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Abstract. Satellite observations provide a global or near-
global coverage of the World Ocean. They are however af-
fected by clouds (among others), which severely reduce their
spatial coverage. Different methods have been proposed in
the literature to reconstruct missing data in satellite observa-
tions. For many applications of satellite observations, it has
been increasingly important to accurately reflect the under-
lying uncertainty of the reconstructed observations. In this
paper, we investigate the use of a denoising diffusion model
to reconstruct missing observations. Such methods can nat-
urally provide an ensemble of reconstructions where each
member is spatially coherent with the scales of variability
and with the available data. Rather than providing a single
reconstruction, an ensemble of possible reconstructions can
be computed, and the ensemble spread reflects the underlying
uncertainty. We show how this method can be trained from
a collection of satellite data without requiring a prior inter-
polation of missing data and without resorting to data from
a numerical model. The reconstruction method is tested with
chlorophyll a concentration from the Ocean and Land Colour
Instrument (OLCI) sensor (aboard the satellites Sentinel-3A
and Sentinel-3B) on a small area of the Black Sea and com-
pared with the neural network DINCAE (Data-INterpolating
Convolutional Auto-Encoder). The spatial scales of the re-
constructed data are assessed via a variogram, and the accu-
racy and statistical validity of the reconstructed ensemble are
quantified using the continuous ranked probability score and
its decomposition into reliability, resolution, and uncertainty.

1 Introduction

At any given time, about 75 % of the ocean surface is cov-
ered by clouds (Wylie et al., 2005) which are opaque to elec-
tromagnetic radiation in the visible and infrared parts of the
spectrum. Many satellite sensors rely on these parts of the
spectrum to measure, for example, sea surface temperature
and ocean color. Besides clouds, other reasons for missing
data include atmospheric dust, sun-glint contamination, lim-
ited swath width, and high sensor—zenith angle (Feng and Hu,
2016; Mikelsons and Wang, 2019; Alvera-Azcérate et al.,
2021). The amount of missing data in satellite observations
can therefore be substantial.

Several methods have been proposed in the past to recon-
struct missing data in satellite images, such as EOF-based
(empirical orthogonal function) methods like Data Interpo-
lating Empirical Orthogonal Functions (denoted DINEOF;
Alvera-Azcarate et al., 2016, 2021; Pujol et al., 2022), op-
timal interpolation (e.g., Reynolds et al., 2007), and Kriging
(e.g., Saulquin et al., 2011). More recently, neural network-
based techniques, such as the Data-INterpolating Convolu-
tional Auto-Encoder (DINCAE; Barth et al., 2020; Han et al.,
2020; Ji et al., 2021; Jung et al., 2022; Barth et al., 2022;
Luo et al., 2022) and other neural networks with a U-Net
architecture (Ronneberger et al., 2015) like those described
by Hong et al. (2023) as well as marked autoencoders (Goh
et al., 2023), have been applied to this problem. The input of
these neural networks is typically a satellite image with miss-
ing data, and the output is the reconstructed full field. Then
the neural network is trained by being fed pairs of images
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(with and without clouds or with some clouds and with even
more clouds) so that the neural network learns the mapping
between an image affected by clouds and a clear image.

For satellite images where all missing data have been re-
constructed, it is clear that the error of the reconstructed and
initial missing pixels is typically larger than the error of the
original pixels. In optimal interpolation and kriging, this er-
ror is represented by the a posteriori error covariance. How-
ever, these methods assume that the errors can be described
by a Gaussian distribution and that the underlying error co-
variances of the observations and the first guess are perfectly
known. In practice, the error covariance of the first guess (the
a priori error covariance) is often described as an isotropic
function depending only on the distance between two points.
In addition, these methods assume that the observations and
the first guess are unbiased and independent.

For DINCAE (Barth et al., 2020, 2022), the estimation of
the error variance is part of the training process and does not
require precise knowledge of the error statistics of the input
data. For every pixel, an estimate of the reconstructed value
and its error variance is provided. During the training pro-
cess, the likelihood of the actual measurement is maximized
by assuming that the error is Gaussian distributed. This gives
a pointwise estimate of the error variance and validation with
independent data shows that the expected error variance is
reliable. However, this approach does not give us any infor-
mation about how the error is correlated in space (and time).
This additional information is crucial for computing the ex-
pected error of derived quantities that combine satellite data
from different spatial locations. For example, this is the case
when computing an average quantity over a given area.

Another issue, when the model is forced to provide a sin-
gle reconstruction, is that the results are often too smooth,
as small scales under clouds are of course not resolved when
the cloud coverage has a given spatial extension (and only
large scales can be estimated using available data). Since
multiple images would be consistent with the partial infor-
mation present, a neural network trained to minimize, for ex-
ample, the mean square error would then implicitly produce
the average of all these possible states. For example, if the
exact position of a front is not visible in a satellite image,
a reconstructed image would have the tendency to smooth
out the front as it is implicitly the average of multiple im-
ages with the front in different positions. Consequently, this
means that small-scale information cannot be adequately re-
tained. Therefore, instead of creating a single reconstruction
for each pixel (with the associated error variance), it would
be preferable to produce an ensemble of likely reconstruc-
tions (based on the available data), as is the case with en-
semble modeling and the ensemble Kalman filter (Evensen,
2009). The expected error of a derived quantity (e.g., total
amount of surface chlorophyll in a given area) is then given
directly by the ensemble statistics where this derived quantity
is computed for each member of the ensemble individually.
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The denoising diffusion models (e.g., Ho et al., 2020) be-
long to the family of generative algorithms like generative
adversarial networks (Goodfellow et al., 2016). Contrary to
deterministic neural networks, in which the primary objec-
tive is to learn a mapping function between input features
and a desired output, generative models aim to produce sam-
ples from the same distribution as the training data. In gen-
eral, such a probability distribution cannot be expressed ex-
plicitly in closed form. In many studies (e.g., Dhariwal and
Nichol, 2021), it has been shown empirically that diffusion
models tend to have better diversity than generative adver-
sarial networks, which is an important property if one wants
to represent the uncertainty of the reconstruction of incom-
plete satellite data.

