Articles | Volume 20, issue 6
https://doi.org/10.5194/os-20-1567-2024
https://doi.org/10.5194/os-20-1567-2024
Research article
 | 
02 Dec 2024
Research article |  | 02 Dec 2024

Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea

Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers

Related authors

Generation of super-resolution gap-free ocean colour satellite products using data-interpolating empirical orthogonal functions (DINEOF)
Aida Alvera-Azcárate, Dimitry Van der Zande, Alexander Barth, Antoine Dille, Joppe Massant, and Jean-Marie Beckers
Ocean Sci., 21, 787–805, https://doi.org/10.5194/os-21-787-2025,https://doi.org/10.5194/os-21-787-2025, 2025
Short summary
Amplified Warming and Marine Heatwaves in the North Sea Under a Warming Climate
Bayoumy Mohamed, Alexander Barth, Dimitry Van der Zande, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1578,https://doi.org/10.5194/egusphere-2025-1578, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Overcoming Challenges in Coastal Marine Heatwave Detection: Integrating In Situ and Satellite Data in Complex Coastal Environment
Cécile Pujol, Alexander Barth, Iván Pérez-Santos, Pamela Muñoz-Linford, and Aida Alvera-Azcárate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1421,https://doi.org/10.5194/egusphere-2025-1421, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Assessment of gap-filling techniques applied to satellite phytoplankton composition products for the Atlantic Ocean
Ehsan Mehdipour, Hongyan Xi, Alexander Barth, Aida Alvera-Azcárate, Adalbert Wilhelm, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2025-112,https://doi.org/10.5194/egusphere-2025-112, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
CRITER 1.0: A coarse reconstruction with iterative refinement network for sparse spatio-temporal satellite data
Matjaž Zupančič Muc, Vitjan Zavrtanik, Alexander Barth, Aida Alvera-Azcarate, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-208,https://doi.org/10.5194/gmd-2024-208, 2025
Preprint under review for GMD
Short summary

Related subject area

Approach: Remote Sensing | Properties and processes: Coastal and near-shore processes
Surface circulation characterization along the middle southern coastal region of Vietnam from high-frequency radar and numerical modeling
Thanh Huyen Tran, Alexei Sentchev, Thai To Duy, Marine Herrmann, Sylvain Ouillon, and Kim Cuong Nguyen
Ocean Sci., 21, 1–18, https://doi.org/10.5194/os-21-1-2025,https://doi.org/10.5194/os-21-1-2025, 2025
Short summary
A new airborne system for simultaneous high-resolution ocean vector current and wind mapping: first demonstration of the SeaSTAR mission concept in the macrotidal Iroise Sea
David L. McCann, Adrien C. H. Martin, Karlus A. C. de Macedo, Ruben Carrasco Alvarez, Jochen Horstmann, Louis Marié, José Márquez-Martínez, Marcos Portabella, Adriano Meta, Christine Gommenginger, Petronilo Martin-Iglesias, and Tania Casal
Ocean Sci., 20, 1109–1122, https://doi.org/10.5194/os-20-1109-2024,https://doi.org/10.5194/os-20-1109-2024, 2024
Short summary
Drivers of Laptev Sea interannual variability in salinity and temperature
Phoebe A. Hudson, Adrien C. H. Martin, Simon A. Josey, Alice Marzocchi, and Athanasios Angeloudis
Ocean Sci., 20, 341–367, https://doi.org/10.5194/os-20-341-2024,https://doi.org/10.5194/os-20-341-2024, 2024
Short summary

Cited articles

Alvera-Azcárate, A., Barth, A., Parard, G., and Beckers, J.-M.: Analysis of SMOS sea surface salinity data using DINEOF, Remote Sens. Environ., 180, 137–145, https://doi.org/10.1016/j.rse.2016.02.044, special Issue: ESA's Soil Moisture and Ocean Salinity Mission – Achievements and Applications, 2016. a
Alvera-Azcárate, A., Van der Zande, D., Barth, A., Troupin, C., Martin, S., and Beckers, J.-M.: Analysis of 23 years of daily cloud-free chlorophyll and suspended particulate matter in the Greater North Sea, Frontiers in Marine Science, 8, 707632, https://doi.org/10.3389/fmars.2021.707632, 2021. a, b
Barth, A.: gher-uliege/DINDiff.jl: 0.1.0 (v0.1.0), Zenodo [data set], https://doi.org/10.5281/zenodo.13165363, 2024. a
Barth, A., Alvera-Azcárate, A., Licer, M., and Beckers, J.-M.: DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations, Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020, 2020. a, b, c, d
Barth, A., Alvera-Azcárate, A., Troupin, C., and Beckers, J.-M.: DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations, Geosci. Model Dev., 15, 2183–2196, https://doi.org/10.5194/gmd-15-2183-2022, 2022. a, b, c, d
Download
Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observations of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.
Share