N2
=
g
ρ

dρ
dz , where g is the acceleration of gravity, ρ the density,

and z the depth.

the free run at various time steps to analyse eddy dynamics
and assess eddy kinetic energy.
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3 Results

3.1 Model validation

The MSS data set described earlier was not used for the
model nudging and serves here to validate the model with
independent observations. Overall, the model can reproduce
the lateral and vertical structure of the salinity and tempera-
ture fields, as represented by the independent MSS observa-
tions (Figs. 5, 6, and 7a). Snapshots of the simulation with
nudging and the free run after 2.5 d (Fig. 5b, c) show similar
lateral salinity gradients in the ML. After 19 d in the free run
(Fig. 5d), the lateral salinity gradient is smaller due to verti-
cal and horizontal mixing. Salinity and temperature variabil-
ity is slightly lower in the model compared to the observa-
tions (Fig. 7c). The maximum deviation of the free run after
2.5 d from the observations is at the depths of the maximum
vertical gradients in salinity (at about 37 m) and temperature
(at about 150 m depth). Variability of salinity decreases with
time in the free run when nudging no longer takes on the
role of external forcing. In the absence of nudging, the model
tends to dissipate eddies and slump fronts, smoothing lateral
gradients.

The statistics of the comparison between the model and
SIT buoy data (Table 1) show that the model deviates from
the observations despite nudging with observational data.
The largest deviation is at the positions where buoy trajecto-
ries intercept each other. In such cases, the model points are
aligned with at least two separate observations of the same
variable at the same location, highlighting the limitations
of the quasi-stationary approximation assumption. Typically,
the model strives to replicate the smoothed values derived
from these overlapping observations. Moreover, the horizon-
tal resolution of the SIT buoy observations is often higher
than the spacing of the model grid, which results in larger
differences between individual observed values and model
output, as one model grid point covers several observations in
space. The root mean square errors (RMSEs) are in the range
of the standard deviation (SD) of the model and the obser-
vations in the surface ML (Table 1). RMSE significantly de-
creases for salinity underneath the halocline and about half of
the observed SD. At the same time, RMSE and SD increase
for temperature underneath the halocline where temperature
gradients increase (not shown).

In conclusion, following the model validation, our com-
parison with independent data indicates that our method
yields sufficiently accurate results. Therefore, it can be reli-
ably used for the reconstruction of three-dimensional fields.

3.2 T /S reconstruction

The modelled fields of the free run after 2.5 d, illustrated in
Fig. 8 through cross sections along 115° N and 86.2° E, show
a decrease in ML salinity and density towards the north. The
ML depth varies from about 36 in the south to 40 in the

north with a minimum of 32 m, resulting in a gradient of
0.014 m km−1 with a 0.6 m km−1 standard deviation. Like-
wise, the ML’s density changed by about 1.1 kg m−3. Under-
neath the ML, isopycnal lines slope by more than 10 m along
the section with less smaller-scale variability than at the bot-
tom of the ML. In the west–east direction, the ML shoals
amid less small-scale variability than seen in the north–south
section. However, the slope of the isopycnals from west to
east is less consistent, below approximately 40 m compared
to the north–south section. The same standard deviation in
ML depth characterizes both directions. ML depth changes
from 27 to 40 m from east to west with a mean gradient of
−0.084 and 0.6 m km−1 gradient standard deviation. In real-
ity, low-salinity intrusions into the ML from the surface can
be attributed to changes in both surface heat and salt fluxes.
However, in this study, the influence of these fluxes is simu-
lated by nudging, suggesting that the submesoscale variabil-
ity of the ML depth is most likely governed by eddy dynam-
ics.

