Articles | Volume 20, issue 6
https://doi.org/10.5194/os-20-1567-2024
https://doi.org/10.5194/os-20-1567-2024
Research article
 | 
02 Dec 2024
Research article |  | 02 Dec 2024

Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea

Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers

Related authors

Generation of super-resolution gap-free ocean colour satellite products using DINEOF
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1268,https://doi.org/10.5194/egusphere-2024-1268, 2024
Short summary
Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020)
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023,https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations
Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers
Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022,https://doi.org/10.5194/gmd-15-2183-2022, 2022
Short summary
Climatological distribution of dissolved inorganic nutrients in the western Mediterranean Sea (1981–2017)
Malek Belgacem, Katrin Schroeder, Alexander Barth, Charles Troupin, Bruno Pavoni, Patrick Raimbault, Nicole Garcia, Mireno Borghini, and Jacopo Chiggiato
Earth Syst. Sci. Data, 13, 5915–5949, https://doi.org/10.5194/essd-13-5915-2021,https://doi.org/10.5194/essd-13-5915-2021, 2021
Short summary
DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020,https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary

Related subject area

Approach: Remote Sensing | Properties and processes: Coastal and near-shore processes
A new airborne system for simultaneous high-resolution ocean vector current and wind mapping: first demonstration of the SeaSTAR mission concept in the macrotidal Iroise Sea
David L. McCann, Adrien C. H. Martin, Karlus A. C. de Macedo, Ruben Carrasco Alvarez, Jochen Horstmann, Louis Marié, José Márquez-Martínez, Marcos Portabella, Adriano Meta, Christine Gommenginger, Petronilo Martin-Iglesias, and Tania Casal
Ocean Sci., 20, 1109–1122, https://doi.org/10.5194/os-20-1109-2024,https://doi.org/10.5194/os-20-1109-2024, 2024
Short summary
Surface circulation characterization along the middle-south coastal region of Vietnam from high-frequency radar and numerical modelling
Thanh Huyen Tran, Alexei Sentchev, Duy Thai To, Marine Herrmann, Sylvain Ouillon, and Kim Cuong Nguyen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2323,https://doi.org/10.5194/egusphere-2024-2323, 2024
Short summary
Drivers of Laptev Sea interannual variability in salinity and temperature
Phoebe A. Hudson, Adrien C. H. Martin, Simon A. Josey, Alice Marzocchi, and Athanasios Angeloudis
Ocean Sci., 20, 341–367, https://doi.org/10.5194/os-20-341-2024,https://doi.org/10.5194/os-20-341-2024, 2024
Short summary

Cited articles

Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of SMOS sea surface salinity data using DINEOF, Remote Sens. Environ., 180, 137–145, https://doi.org/10.1016/j.rse.2016.02.044, special Issue: ESA's Soil Moisture and Ocean Salinity Mission – Achievements and Applications, 2016. a
Alvera-Azcárate, A., Van der Zande, D., Barth, A., Troupin, C., Martin, S., and Beckers, J.-M.: Analysis of 23 years of daily cloud-free chlorophyll and suspended particulate matter in the Greater North Sea, Frontiers in Marine Science, 8, 707632, https://doi.org/10.3389/fmars.2021.707632, 2021. a, b
Barth, A.: gher-uliege/DINDiff.jl: 0.1.0 (v0.1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.13165363, 2024. a
Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations, Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, 2020. a, b, c, d
Barth, A., Alvera-Azcárate, A., Troupin, C., and Beckers, J.-M.: DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations, Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, 2022. a, b, c, d
Download
Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observations of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.