Often, diffusion models use additional information (e.g.,
text description or an image) in order to guide the generation
process during the reverse diffusion process (i.e., the image
generation process). This guidance can be implemented in
different ways. One can use a classifier to steer the genera-
tion process (Dhariwal and Nichol, 2021). A classifier is a
neural network which associates a label (typically a text de-
scription) to an image. However, it is important that the pre-
trained classifier is suitable for noisy images as generated
during the reverse diffusion process.

In the classifier-free guidance algorithm (Ho and Sali-
mans, 2022), the neural network denoising the images also
depends explicitly on the class label. While training the neu-
ral network, this class label is sometimes replaced by a null
label (i.e., a vector with all elements equal to zero). As a
result, the trained neural network can denoise either any im-
age of the training dataset (when given the null label) or a
specific subset of the training dataset (matching the provided
label). During sampling, the reverse diffusion is steered by a
scaled difference between the noise predicted when knowing
the label and the noise predicted with a null label, therefore
enhancing the similarity of the generated image with the pro-
vided label.

Denoising diffusion models have also been used for in-
creasing the resolution (Saharia et al., 2023) and for in-
painting. Lugmayr et al. (2022) apply the forward and reverse
diffusion process iteratively to fill in the missing region.
However, for these approaches the diffusion model must be
trained on a large collection of complete images.

In Sect. 2, we will introduce the denoising diffusion frame-
work which is the basis of this work. The data will be pre-
sented in Sect. 3. The denoising diffusion framework will be
adapted in Sect. 4 to handle missing data during the training
and to produce reconstructed images based on partial data.
The results will be discussed and validated in Sect. 5 and
compared to the DINCAE method. Conclusions will be pre-
sented in Sect. 6.
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2 Denoising diffusion model

The denoising diffusion models (Ho et al., 2020) use quite
a different approach than traditional applications for neural
networks, as their goal is to generate an image that comes
from the same (but not explicitly known) distribution as the
training data. This inherently stochastic generation process
gives us an appropriate framework to provide an ensemble of
possible states.

The present description closely follows Ho et al. (2020).
The general idea is that we start with a clear image x¢ (later
we will discuss the case where all training images contain
clouds) and then progressively add noise. Without loss of
generality, we assume that x is scaled such that every el-
ement is on the order of 1. In practice, we remove the mean
and divide the anomalies by the standard deviation. Here,
the mean and standard deviation are single scalars computed
over the whole training dataset. We did not compute a differ-
ent mean or standard deviation for every image.

The diffusion process is a Markov process as every im-
age x; (considered here as a flat vector) depends only on
the previous image x;_; in this chain. We degrade the
image x,_; by adding noise z; (z; ~N(0,1)), scaled by
the parameter 8; (with 0 < ; < 1). The variance of added
noise (f;) typically increases at the diffusion step ¢ increases.
Note that the diffusion step is completely unrelated to the ac-
quisition time of the satellite data. At the same time, we scale
the image x,_; so that the combination x; remains of unit
variance:

xr=v1=Bixi-14+ Bz (1)

The level of degradation in the image x; increases as the
diffusion step ¢ increases. This Markov process has the fol-
lowing transition probability (also called forward diffusion
kernel):

qGeilxi-) =N (%0 T=Brxi1 B ). @)

The linear combination of two Gaussian-distributed vari-
ables is also Gaussian distributed. Therefore, we can com-
pute the transition probability g (x;|xo) in closed form (Ho
et al., 2020):

ailx0) =N (w5 V/arxo, (1 ~ @)1 3

where o; = ]_[i:loes and oy = 1— B;. The parameters o;
and o, generally depend on the diffusion step 7. All elements,
oy, are smaller than 1; therefore, o; tends to zero as ¢ in-
creases. The image x;, will become more and more similar
to an image with Gaussian noise as ¢ increases. The last im-
age x7 approximately follows a Gaussian distribution with
zero mean and an identity matrix as covariance:

g(x7) ~N(x7;0,1). “4)
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2.1 Reverse process

If the forward transition kernel is a Gaussian distribution, the
distribution of the reverse transition kernel is also a Gaus-
sian distribution within the limit of small step sizes B, i.e.,
in the limit where the discrete diffusion process tends to
the continuous diffusion (Feller, 1949; Sohl-Dickstein et al.,
2015). The Markov chain for the reverse process begins with
a Gaussian distribution random variable with zero mean and
unit variance:

pxr)=N(xr;0,1). (5)