4 Discussion

4.1 Eddy kinetic energy

Commonly, modelled eddy kinetic energy (EKE) is defined
as the difference between total and mean kinetic energy
(Wang et al., 2020). The current setup has no external forc-
ing other than nudging to data. The model does not produce
significant mean velocity without external forcing, resulting
in negligible mean kinetic energy. Therefore, the total kinetic
energy is mainly defined by the anomaly in the velocity and
linked to eddies. The EKE is calculated here as

EKE= (u2
+ v2)/2. (5)

The EKE decreases in the free run with time due to dis-
sipating eddies, as an effect of surface friction or numerical
diffusion. The absence of a mechanism to generate new EKE
(and new eddies) leads to a decrease in the free run, whereas
eddies that formed in the run with nudging remain in the free
run for more than 20 d. Figure 9 indicates enhanced mod-
elled EKE activity within two separate depth ranges, both of
which are around maxima inN2 (as defined in Fig. 4): one in
the halocline and the other in the warm Atlantic Water. Sim-
ilar vertical distributions of EKE in the ice-covered central
Arctic basins have been observed previously by Meneghello
et al. (2021) and modelled by Wang et al. (2020), and such
a bimodal distribution of eddies was discussed in detail by
Zhao et al. (2014). Meneghello et al. (2021) show that sub-
surface eddies can be explained by the baroclinic stratifica-
tion and potential vorticity gradients commonly present in
the Arctic interior and note the presence of EKE maxima
in two layers of maximum density gradients in the Canada
Basin. However, the data only cover part of the winter, so
we cannot analyse the effects of seasonal variability and the
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Figure 5. Salinity in the upper 120 m along the ship drift path. The x axis shows the distance of the ship drifts, which is 0 km, at the
position of the first MSS profile. Positions of the MSS profiles are marked by the vertical black lines at the top axes. (a) Salinity measured
by the MSS profiler (Schulz et al., 2022) at Ocean City in the vicinity of the ship. Here, linear interpolation between MSS casts is applied.
(b, c, d) Modelled salinity at the ship positions: (b) simulation with nudging; (c) free run, 2.5 d after nudging was stopped; (d) free run, 19 d
after nudging was stopped.

Figure 6. Temperature in the upper 120 m along the ship drift path. The x axis shows the distance of the ship drifts, which is 0 km, at
the position of the first MSS profile. Positions of the MSS profiles are marked by the vertical black lines at the top axes. (a) Temperature
measured by the MSS profiler (Schulz et al., 2022) at Ocean City in the vicinity of the ship. Here, linear interpolation between MSS casts
is applied. (b, c, d) Modelled temperature at the ship positions: (b) simulation with nudging; (c) free run, 2.5 d after nudging was stopped;
(d) free run, 19 d after nudging was stopped.

associated ice conditions on the distribution of eddies. The
ice cover was already formed and consolidated throughout
the measurements used here with only a few small openings
(Nicolaus et al., 2022).

We can see a difference in the distribution of our mod-
elled EKE: in the southern part of the domain, the maximum
energy was around the warm Atlantic Water, whereas in the

northern part, it was intensified in the halocline, just under-
neath the surface ML. The latter is associated with stronger
stratification due to high salinity gradients. In the northern
part of the considered domain, there were sharp changes in
the direction of the ice drift, which, in turn, also affected
the salinity distribution of the near-surface waters. Here, it
should be noted that the northern part is covered by data with
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Figure 7. (a) Salinity at the three depths of 20, 50, and 100 m. The y axis is inverted. Coloured dots – observed salinity data (MSS) from 10
(green), 50 (red), and 100 m (orange) depth. Coloured lines – modelled salinity extracted at ship positions. Solid lines – model with nudging,
dashed lines – free run after 2.5 d. (b) Root mean square error of model with nudging compared to observational data (MSS). (c) Standard
deviation, solid lines – observations, dashed lines – model with nudging.

Table 1. Root mean square error (RMSE) measured by SIT buoys and modelled salinity and temperature for the simulation with nudging
and the free run after 2.5 d and standard deviation (SD) of both at different depths.

Depth RMSE nudging SD nudging RMSE free run SD free run SD SIT

10 0.29/0.01 0.34/0.02 0.37/0.02 0.35/0.02 0.4 /0.02
20 0.37/0.02 0.34/0.02 0.44/0.02 0.35/0.02 0.38/0.02
50 0.08/0.02 0.2 /0.02 0.1/0.02 0.19/0.02 0.23/0.03
75 0.03/0.07 0.06/0.09 0.04/0.09 0.06/0.08 0.08/0.12
100 0.02/0.1 0.03/0.15 0.02/0.13 0.02/0.14 0.03/0.19

many overlaps in the drift trajectories (orange polygon in
Figs. 1 and 9). This, on the one hand, leads to the smoothing
of the fields in the model compared to observations where
trajectories intersect. On the other hand, it can lead to the
appearance of local fronts at submesoscales during nudging.
Using a free run partially removes the latter problem.

