Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-31-2024
https://doi.org/10.5194/os-20-31-2024
Research article
 | 
16 Jan 2024
Research article |  | 16 Jan 2024

Assessing the drift of fish aggregating devices in the tropical Pacific Ocean

Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille

Related authors

Flow patterns, hotspots and connectivity of land-derived substances at the sea surface of Curaçao in the Southern Caribbean
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112,https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary
The (non)effect of personalization in climate texts on the credibility of climate scientists: a case study on sustainable travel
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
Geosci. Commun., 7, 201–214, https://doi.org/10.5194/gc-7-201-2024,https://doi.org/10.5194/gc-7-201-2024, 2024
Short summary
Possible provenance of IRD by tracing late Eocene Antarctic iceberg melting using a high-resolution ocean model
Mark Vinz Elbertsen, Erik van Sebille, and Peter Kristian Bijl
EGUsphere, https://doi.org/10.5194/egusphere-2024-1596,https://doi.org/10.5194/egusphere-2024-1596, 2024
Short summary
Designing and evaluating a public engagement activity about sea level rise
Nieske Vergunst, Tugce Varol, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1649,https://doi.org/10.5194/egusphere-2024-1649, 2024
Short summary
Evaluating the impact of climate communication activities by scientists: what is known and necessary?
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024,https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Overturning circulation, gyres and water masses
North Atlantic Subtropical Mode Water properties: intrinsic and atmospherically forced interannual variability
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024,https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
The formation and ventilation of an oxygen minimum zone in a simple model for latitudinally alternating zonal jets
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024,https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary
Long-term Variability and Trends of Agulhas Leakage and its Impacts on the Global Overturning
Hendrik Grosselindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2288,https://doi.org/10.5194/egusphere-2024-2288, 2024
Short summary
Persistent climate model biases in the Atlantic Ocean's freshwater transport
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024,https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Surface factors controlling the volume of accumulated Labrador Sea Water
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024,https://doi.org/10.5194/os-20-521-2024, 2024
Short summary

Cited articles

Amemou, H., Koné, V., Aman, A., and Lett, C.: Assessment of a Lagrangian model using trajectories of oceanographic drifters and fishing devices in the Tropical Atlantic Ocean, Prog. Oceanogr., 188, 102426, https://doi.org/10.1016/j.pocean.2020.102426, 2020. a
Bailey, M., Sumaila, U. R., and Martell, S. J.: Can cooperative management of tuna fisheries in the Western Pacific solve the growth overfishing problem, Strategic Behavior and the Environment, 3, 31–66, 2013. a
Castro, J. J., Santiago, J. A., and Santana-Ortega, A. T.: A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis, Rev. Fish Biol. Fisher., 11, 255–277, 2002. a, b
Curnick, D. J., Feary, D. A., and Cavalcante, G. H.: Risks to large marine protected areas posed by drifting fish aggregation devices, Conserv. Biol., 35, 1222–1232, 2021. a
Dagorn, L., Holland, K. N., Restrepo, V., and Moreno, G.: Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems?, Fish Fish., 14, 391–415, 2013. a, b
Download
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.