The reverse process is also a Markov process involving the
transition probabilities pg(x7_1,x7) and a certain number
of model parameters 6 to be determined:

po(xT_1) =/P0(xT71,xT)de. (6)

Formally, the probability of the clear image x is obtained
by combining the probability of all possible trajectories x.r
leading to the image x:

po(xp) = /pe(XO;T)dxlzT. @)

The parameter @ will be determined by maximizing the
expected probability pg(x() or equivalently by minimizing
the negative logarithm of this probability:

L = E[—log(pp(x0))]. (8)

In practice, the integral is intractable as it would require
an integration over a very high-dimensional space. It can be
shown that L is always smaller than the so-called evidence
lower bound Lejp (Sohl-Dickstein et al., 2015) using Jensen’s
inequality (Jensen, 1906) and Bayes’ theorem:

E[—log(pe(x0)] < —E [log M]

q(x1.7|x0)
T
DPo(xX;—1|x¢)
[Og (”("“E 4 erlxe 1) )}

= Lelb, )

where the latent variables (i.e., unobserved variables) are,
here, the whole trajectory except the first state (x1.7). Rather
than minimizing L, the quantity L.y, is minimized instead.
Ho et al. (2020) showed that this leads, after some simplifi-
cations, to the following cost function for training the neural
network (e€g(x,¢)) for any step ¢ and for any sample xo from
the training dataset:

J(0) = |le — ep (@ xo++/1—a €, 0], (10)

where € is the accumulated noise added during the forward
process. The weights, 6, of the neural network are updated
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Figure 1. Percentage of valid data over time in each satellite image
for the Black Sea dataset and percentage of valid data filtered by a
Gaussian filter (with a standard deviation of 30 d).

using the gradient of the previous loss function. A trained
neural network can then be used to create other samples x¢
by solving the following equation backwards where the ini-
tial image x7 and z follow a normal distribution:

1 l_a[
— | x; — ———€p(x4,1) | + 042, 11
ﬁ<t mo(t )) Ot an

where the noise term o is equal to /B;. This algorithm will
be extended in Sect. 4.1 to handle clouded images.

Xi—1=

3 Data

To illustrate the application of the denoising diffusion model,
we use the daily L3 satellite chlorophyll a concentration
of the Black Sea at a spatial resolution of 300 m from the
Copernicus Marine Service (Zibordi et al., 2015; Kajiyama
et al., 2019; Lee et al., 2002; European Union-Copernicus
Marine Service, 2022) using data from the Ocean and Land
Colour Instrument (OLCI) sensor aboard the Sentinel-3A
and Sentinel-3B satellites. On average, the amount of valid
data over the ocean is 30 % and shows a clear seasonal cycle
(Fig. 1). The marked increase in data after 2019 is due to the
availability of Sentinel-3B data. We use data from 26 April
2016 to 31 August 2023 of this chlorophyll @ concentration
dataset. For the training data, we use data up to the date
31 August 2021.

The aim of the study is to test different methods on a prob-
lem with relatively small images, which allows us to test
many different hyperparameters. The training data are there-
fore split horizontally into tiles with 64 x 64 grid cells. Only
tiles with at least 20 % valid data (i.e., non-clouded pixels)
are used for training to reduce training time. In total, there are
85 1926 images (after splitting the data into tiles) for training.
The validation dataset is composed of the 12 months of data
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Figure 2. Western part of the Black Sea. The black square corre-
sponds to the area where the methods are validated and tested (units:
logig mgm_3).

between 1 September 2021 and 31 August 2022. The follow-
ing 12 months (from 1 September 2022 to 31 August 2023)
are used as test data. We only consider the region 28.56979—
28.80623° E and 43.64238—43.81242° N (corresponding to a
64 x 64 grid at 300 m resolution) for validating and testing
the neural network (while the data from the whole Black Sea
is used for training), as the other considered method (DIN-
CAE) has only been tested so far with a fixed location. This
is a relatively small area, but it allowed us to perform several
tests with different network configurations (Fig. 2).

A coastal area was chosen because the dynamics there are
more complex than in offshore waters. For the validation and
test data, we randomly took the cloud mask from other time
instances to mask additional grid cells which will be used for
validation. Only images with a cloud mask between 15 % and
35 % of the missing data were considered an additional mask
to obtain a sufficient number of clouded pixels and to reduce
the risk that an image is masked almost entirely. We verified
that images were not entirely masked after applying the cloud
mask (in the validation dataset or in the test dataset).

All the data are log transformed (base 10), and the units
are to be understood as log;, mgm™3.

4 Method
4.1 Training with clouded images

The training approach by Ho et al. (2020) assumes that we
have a large training dataset with clear images. Unfortu-
nately, for satellite observations, clouds are so common that

https://doi.org/10.5194/0s-20-1567-2024
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Figure 3. Data preparation for training. For the cloud mask, 1 corresponds to a clouded pixel and O to a pixel with valid data.

it would be difficult to create such a dataset. If the data were
previously interpolated, then there is the risk that the neu-
ral network would also learn potential interpolation artifacts.
Alternatively, the neural network could also be trained with
data from a numerical model. But even in this case, the neu-
ral network would also learn biases and errors present in the
model. When validating models with satellite observations,
it is generally preferable that the satellite observation is inde-
pendent of a numerical model. Therefore, we are aiming to
extend the approach of Ho et al. (2020) to train using images
including clouds.