4.2 Eddy examples

As noted, the system achieved a stable numerical solution by
the end of the period when the model was nudged towards the
data. However, after the external force in the form of nudg-
ing is removed, the system begins to change. One can study
the dynamics of the formed eddies by examining the changes
during the free run. The velocity structure remains similar
during 19 d of the free run (see Fig. 10), and most of the ed-
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Figure 8. Cross sections along 115° E longitude (a) and 86.2° N lat-
itude (b). The filled colour contours are salinity in practical salinity
units, and black contours are density in kilogram per cubic metres.
The dashed red lines show ML depth. Results of the free run after
2.5 d.

dies changing shape and intensity remain close to where they
formed. The number of eddies formed in the model during
the fairly fast and straight drift is similar to that in the area
with overlapping drift trajectories. Most eddies travel much
slower than the drift of the ship in the area where the peak in
EKE can be seen in the warm Atlantic Water.

The eddy dynamics differ between the northern and south-
ern parts of our region of interest: a few of the small-scale
eddies and filaments formed at the depth of the halocline dis-
sipate within a few days in the free run. Among the remain-
ing are those who actively travel and interact with each other.
Figure 11 shows an example of a simulated anticyclonic eddy
with negative relative vorticity that, during the free run, trav-
els and interacts with a bigger-size cyclonic eddy (positive
relative vorticity). The anticyclonic eddy is between 30 and
90 m deep and about 5 km in diameter. The cyclonic eddy is
slightly larger and changes its horizontal dimensions from 7
to 10 km. Unlike the cyclonic one with more diffuse bound-
aries, the anticyclonic eddy has clearly defined contours. The
maximum velocities within the eddies reach 12 cm s−1. The
anticyclonic eddy first travels toward the cyclonic eddy, then
circumvents it. The cyclonic eddy remains in position be-

fore the anticyclonic eddy approaches it, but once they meet,
it begins to stretch towards the anticyclonic one. Changing
shape, the cyclonic eddy starts to move north due to the two
eddies interacting. The centre of the cyclonic eddy moved
about 7 km over 19 d. The anticyclonic eddy starts to spin
around the cyclonic one and increases translation speed. On
its way, it changes shape from almost a circle to an elongated
ellipse and back several times depending on its relative posi-
tion to the anticyclone eddy.

This example demonstrates that the interpretation of un-
evenly distributed observational data, sometimes overlapping
in space at different times (buoy drift trajectory loops), is
complicated but that the drifting buoy observations captured
the cyclonic eddy. This is attributed to the quasi-steady na-
ture of the eddy at the time when DN passed through the
eddy position. The development of the fast-travelling anticy-
clonic eddy could not be measured entirely by the DN, as the
speed of the eddy was not aligned with the buoy drift at the
time, which was northwest. At the same time, the distances
between the buoys are larger than the eddy core diameters
in our model, which would lead to misinterpretation during
the analysis of such data by common interpolation methods.
This generally applies to the DN measurements, as we only
obtained a snapshot in space and time with the DN observing
over the scales set by the different DN sites.

The dynamic structures of the fields in the northern and
southern parts are different. The nature of the ice drift can
explain this. Mahadevan et al. (2010) have shown that sub-
mesoscale near-surface eddies dissipate faster under con-
stantly unidirectional drift. The ice drift was faster with few
changes in direction, unlike the northern part, where direc-
tion changed frequently. In addition, horizontal density gra-
dients were observed in the surface layer there so that near-
surface vortices were more likely to form in the northern than
the southern part. However, deeper eddies without a dynami-
cal connection to the surface, e.g. within the halocline or the
warm Atlantic Water, are not likely to be affected.

