Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-31-2024
https://doi.org/10.5194/os-20-31-2024
Research article
 | 
16 Jan 2024
Research article |  | 16 Jan 2024

Assessing the drift of fish aggregating devices in the tropical Pacific Ocean

Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille

Related authors

Using surface drifters to characterise near-surface ocean dynamics in the southern North Sea: a data-driven approach
Jimena Medina-Rubio, Madlene Nussbaum, Ton S. van den Bremer, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-3287,https://doi.org/10.5194/egusphere-2025-3287, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Characterization of Past Marine Heatwaves around South Pacific Island Countries: What really matters?
Shilpa Lal, Sophie Cravatte, Christophe Menkes, Jed Macdonald, Romain LeGendre, Ines Mangolte, Cyril Dutheil, Neil Holbrook, and Simon Nicol
EGUsphere, https://doi.org/10.5194/egusphere-2025-3281,https://doi.org/10.5194/egusphere-2025-3281, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
The effect of advocacy on perceived credibility of climate scientists in a Dutch text on greening of gardens
Erik van Sebille, Celine Weel, Rens Vliegenthart, and Mark Bos
EGUsphere, https://doi.org/10.5194/egusphere-2025-3131,https://doi.org/10.5194/egusphere-2025-3131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
How frames and narratives in press releases shape newspaper science articles: the case of ocean plastic pollution.
Aike Vonk, Mark Bos, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-2216,https://doi.org/10.5194/egusphere-2025-2216, 2025
Short summary
Flow patterns, hotspots, and connectivity of land-derived substances at the sea surface of Curaçao in the southern Caribbean
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
Ocean Sci., 21, 945–964, https://doi.org/10.5194/os-21-945-2025,https://doi.org/10.5194/os-21-945-2025, 2025
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Overturning circulation, gyres and water masses
Topographic modulation on the layered circulation in the South China Sea
Qibang Tang, Zhongya Cai, and Zhiqiang Liu
Ocean Sci., 21, 1291–1301, https://doi.org/10.5194/os-21-1291-2025,https://doi.org/10.5194/os-21-1291-2025, 2025
Short summary
Local versus far-field control on South Pacific Subantarctic mode water variability
Ciara Pimm, Andrew J. S. Meijers, Dani C. Jones, and Richard G. Williams
Ocean Sci., 21, 1237–1253, https://doi.org/10.5194/os-21-1237-2025,https://doi.org/10.5194/os-21-1237-2025, 2025
Short summary
Stratification and overturning circulation are intertwined controls on ocean heat uptake efficiency in climate models
Linus Vogt, Jean-Baptiste Sallée, and Casimir de Lavergne
Ocean Sci., 21, 1081–1103, https://doi.org/10.5194/os-21-1081-2025,https://doi.org/10.5194/os-21-1081-2025, 2025
Short summary
Controls on dense water formation along the path of the North Atlantic subpolar gyre
Oliver John Tooth, Helen Louise Johnson, and Chris Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2025-1132,https://doi.org/10.5194/egusphere-2025-1132, 2025
Short summary
Long-term variability and trends in the Agulhas Leakage and its impacts on the global overturning
Hendrik Großelindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
Ocean Sci., 21, 93–112, https://doi.org/10.5194/os-21-93-2025,https://doi.org/10.5194/os-21-93-2025, 2025
Short summary

Cited articles

Amemou, H., Koné, V., Aman, A., and Lett, C.: Assessment of a Lagrangian model using trajectories of oceanographic drifters and fishing devices in the Tropical Atlantic Ocean, Prog. Oceanogr., 188, 102426, https://doi.org/10.1016/j.pocean.2020.102426, 2020. a
Bailey, M., Sumaila, U. R., and Martell, S. J.: Can cooperative management of tuna fisheries in the Western Pacific solve the growth overfishing problem, Strategic Behavior and the Environment, 3, 31–66, 2013. a
Castro, J. J., Santiago, J. A., and Santana-Ortega, A. T.: A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis, Rev. Fish Biol. Fisher., 11, 255–277, 2002. a, b
Curnick, D. J., Feary, D. A., and Cavalcante, G. H.: Risks to large marine protected areas posed by drifting fish aggregation devices, Conserv. Biol., 35, 1222–1232, 2021. a
Dagorn, L., Holland, K. N., Restrepo, V., and Moreno, G.: Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems?, Fish Fish., 14, 391–415, 2013. a, b
Download
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Share