It is important to note that all operations in the training and
sampling algorithms (Egs. 1, 10, and 11) are only pointwise
operations (i.e., operations that apply to each grid cell inde-
pendently) that do not involve the neighboring grid cells, ex-
cept for the neural network which ensures spatial coherence.
The spatial coherence is mainly due to the convolutional lay-
ers whose weights have been trained to provide the same spa-
tial structure as in the training dataset. Rather than working
with a global step ¢ valid for a whole image, we consider the
case where every pixel can be in a different state of degra-
dation. The noise schedule g is a freely selectable list of pa-
rameters. For the following approach, we impose that 8y = 0,
which means that the noise is effectively added only at step 1
and later but not at step 0. For a training image that contains
clouds, we consider clouded pixels initially at the fully de-
graded level t = T (i.e., normally distributed random noise)
and clear pixels at the non-degraded level t =0 (i.e., pixels
as measured by the satellite). During training, for each image
of the training dataset, a different image is randomly selected
(also from the training dataset), and its cloud mask is used to
degrade clear pixels of the input image (Fig. 3). The stage of

https://doi.org/10.5194/0s-20-1567-2024

degradation ¢ of these pixels is randomly chosen between 1
and T but applied uniformly to all withheld pixels. This is
important because the noise is reduced progressively during
inference and because the neural network needs to know how
to handle intermediate degradation levels.

The loss function is the L2 norm between the actual added
noise and the noise predicted by the neural network, com-
puted over the pixels to which clouds have been added
(Fig. 4). Pixels which are clouded or covered by land are
considered in the last stage of degradation (7') during train-
ing. Those pixels (in white in panel “added noise (target)” in
Fig. 4) cannot be used to evaluate the loss function, as the
underlying value is not known (for clouded pixels) or not de-
fined (for land pixels).

The noise schedule of the forward diffusion process is de-
fined by the parameter §;, which varies linearly from 0 for
t =0 to a maximum value of Bnax for r =T, where Bnax
and T are hyperparameters (chosen from a search range to
satisfy ar ~ 0).

The neural network has the general architecture of a U-Net
(Ronneberger et al., 2015), which is defined recursively by a
block (at a given level /) composed of

— three convolutional layers with output layers C; and ker-
nel size k, each followed by an activation function;

— a2-by-2 max pooling layer;
— an inner block at level [ + 1;

— a single transpose convolution with a stride of 2, with
the number of output channels being the same as the
number of input channels of this block followed by an
activation function; and

Ocean Sci., 20, 1567-1584, 2024
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Figure 4. Input and output of the neural network during training. Predicted noise is an actual prediction of the trained diffusion model for
the provided inputs (units: log;y mg m~3). The diffusion step ¢ (0 <t < T) is scaled linearly to be in the interval —% and %

— an output of the previous layer, added to the input layer
to form a residual connection.

An inner block at level / 4 1 has the same structure as an
outer block at level /, except for the innermost level, where
the inner block is simply the identity function. This recursive
definition of the U-Net architecture allows us to easily test
networks with different depth levels. The depth level L, the
number of channels C; (I =1,..., L) and the kernel size k
are hyperparameters of the network.

The input of the neural network is a 2D image with two
channels. The first channel is the noisy image (normalized
using the mean and standard deviation computed over the
training dataset) and a 2D field with the step of the denois-
ing pipeline (scaled between —% for clear pixels and % for
fully degraded pixels). We do not directly use step ¢, since
the inputs of the neural network should be on the order of 1
to accelerate the training. In this implementation of the de-
noising diffusion model, every pixel can be at a different step
of degradation. During training, noise is intentionally added
to the image (advancing from diffusion step / to [ + 1), and
the neural network is trained to predict the noise, allowing
it to denoise the image and to go from step / + 1 back to /.
The neural network can predict the added noise because it
learned the typical spatial structures in the training dataset
and because it is able to recognize them even in a corrupted
image. At a first approximation, the neural network acts like
a high-pass filter to identify the noise, which is then removed
iteratively during sampling.

The model is optimized using the Adam optimizer
(Kingma and Ba, 2014), using the default parameters except

Ocean Sci., 20, 1567-1584, 2024

for the learning rate. During the training process, the learn-
ing rate is repeatedly reduced by a given factor after a certain
number of steps. The initial learning rate, the number of steps
between the reduction of the learning rate, and the reduction
factor are treated as hyperparameters.

As usual, all model parameters (weights and biases of all
convolutional layers) are optimized using the training data.
The denoising diffusion model is implemented in the Julia
programming language (Bezanson et al., 2017), using the
deep learning library Flux.jl (Innes, 2018; Innes et al., 2018)
and the GPU programming library CUDA jl (Besard et al.,
2019, 2018). The training of the neural network takes 7h
on an NVIDIA A100-SXM4-40GB GPU and 8h on an
NVIDIA GeForce RTX 4090 GPU. The inference time of the
test dataset is 30 min. All hyperparameters are determined
using random search (Bergstra and Bengio, 2012) to mini-
mize the root-mean-square error (RMSE) of the reconstruc-
tion with the validation data (Table 1). The optimal model
(in terms of RMSE relative to the validation data) has in total
1.6 million parameters. Unless otherwise stated, all compar-
isons and reported validation metrics are performed with the
independent test data, including the final validation. The final
validation is performed using the independent test data.