4.3 Limitations of our method

Changes in the flows due to atmospheric influences are exclu-
sively accounted for through nudging, which is determined
by the density of the data and shows a smoothed pattern. In
the quasi-stationary case, considering that the observational
data have a temporal spread of several months, this can re-
sult in horizontal gradients in temperature and salinity fields.
For example, we can expect a decrease in temperature and an
increase in salinity in the mixed layer due to ice formation
in the temporal range from November to January. Consider-
ing that the buoy drift was northwest during this time, with
such a quasi-stationary approach, we can expect an increase
in salinity and density in the north and west directions of the
mixed layer. However, according to the simulation results,
we observe the opposite pattern: no gradient in the west–
east direction and a reverse gradient from north to south (see
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Figure 9. Modelled eddy kinetic energy and N2 after 5 d of free run. (a) EKE at 47 m depth. The highlighted area indicates an averaging
area in the stereographic projection. The area of averaging is chosen so that the line length along the X direction is the same for any Y
position. Averaging was done along the X direction and covered 80 km with the centre indicated by the red line. The red line was chosen to
be the longest straight line within the area covered by data. The green and orange polygons indicate the same areas as in Fig. 1. (b) Vertical
distribution of the averaged EKE along the X direction. The dashed red lines are isotherms for 1.2 and 1.3 °C. The solid yellow lines are
isohalines for 33.6 and 32.9 psu. Panel (c) shows mean stratification computed over the area shown in panel (a).

Sect. 3.2). Thus, it can be assumed that the instantaneous gra-
dient (a gradient that could be measured at a single point in
time) in the north–south direction is more significant than in
the reconstruction.

Despite significantly reducing the influence of regional
boundaries on the final solution through increased model res-
olution, there remains an “internal boundary” in the model
between regions with available data and regions without ob-
servations. This creates an artificial front between these two
areas, determined by the initial conditions. Instabilities can
occur along the boundary of this front due to the dynamics
in the data-rich area and the absence of dynamics in the data-
sparse area. This issue is partially mitigated by conducting a
long spin-up calculation on a coarse grid, which significantly
smooths the front between the areas.

In our simulations, there are no barotropic currents or cur-
rents caused by baroclinic gradients on the scales of the Arc-
tic basins. Typical time-averaged velocities for such currents
can be 2–5 cm s−1 (Rudels, 2009). In situ velocity measure-

ments during the MOSAiC experiment show average veloc-
ity values of about 3 cm s−1 at depths of 60–200 m (Fig. 11
in Rabe et al., 2022; Baumann et al., 2021). The average ve-
locity values across the entire area for the same depth in our
simulations range from 1–2 cm s−1 depending on the depth,
with peaks of up to 15 cm s−1 in eddies. Thus, we can assume
that the influence of basin-scale dynamics not considered in
our work has a relatively minor effect on the final solution.
In future work, it would be worthwhile to use ocean and at-
mosphere reanalysis data (which utilize MOSAiC data) to
provide initial and boundary conditions if and when they be-
come available. Despite these reanalyses’ coarse vertical and
horizontal resolutions, their usage would allow transitioning
from a quasi-stationary case to a time-dependent solution.

5 Summary

The MOSAiC project has collected a rich data set of phys-
ical oceanography observations in the central Arctic. Vari-
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Figure 10. Salinity at 47 m depth in the free run after 5 d (a) and 19 d (b) model time, with velocity vectors (arrow, top right, indicates
5 cm s−1) around the area with mainly straight drift (indicated by the green contour in Fig. 1). The black line indicates the drift track of
Polarstern. The black dots are the daily positions of the ship.

Figure 11. Snapshots of relative vorticity at 47 m depth in the free run. The ML depth is about 27 m. Snapshots after (a) 5 d, (b) 10 d, (c) 15 d,
and (d) 18.8 d of model time. The black line indicates the drift track of Polarstern. The black dots represent the daily positions of the ship,
starting from 12 November 2019. The dashed red line shows the trajectory of the centre of the anticyclonic eddy described in the text, where
the centre was identified by eye. The position of the region shown in this figure is denoted by the magenta box in Fig. 1.
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ous measurement techniques and tools make combining and
analysing the obtained data challenging. This paper presents
ocean model reanalyses of the first part of the MOSAiC field
campaign during winter. Three-dimensional temperature and
salinity fields were reconstructed by model nudging to the
observed data. The model setup covers the Arctic region
bounded by 84.5 to 87.5° N and 87.6 to 139.5° E, correspond-
ing to the MOSAiC drift from October 2019 to January 2020.
Using the regional FESOM-C model has allowed us to anal-
yse the dynamic fields.

