Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1367-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-20-1367-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
TEOS-10 and the climatic relevance of ocean–atmosphere interaction
Rainer Feistel
CORRESPONDING AUTHOR
Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research (IOW), 18119 Warnemünde, Germany
Related authors
Trevor J. McDougall, Paul M. Barker, Rainer Feistel, and Fabien Roquet
Ocean Sci., 19, 1719–1741, https://doi.org/10.5194/os-19-1719-2023, https://doi.org/10.5194/os-19-1719-2023, 2023
Short summary
Short summary
A thermodynamic potential is derived, with the temperature argument being Conservative Temperature. All thermodynamic quantities can be derived from this new thermodynamic potential function, and it enables the accurate (to computer machine precision) calculation of the in situ temperature and entropy of seawater. This new thermodynamic potential function adds fundamental thermodynamic justification to the adoption of Conservative Temperature in oceanography in 2010.
Rainer Feistel
Ocean Sci., 14, 471–502, https://doi.org/10.5194/os-14-471-2018, https://doi.org/10.5194/os-14-471-2018, 2018
Short summary
Short summary
TEOS-10 is the present international standard for thermodynamic properties of water, ice, seawater and humid air recommended for geosciences by leading international organisations such as UNESCO/IOC and IUGG. TEOS-10 incorporates an extended manifold of different experimental data for those substances, collected from publications over many decades, in an unprecedentedly compact, consistent, comprehensive and accurate way.
Trevor J. McDougall, Paul M. Barker, Rainer Feistel, and Fabien Roquet
Ocean Sci., 19, 1719–1741, https://doi.org/10.5194/os-19-1719-2023, https://doi.org/10.5194/os-19-1719-2023, 2023
Short summary
Short summary
A thermodynamic potential is derived, with the temperature argument being Conservative Temperature. All thermodynamic quantities can be derived from this new thermodynamic potential function, and it enables the accurate (to computer machine precision) calculation of the in situ temperature and entropy of seawater. This new thermodynamic potential function adds fundamental thermodynamic justification to the adoption of Conservative Temperature in oceanography in 2010.
Rainer Feistel
Ocean Sci., 14, 471–502, https://doi.org/10.5194/os-14-471-2018, https://doi.org/10.5194/os-14-471-2018, 2018
Short summary
Short summary
TEOS-10 is the present international standard for thermodynamic properties of water, ice, seawater and humid air recommended for geosciences by leading international organisations such as UNESCO/IOC and IUGG. TEOS-10 incorporates an extended manifold of different experimental data for those substances, collected from publications over many decades, in an unprecedentedly compact, consistent, comprehensive and accurate way.
Cited articles
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, S. T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K.: A Review of Global Ocean Temperature Observations: Implications for Ocean Heat Content Estimates and Climate Change, Rev. Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022, 2013.
Alberty, R. A.: Use of Legendre transforms in chemical thermodynamics, Pure Appl. Chem. 73, 1349–1380, https://doi.org/10.1351/pac200173081349, 2001.
Albrecht, F.: Untersuchungen über den Wärmehaushalt der Erdoberfläche in verschiedenen Klimagebieten, Reichsamt für Wetterdienst, Wissenschaftliche Abhandlungen Bd. VIII, Nr. 2, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-42530-5, 1940.
Allen, J. and Ward, K.: Cloudy Earth, NASA Earth Observatory image using data provided by the MODIS Atmosphere Science Team, NASA Goddard Space Flight Center, https://earthobservatory.nasa.gov/images/85843/cloudy-earth (last access: 23 October 2024), 2015.
Almeida, L., Lima de Azevedo, J. L., Kerr, R., Araujo, M., and Mata, M. M.: Impact of the new equation of state of seawater (TEOS-10) on the estimates of water mass mixture and meridional transport in the Atlantic Ocean, Prog. Oceanogr., 162, 13–24, https://doi.org/10.1016/j.pocean.2018.02.008, 2018.
Azorin-Molina, C., Dunn, R. J. H., Ricciardulli, L., Mears, C. A., Nicolas, J. P., McVicar, T. R., Zeng, Z., and Bosilovich, M. G.: Land and Ocean Surface Winds, in: State of the Climate in 2022, edited by: Blunden, J., Boyer, T., and Bartow-Gillies, E., B. Am. Meteor. Soc., 104, S72–S74, https://doi.org/10.1175/BAMS-D-23-0090.1, 2023.
Baumgartner, A. and Reichel, E.: The World Water Balance, R. Oldenbourg Verlag, München, Germany, 1975.