Preliminary experiments showed that a large training
dataset is quite important to obtain a stable reconstruction.
In fact, during the reverse diffusion, the neural network is
applied 800 times to a satellite image to denoise it and to
reconstruct the missing part of the image. Overfitting of the
neural network, which emphasizes an unrealistic structure,
could quickly lead to an unstable reverse diffusion process

https://doi.org/10.5194/0s-20-1567-2024
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Table 1. Hyperparameters of the diffusion model with the adopted value and the corresponding search space.

Parameter Value

Search space

Kernel size (k) 5
Channels (C;)

Activation function selu
Number of steps (T") 800
Bmax 0.027
Batch size 60
Number of epochs 100

Learning rate 0.00017
Number of epochs before reducing the learning rate 50
Factor by which the learning rate is reduced 0.938

[16, 32, 64, 128]

3or5

[16, 32, 64, 128], [16, 32, 64, 128, 256], or [16, 32, 64,
128, 256, 256]

relu, selu, or swish

between 500 and 1500 (step of 100)
between 0.01 and 0.04

fixed

fixed

between 1075 and 0.0008

between 10 and 100 (step of 10)
between 0.7 and 0.95

step 1

step 100

28.60 28.65 28.70 28.75 28.80

step 300

Ty

[ |

-1.0 -0.8 -0.6 -0.4

-0.2 0.0 0.2 0.4

Figure 5. Reverse diffusion process illustrated with data from 9 September 2022 (units: log;y mg m3).

(i.e., the variance of the reconstructed image grows in an un-
bounded way). Such problems were resolved if a sufficiently
large and diverse dataset was used for training. In particular,
we needed to train the diffusion model using image tiles from
the whole Black Sea to obtain a stable reverse diffusion pro-
cess. As an illustration, a sample of the unconditional gen-
eration of images is shown in Appendix A together with a
random sample of the training data.

4.2 Sampling

After training the neural network, the missing data in the val-
idation and test dataset are reconstructed. Every clear pixel
of the input image is considered to be in the non-degraded
state = 0, and all other pixels (clouded or on land) are in
the fully degraded state + = T and initialized with normally
distributed random values. For these later pixels, the reverse
diffusion process is used iteratively (going from step [+ 1
to /) to reduce their noise, keeping the originally present pix-
els unchanged (Fig. 5). The convolution operations in the U-
Net ensure spatial coherence between clear pixels and recon-
structed pixels. All clear pixels remain constant during the
reverse diffusion because the corresponding term in Eq. (11)

https://doi.org/10.5194/0s-20-1567-2024

is zero as 09 =+/Bp =0 and as a9 =1— By =1 for these
pixels.

For each image of the validation and test two datasets, the
reconstruction process is repeated 64 times, leading to an en-
semble of possible reconstructed fields. The larger the en-
semble is, the more accurate the derived ensemble mean and
variance. Various ensemble sizes have been used in the liter-
ature; for example, the ECMWEF real-time S2S forecasts use
a 51-member ensemble size (Buizza et al., 2008). Using 64
ensemble members is here a compromise between diversity
of ensemble members and computational time.

From this ensemble, the ensemble mean and the ensemble
standard deviation are also computed. When minimizing the
RMSE relative to the validation dataset, only this ensemble
mean is considered.

5 Results

Figures 6 and 7 show examples of the reconstruction for the
dates 7 August 2022 and 9 September 2022, respectively,
from the test dataset. In the original data (Figs. 6a and 7a,
respectively), additional clouds have been added using the

Ocean Sci., 20, 1567-1584, 2024
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(a) original data

(d) SD rec.

43.80
43.78
43.76
43.74

5 43.72
43.70
43.68
43.66

28.60 28.65 28.70 28.75 28.80
long

Date: 2023-08-07

(b) added clouds

A.

0.6

0.4

0.2
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Figure 6. The denoising diffusion model applied on the independent test data for the date 7 August 2023, showing the original data (a), the
data with added clouds (b), the ensemble mean and standard deviation (c, d), and two ensemble members (e, f). The units are log;y mg m~3.

(a) original data
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Figure 7. The same as Fig. 6 but for the date 9 September 2022.
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Table 2. Comparison of DINCAE and the diffusion model (using the ensemble mean) with the development dataset.

Method RMSE Bias  SD(reconstruction)  SD(observation)
DINCAE 0.163 —0.0531 0.308 0.363
Diffusion model 0.151  0.00568 0.333 0.363

Table 3. Comparison of DINCAE and the diffusion model (using the ensemble mean) with the test dataset.

Method RMSE Bias  SD(reconstruction) SD(observation)
DINCAE 0.175 0.0488 0.308 0.331
Diffusion model 0.163  0.00388 0.285 0.331

cloud mask from a different image (Figs. 6b and 7b, respec-
tively) in order to evaluate the accuracy of the reconstruction.
From the data with the added clouds, the reverse diffusion
process was performed 64 times. Two of these 64 reconstruc-
tions are shown in Figs. 6 (panels e and f) and 7 (panels e
and f), respectively. The ensemble mean (Figs. 6¢ and 7c,
respectively) and the standard deviation (Figs. 6d and 7d,
respectively) are also computed. For every ensemble mem-
ber, the interpolated fields in the pixels for which we have
valid values in the input data are, per construction, identical
to the initial input value. The ensemble standard deviation
at these locations is thus consequently equal to zero. As ex-
pected, the ensemble mean is blurrier at the locations where
we have added clouds, but the individual ensemble members
also contain realistic small-scale information at these loca-
tions. In Fig. 6d, we see that the ensemble standard deviation
increases near fronts under clouds, since the exact position
of the fronts cannot be deduced from the provided data. In
general, the difference between the reconstructions is high-
est near the coastline, as the coastal areas are more variable
than the offshore waters. This difference is particularly visi-
ble when large clouds are present near the coastline (Fig. 7d—
f).