The model was further developed to suit our needs. The
turbulence closure was adapted specifically for this work by
modification of the turbulence scale. Further, we extended
the model with a semi-implicit method to calculate the sea
level. The model code was parallelized with MPI libraries,
which made it possible to perform calculations with the re-
quired resolution and 1.3 million horizontal nodes. Consid-
ering 240 vertical layers for the current setup, the number
of calculated model points is more than 3 times that of the
eddy-permitting global mesh with a quasi-uniform resolution
of 15 km in the FESOM2 setup (Danilov et al., 2017).

Our developed setup of the FESOM-C model with an un-
structured mesh makes it possible to mitigate the influence of
boundary conditions on the area of interest. Near-surface and
deep submesoscale processes are resolved by the high hori-
zontal resolution of up to 250 m and the vertical resolution
of up to 1 m. A simple algorithm was developed to nudge
the model to the observed data, which makes it possible to
use a large amount of data from different measuring systems.
More than 630 000 single-point temperature and salinity ob-
servations and over a thousand vertical profiles were used to
nudge the model.

We validate the model output against independent data that
were not used for nudging, and the model reproduces the
model’s vertical and horizontal distributions of temperature
and salinity well. The main discrepancies between indepen-
dent and modelled data are at the intersections of the drift
trajectories of the buoys. Buoys have overlapping tracks due
to the ice drift loops, for example, during rapid changes in
the direction of the wind. These not-quite-synoptic measure-
ments lead to a gridded (nudging) field that is not necessar-
ily equal to individual observed values due to the weighted
mean interpolation. These crossing points could be utilized
as temporal references to calculate errors associated with
the “quasi-stationary” assumption in future publications con-
cerning these data and the model.

We have reconstructed dynamically consistent three-
dimensional temperature, salinity, and density fields by em-
ploying the model nudging to a data method and a model free
run. Our simulation results allow for the analysis of the hor-
izontal and vertical distribution of temperature, salinity, and
velocity on a regular grid. Our analysis of the dynamic char-
acteristics reveals the existence of two separate depth ranges
of enhanced eddy kinetic energy located around two max-
ima in buoyancy frequency in the central Arctic basins. This

bimodal distribution of eddies, previously noted in various
studies, shows regional variations: in the southern domain,
maximum energy is near the warm Atlantic Water, while in
the northern part, it is intensified in the halocline beneath the
surface mixed layer. The model resolves several stationary
warm Atlantic Water eddies and provides insights into the
associated dynamics that would not be possible by analysing
the observations alone.

This study presents potential for further research and prac-
tical applications. The reconstructed physical fields can serve
as a foundation for analysing the dynamics of the halocline
and the transport of organic and inorganic matter within the
water column. Furthermore, the dynamic fields we have gen-
erated offer a valuable tool for assessing the impact of sub-
mesoscale dynamics in the Arctic during winter on verti-
cal exchange processes. These insights can also inform the
planning of expeditions and the deployment of autonomous
buoys.

For future development, coupling existing simulations
with online or offline biogeochemical models could pro-
vide an understanding of the Arctic’s winter ecosystem. An-
other realistic development is extending this method to non-
stationary solutions that could use global reanalysis data for
both the ocean and the atmosphere, coupled with more re-
alistic ice parameterizations. These developments, combined
with other data from the ice and atmosphere collected during
the MOSAiC expedition, could advance our ability to inves-
tigate the evolution of submesoscale dynamics.

Code and data availability. The FESOM-C code and model setup
used in this study can be found under https://doi.org/10.5281/
zenodo.8004904 (Kuznetsov et al., 2023). Modelling results for six
vertical layers and five temporal layers of the free run created during
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