Berthou, S., Renshaw, R., Smyth, T., Tinker, J., Grist, J. P., Wihsgott, J. U., Jones, S., Inall, M., Nolan, G., Berx, B., Arnold, A., Blunn, L. P., Castillo, J. M., Cotterill, D., Daly, E., Dow, G., Gómez, B., Fraser-Leonhardt, V., Hirschi, J. J.-M., Lewis, H. W., Mahmood, S., and Worsfold, M.: Exceptional atmospheric conditions in June 2023 generated a northwest European marine heatwave which contributed to breaking land temperature records, Commun. Earth Environ., 5, 287, https://doi.org/10.1038/s43247-024-01413-8, 2024.
BIPM: The International System of Units (SI), Bureau International des Poids et Mesures, Sèvres, https://www.bipm.org/en/publications/si-brochure (last access: 23 October 2024), 2019.
Biswas, A. K.: Experiments on Atmospheric Evaporation until the End of the Eighteenth Century, Technol. Cult., 10, 49–58, https://doi.org/10.2307/3102003, 1969.
Budéus, G. T.: Potential bias in TEOS10 density of sea water samples, Deep-Sea Res. Pt. I, 134, 41–47, https://doi.org/10.1016/j.dsr.2018.02.005, 2018.
Budyko, M. I.: Der Wärmehaushalt der Erdoberfläche, Fachliche Mitteilungen der Inspektion Geophysikalischer Beratungsdienst der Bundeswehr im Luftwaffenamt, Köln, Germany, 100, 3–282, 1963.
Budyko, M. I.: Evolyutsiya Biosfery, Gidrometeoizdat, Leningrad, 1984.
Cahill, B. E., Kowalczuk, P., Kritten, L., Gräwe, U., Wilkin, J., and Fischer, J.: Estimating the seasonal impact of optically significant water constituents on surface heating rates in the western Baltic Sea, Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, 2023.
Carlon, H. R.: Infrared emission by fine water aerosols and fogs, Appl. Opt., 9, 2000–2006, https://doi.org/10.1364/AO.9.002000, 1970.
Carlon, H. R.: Aerosol spectrometry in the infrared, Appl. Opt., 19, 2210–2218, https://doi.org/10.1364/AO.19.002210, 1980.
Cheng, L., Abraham, J., Trenberth, K. E., Boyer, T., Mann, M. E., Zhu, J., Wang, F., Yu, F., Locarnini, R., Fasullo, J., Zheng, F., Li, Y., Zhang, B., Wan, L., Chen, X., Wang, D., Feng, L., Song, X., Liu, Y., Reseghetti, F., Simoncelli, S., Gouretski, V., Chen, G., Mishonov, A., Reagan, J., Von Schuckmann, K., Pan, Y., Tan, Z., Zhu, Y., Wei, W., Li, G., Ren, Q., Cao, L., and Lu, Y.: New record ocean temperatures and related climate indicators in 2023, Adv. Atmos. Sci., 41, 1068–1082, https://doi.org/10.1007/s00376-024-3378-5, 2024.
Clausius, R.: Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Ann. Phys., 201, 353–400, https://doi.org/10.1002/andp.18652010702, 1865.
Clausius, R.: Die Mechanische Wärmetheorie, Friedrich Vieweg, Braunschweig, 1876.
Craig, H.: The Thermodynamics of Sea Water, P. Natl. Acad. Sci. USA, 46, 1221–1225, https://doi.org/10.1073/pnas.46.9.1221, 1960.
Dai, A.: Recent Climatology, Variability, and Trends in Global Surface Humidity, J. Climate, 19, 3589–3606, https://doi.org/10.1175/JCLI3816.1, 2006.
Debski, K.: Continental Hydrology, Volume 2: Physics of Water, Atmospheric Precipitation, and Evaporation, Scientific Publications Foreign Cooperation Center of the Central Institute, Warsaw, 1966.
Dickson, A. G., Camões, M. F., Spitzer, P., Fisicaro, P., Stoica, D., Pawlowicz, R., and Feistel, R.: Metrological challenges for measurements of key climatological observables, Part 3: Seawater pH, Metrologia 53, R26–R39, https://doi.org/10.1088/0026-1394/53/1/R26, 2016.
Eastman, R., Warren, S. G., and Hahn, C. J.: Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954–2008, J. Climate, 24, 5914–5934, https://doi.org/10.1175/2011JCLI3972.1, 2011.
Ebeling, W. and Feistel, R.: Physik der Selbstorganisation und Evolution, Akademie-Verlag, Berlin, 1982.
Ebeling, W., Feistel, R., and Camoes, M. F.: Trends in statistical calculations of individual ionic activity coefficients of aqueous electrolytes and seawater, Trends in Physical Chemistry, 20, 1–26, 2020.
Ebeling, W., Feistel, R., and Krienke, H.: Statistical theory of individual ionic activity coefficients of electrolytes with multiple-charged ions including seawater, J. Mol. Liq., 346, 117814, https://doi.org/10.1016/j.molliq.2021.117814, 2022.