We compared the reconstruction with the DINCAE neural
network. So far, DINCAE was only trained on data using a
fixed area. We adopted the same approach here and trained
DINCAE over the area used for validation. We used the same
temporal split as the diffusion model: data before 1 Septem-
ber 2021 were used for training, the following 12-month pe-
riod was used to adjust the hyperparameters (development
dataset), and the last 12 months (starting on 1 September
2022) was used for the independent validation (test dataset).
More information about the application of DINCAE is given
in Appendix B.

The RMSE and the bias of DINCAE and the diffusion
model are computed on artificially clouded pixels for the de-
velopment and test datasets (Tables 2 and 3). The RMSE of
the diffusion model is based on the ensemble mean. In all
cases, the bias is relatively low and does not contribute sig-
nificantly to the RMSE. The RMSE of the diffusion model

https://doi.org/10.5194/0s-20-1567-2024

(based on the ensemble mean) is slightly smaller than the
RMSE of DINCAE for development and test datasets. How-
ever, as expected the RMSE of every ensemble member indi-
vidually is substantially larger than the RMSE of the ensem-
ble mean. Given that the RMSE is computed over all time
instances, the RMSE for a single ensemble member is rel-
atively stable. The maximum and minimum RMSEs among
the 64 ensemble members are 0.202 and 0.211 log;, mg m3,
respectively.

Figure 8 shows a meandering coastal front with subme-
soscale flow features, which is partially obscured by the
added clouds. The general structure of the front is preserved
well by DINCAE and the diffusion model (Fig. 8c and e)
but the level of detail and the intensity are better represented
using the diffusion model. The noise visible offshore is re-
tained by the diffusion model (per construction), but it is ef-
fectively reduced by DINCAE, which can be a desirable ef-
fect for some applications.

To assess the scales present in the reconstructed data, a
variogram (Cressie, 1991; Wackernagel, 2003) is computed
using the reconstruction of the development and test datasets
(Fig. 9). A variogram of a spatial random field ¢ (x) is de-
fined by the following expectation:

2y (x1,%2) = E[ (91 — ¢ (x2)?]. (12)

Here we are considering a variogram only as a function of
distance & = ||x 1 —x2||, which allows us to estimate the vari-
ogram numerically by computing the squared differences for
the field at randomly chosen locations. These squared dif-
ferences are averaged over bins of distances using all time
instances of the validation and test datasets. Many different
random locations were chosen until there are at least 10 000
pairs for each bin of distance. For the diffusion model, the
variogram is deduced using the individual ensemble mem-
bers, and the averaging in Eq. (12) is also done over different
ensemble members. When computing the variogram of the
original data, only the pairs of points corresponding to both
valid pixels are considered.

It can be seen from Fig. 9 that both reconstruction methods
underestimate the variance in the original data to some de-

Ocean Sci., 20, 1567-1584, 2024
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Figure 8. Comparison between DINCAE and the diffusion model for the date 10 November 2022 (units: log;, mg m=3).

gree, but the reconstruction with the diffusion model is con-
sistently closer to the original data than DINCAE, which con-
firms our qualitative assessment of Fig. 8. For the indepen-
dent test dataset and scales larger than 15 km, the variogram
of the diffusion model coincides with the variogram of the
original data. The fact that the variogram does not converge
to zero as distances tend to zero shows that the data are af-
fected spatially by white noise, as can be seen in the offshore
region of Fig. 8a, which is also called the “nugget effect”
(Matheron, 1962). DINCAE effectively removes (or signifi-
cantly reduces) the spatially uncorrelated white noise; there-
fore, the corresponding variogram shows a clear tendency to-
wards zero for smaller distances.

To assess the statistical reliability of the produced recon-
struction ensemble, we can use the so-called Talagrand di-
agram, also called rank histogram (Talagrand et al., 1997,

Ocean Sci., 20, 1567-1584, 2024

Hamill, 2001). If the ensemble is generated from the same
probability distribution as the observations, the ensemble is
considered reliable. However, it is important to note that the
Talagrand and other statistical tests described below only al-
low us to assess the reliability of the marginal PDFs (proba-
bility density functions) evaluated for each pixel individually
and not the joint PDF accounting for spatial correlations be-
tween pixels.

For each pixel for which an observation is available, the
corresponding value of all 64 ensemble members is sorted
by x1 < x2... < xy (where here N = 64), and the following
successive N + 1 bins are defined as

by = (—00, Xx1); (13)
bi =[xj,xjy1) fori=1,....N—1; (14)
by =[xn,00). (15)
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Figure 10. Talagrand diagram of the diffusion model and the DINCAE method for the independent test datasets.

