Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-31-2024
https://doi.org/10.5194/os-20-31-2024
Research article
 | 
16 Jan 2024
Research article |  | 16 Jan 2024

Assessing the drift of fish aggregating devices in the tropical Pacific Ocean

Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille

Related authors

Evaluating the impact of climate communication activities by scientists: what is known and necessary?
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024,https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary
Non-negligible impact of Stokes drift and wave-driven Eulerian currents on simulated surface particle dispersal in the Mediterranean Sea
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002,https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
The (non)effect of personalization in climate texts on credibility of climate scientists
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-543,https://doi.org/10.5194/egusphere-2024-543, 2024
Short summary
A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023,https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary
An expanded database of Southern Hemisphere surface sediment dinoflagellate cyst assemblages and their oceanographic affinities
Lena Mareike Thöle, Peter Dirk Nooteboom, Suning Hou, Rujian Wang, Senyan Nie, Elisabeth Michel, Isabel Sauermilch, Fabienne Marret, Francesca Sangiorgi, and Peter Kristian Bijl
J. Micropalaeontol., 42, 35–56, https://doi.org/10.5194/jm-42-35-2023,https://doi.org/10.5194/jm-42-35-2023, 2023
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Overturning circulation, gyres and water masses
Persistent climate model biases in the Atlantic Ocean's freshwater transport
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024,https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Surface factors controlling the volume of accumulated Labrador Sea Water
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024,https://doi.org/10.5194/os-20-521-2024, 2024
Short summary
Dependency of simulated tropical Atlantic current variability on the wind forcing
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024,https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Altered Weddell Sea warm- and dense-water pathways in response to 21st-century climate change
Cara Nissen, Ralph Timmermann, Mathias van Caspel, and Claudia Wekerle
Ocean Sci., 20, 85–101, https://doi.org/10.5194/os-20-85-2024,https://doi.org/10.5194/os-20-85-2024, 2024
Short summary
Assessment of Indonesian Throughflow transports from ocean reanalyses with mooring-based observations
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023,https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary

Cited articles

Amemou, H., Koné, V., Aman, A., and Lett, C.: Assessment of a Lagrangian model using trajectories of oceanographic drifters and fishing devices in the Tropical Atlantic Ocean, Prog. Oceanogr., 188, 102426, https://doi.org/10.1016/j.pocean.2020.102426, 2020. a
Bailey, M., Sumaila, U. R., and Martell, S. J.: Can cooperative management of tuna fisheries in the Western Pacific solve the growth overfishing problem, Strategic Behavior and the Environment, 3, 31–66, 2013. a
Castro, J. J., Santiago, J. A., and Santana-Ortega, A. T.: A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis, Rev. Fish Biol. Fisher., 11, 255–277, 2002. a, b
Curnick, D. J., Feary, D. A., and Cavalcante, G. H.: Risks to large marine protected areas posed by drifting fish aggregation devices, Conserv. Biol., 35, 1222–1232, 2021. a
Dagorn, L., Holland, K. N., Restrepo, V., and Moreno, G.: Is it good or bad to fish with FADs? What are the real impacts of the use of drifting FADs on pelagic marine ecosystems?, Fish Fish., 14, 391–415, 2013. a, b
Download
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.