In this case, the probability that the observations belong
to the interval b; is ﬁ and thus independent of the value
of the observation. With a sufficient number of observations,
this probability can be estimated for different bins i. A Tala-
grand diagram shows these frequencies as a function of the
bin indices. A perfectly marginally reliable ensemble would
result in a flat curve. Underdispersive (or overdispersive) en-
sembles would result in a U-shaped (respectively N-shaped)
curve.

Figure 10 shows the Talagrand diagram computed for the
test for the diffusion model and the DINCAE dataset. DIN-
CAE provides the mean and variance of the marginal Gaus-

https://doi.org/10.5194/0s-20-1567-2024

sian probability distribution function. Therefore, one can de-
rive from this the corresponding Talagrand diagram using the
cumulative distribution function. It can be seen that the er-
ror statistics of the diffusion model are closer to the ideal
flat curve for the diffusion model than for DINCAE. This
shows that the probabilities produced by the diffusion model
are marginally reliable, except for the tails of the marginal
PDF (first and last bin, corresponding to the probabilities be-
tween 1.5 % and 98.5 %), where the produced ensemble is
underdispersive.

Another common probabilistic validation approach de-
fined for marginal PDFs is the continuous-ranked probability

Ocean Sci., 20, 1567-1584, 2024
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Table 4. Decomposition of the CRPS using the development (dev.) and the independent test data for the diffusion model and for DINCAE

(units log; o mgm™3).

Method Dataset ~CRPS Reliability ~CRPSpot Resolution  Uncertainty
Diffusion model  dev. 0.0635 0.00045 0.0631 0.130 0.193
Diffusion model test 0.0712 0.00041 0.0708 0.112 0.182
DINCAE dev. 0.0827 0.00842 0.0743 0.119 0.193
DINCAE test 0.0856 0.00356 0.0820 0.100 0.182
score (CRPS). Following Hersbach (2000), it is defined as 0.25 4
o
CRPS = / (P(x) — H(x — x0))dx, (16) 0.20 1
—00
where P(x) is the cumulative distribution function, x, the 5 0151
observations, and H (x) the Heaviside function (H(x) =1 g
for x > 0 and H (x) = 0 otherwise). The CRPS has the same 2 0104
units as the data x, and it is always positive or zero. When ap- '
plied to ensemble reconstructions, the CRPS attains its best
score of zero only when all ensemble members reproduce 0.05
the observations exactly. The CRPS can be decomposed into
potential CRPS (CRPS), reliability, uncertainty, and reso-
0.00-

lution:

CRPS = reliability + CRPS, (17)
CRPS;t = uncertainty — resolution. (18)

The reliability (smaller is better) measures whether the
ensemble accurately reflects the uncertainty of the results.
Note that a system reproducing the climatological data dis-
tribution would be perfectly reliable but would not resolve
different events. The resolution (higher is better) determines
whether the ensemble allows for discrimination between dif-
ferent events. The resolution would be zero for the data cli-
matology. Consequently, the uncertainty is the CRPS for the
data climatology and thus depends only on the variability of
the data (and not on the reconstruction method). For more in-
formation on these scores and how they are computed based
on an ensemble, the reader is referred to Hersbach (2000) and
Candille et al. (2007). It should be noted that in this context
the resolution is not related to the spatial or temporal resolu-
tions of the dataset.

Table 4 shows the corresponding scores for the test and
development datasets and for both considered methods. All
scores have the same units of the data, and the standard de-
viation of this training data is 0.46log;, mg m~ to provide
an order of magnitude of the variability. The reliability of
the diffusion model (for the marginal PDF) seems to be quite
good, which confirms the results of the Talagrand diagram
(Fig. 10). The CRPS is mostly determined by the resolution.
To further improve the resolution, it might be beneficial to
use more data (including multivariate reconstructions), but it
is clear that a perfect score is not attainable simply due to the
lack of information under clouds.

Ocean Sci., 20, 1567-1584, 2024

45%-55%  55%-65%

65%-75%
cloud coverage (%)

75%-85%  85%-95%

Figure 11. Impact of cloud coverage on the RMSE computed rela-
tive to independent data (units log;y mg m3).

Among the test data, we took the images with less than
30 % of cloud cover (representing 99 images here). To these
relatively clear images, we applied the cloud mask (poten-
tially flipped in the longitude or latitude directions) chosen
randomly from another image in the test dataset so that the
total cloud coverage for every image is within a given range
of 45 % to 55 %. If the cloud coverage is outside this range,
then another cloud mask is chosen randomly until the target
range is achieved. This procedure is repeated for different
ranges, up to a range of 85 % to 95 % of missing data.

The trained diffusion model was applied to these images,
and the RMSE relative to the withheld (and independent)
data was computed and is shown in Fig. 11.

As expected, the RMSE rises with an increased amount
of missing data. With a large amount of missing data, the
diffusion model misses the context to reconstruct the field,
and the model acts as an unconditional diffusion model. It
can also be seen that the RMSE does not show any abrupt
augmentation.

Further domains are considered to test the applicability of
the trained diffusion model in comparison with DINCAE to
explore the different dynamical regimes. In Fig. 12, the do-
main used previously is labeled as 1, and the additional do-
mains are labeled 2 to 10. For each of these domains, DIN-
CAE is trained using only the data from the corresponding

https://doi.org/10.5194/0s-20-1567-2024
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Figure 13. Variogram for the independent test data for the additional domains.

domain using the hyperparameters presented in Table B1.
As the diffusion model is trained using 64 x 64 tiles from
the whole Black Sea, it is not trained again but used only in
the inference mode. The RMSE for each domain is shown
in Table 5, and the corresponding variogram can be seen in
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Fig. 13. Overall the results from the previous test on the first
domain are also applicable to other domains. The RMSE of
the diffusion model is lower than the corresponding RMSE
of DINCAE except for domain 7. At the same time, the vari-
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Table 5. RMSE relative to the independent test data for different
domains.

Domain RMSE DINCAE RMSE diffusion model  SD(obs.)
1 0.175 0.163 0.331
2 0.159 0.058 0.226
3 0.225 0.056 0.211
4 0.162 0.155 0.253
5 0.162 0.074 0.251
6 0.182 0.143 0.353
7 0.090 0.096 0.295
8 0.119 0.062 0.286
9 0.189 0.149 0.442
10 0.116 0.111 0.244
Median 0.158 0.107 0.289

ance for all domains across different scales is more realistic
for the diffusion model.

6 Conclusions

Denoising diffusion models have shown their great potential
for image generation for computer vision applications and
related tasks. One limitation of this approach, in the context
of satellite data, is that it requires clear images for training.
The present article shows that the training approach of Ho
et al. (2020) can be extended if the training dataset contains
incomplete images. The approach presented here does not
need any additional parameters that would require calibra-
tion. The spatial coherence and the statistical reliability of
the resulting reconstruction process emerges naturally from
the training.
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The method is tested on relatively small images of the
chlorophyll a concentration of the Black Sea. The quality
of the reconstruction is assessed using independent test data.
The diffusion method compared favorably against the U-Net
DINCAE. The RMSE of the reconstructed data using the de-
noising diffusion model was smaller than the corresponding
reconstruction of DINCAE. The main advantage of the dif-
fusion model is, however, the ability to reproduce an ensem-
ble of possible reconstructed conditions on the available data.
Each of these reconstructions contains small-scale informa-
tion comparable to the scales of variability in the original
data, avoiding a common problem where the results of U-Net
and autoencoders produce images that are too smooth, as the
information on small scales can typically not be recovered
under clouds with a certain extent. The overall conclusion
is robust when applying this technique to other areas of the
Black Sea.

The ensembles of reconstructed data generated by the dif-
fusion model can be used, for example, in the detection of
gradients and fronts in the satellite images or in the estima-
tion of the error in derived quantities, where information on
how the error is correlated in space is also needed.

Another aspect that would be important to investigate
in future studies would be the ability to reconstruct se-
quences of images, other parameters (like sea surface temper-
ature, salinity, and height), multivariate reconstructions and
data with inhomogeneous and/or very reduced coverage like
in situ observations. It remains to be seen how well the dif-
fusion model can be used in these cases.
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Appendix A: Sample of training data and generated
images

In Fig. Al, a random sample of training images are shown.
Most training images are affected by a significant amount of
noise, and some artifacts are present in the training data. The
denoising diffusion model aims to generate images with the
same distribution, therefore including the noise and artifacts.
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Figure A1. Sample of training data and generated images (starting with an entirely masked input image).
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Appendix B: Application of DINCAE

As the baseline method, we use the U-Net DINCAE de-
scribed in Barth et al. (2020) and Barth et al. (2022). The hy-
perparameters adjusted using the development dataset were
the number of epochs, the number of instances in the time
window, the upsampling method, and whether a refinement
step is used. In the case of a refinement step, the neural net-
work is composed of two U-Nets: the first network provides
an intermediate estimate of the missing data, and the second
U-Net uses the intermediate estimate and the original data
to provide the final estimate. During training, the loss func-
tion is based on a weighted sum of the intermediate and final
estimate. For inference, only the final estimate is used. The
weights are considered hyperparameters. More information
is provided in Barth et al. (2022).

Table B1. Hyperparameters of DINCAE with the adopted value and
the corresponding search space.

Parameter Value Search space
Number of epochs 1276 between 500 and 1500
Save epochs 36 between 10 and 40
Batch size 32 fixed
Channels [32, 64,128, fixed

256, 512]

1,3,0r5
nearest or bilinear
activated or deactivated

Instances in time window 1
Upsampling method nearest
Refinement step deactivated

In Barth et al. (2020), it has been shown that the accuracy
of a reconstruction can be improved by averaging the ob-
tained reconstruction over a certain number of epochs after
epoch 200. In practice, we do not save the model weights at
different epochs but apply the model on the test and develop-
ment data and accumulate all the reconstructions which are
later normalized to compute the average. The frequency (in
number of epochs) of applying the neural network to the test
and validation data to compute the corresponding average is
also a hyperparameter here. As before, the hyperparameters
were determined by minimizing the RMSE relative to the
validation dataset using random search. Table B1 shows all
parameters used in DINCAE and their corresponding search
range.

The number of parameters of the optimal DINCAE model
is 3.1 million. The training time is 12 min on a GeForce RTX
4090 GPU. The inference time of the test and development
datasets is 2.7 s, which is significantly faster than the diffu-
sion model.

Data availability. The code is released as open-source code un-
der the terms of the MIT License and available at the address
https://github.com/gher-uliege/DINDIff ]l (last access: 26 Novem-
ber 2024; https://doi.org/10.5281/zenodo.13165363, Barth, 2024).
The satellite chlorophyll a concentration dataset of the Black
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