Emden, R.: Über Strahlungsgleichgewicht und atmosphärische Strahlung, Sitzungsber. Akad. Wiss. München 1, 55–142, https://www.zobodat.at/pdf/Sitz-Ber-Akad-Muenchen-math-Kl_1913_0001.pdf (last access: 23 October 2024), 1913.
Falkenhagen, H., Ebeling, W., and Hertz, H. G.: Theorie der Elektrolyte, S. Hirzel Verlag, Leipzig, 1971.
Fasullo, J. T. and Trenberth, K. E.: A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity, Science 338, 792–794, https://doi.org/10.1126/science.1227465, 2012.
Feistel, R.: Thermodynamics of Seawater, in: German Democratic Republic National Report for the period 1.1.1987–2.10.1990 (Final Report) IAPSO, edited by: Striggow, K. and Schröder, A., presented at the XX. General Assembly of the IUGG, Wien 1991, Institut für Meereskunde, Warnemünde, https://doi.org/10.13140/RG.2.1.3973.3282, 1991.
Feistel, R.: Equilibrium thermodynamics of seawater revisited, Prog. Oceanogr., 31, 101–179, https://doi.org/10.1016/0079-6611(93)90024-8, 1993.
Feistel, R.: A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr., 58, 43–114, https://doi.org/10.1016/S0079-6611(03)00088-0, 2003.
Feistel, R.: Numerical implementation and oceanographic application of the Gibbs thermodynamic potential of seawater, Ocean Sci., 1, 9–16, https://doi.org/10.5194/os-1-9-2005, 2005.
Feistel, R.: A Gibbs function for seawater thermodynamics for −6 to 80° C and salinity up to 120 g kg−1, Deep-Sea Res. Pt. I, 55, 1639–1671, https://doi.org/10.1016/j.dsr.2008.07.004, 2008a.
Feistel, R.: Thermodynamics of water, vapor, ice, and seawater, Accredit. Qual. Assur., 13, 593–599, https://doi.org/10.1007/s00769-008-0443-1, 2008b.
Feistel, R.: Extended equation of state for seawater at elevated temperature and salinity, Desalination, 250, 14–18, https://doi.org/10.1016/j.desal.2009.03.020, 2010.
Feistel, R.: Stochastic ensembles of thermodynamic potentials, Accredit. Qual. Assur., 16, 225–235, https://doi.org/10.1007/s00769-010-0695-4, 2011a.
Feistel, R.: Radiative entropy balance and vertical stability of a gray atmosphere, Eur. Phys. J. B, 82, 197–206, https://doi.org/10.1140/epjb/e2011-20328-2, 2011b.
Feistel, R.: TEOS-10: A New International Oceanographic Standard for Seawater, Ice, Fluid Water, and Humid Air, Int. J. Thermophys., 33, 1335–1351, https://doi.org/10.1007/s10765-010-0901-y, 2012.
Feistel, R.: Salinity and relative humidity: Climatological relevance and metrological needs, Acta Imeko, 4, 57–61, https://doi.org/10.21014/acta_imeko.v4i4.216, 2015.
Feistel, R.: Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond, Ocean Sci., 14, 471–502, https://doi.org/10.5194/os-14-471-2018, 2018.
Feistel, R.: Defining relative humidity in terms of water activity. Part 2: relations to osmotic pressures, Metrologia, 56, 015015, https://doi.org/10.1088/1681-7575/aaf446, 2019a.
Feistel, R.: Distinguishing between Clausius, Boltzmann and Pauling Entropies of Frozen Non-Equilibrium States, Entropy, 21, 799, https://doi.org/10.3390/e21080799, 2019b.
Feistel, R.: On the Evolution of Symbols and Prediction Models, Biosemiotics, 16, 311–371, https://doi.org/10.1007/s12304-023-09528-9, 2023.
Feistel, R.: Thermodynamics of Water in the “Steam Engine” Climate, IAPWS Gibbs Award Lecture, 24 June 2024, 18th International Conference on the Properties of Water and Steam, Boulder, Colorado, USA, 23–28 June 2024, https://doi.org/10.13140/RG.2.2.15038.50248/1, 2024.
Feistel, R. and Ebeling, W.: Physics of Self-Organization and Evolution, Wiley-VCH, Weinheim, 2011.
Feistel, R. and Hagen, E.: On the GIBBS thermodynamic potential of seawater, Prog. Oceanogr., 36, 249–327, https://doi.org/10.1016/S0165-232X(98)00014-7, 1995.
Feistel, R. and Hagen, E.: A Gibbs thermodynamic potential of sea ice, Cold Reg. Sci. Technol., 28, 83–142, https://doi.org/10.1016/S0165-232X(98)00014-7, 1998.
Feistel, R. and Hellmuth, O.: Relative Humidity: A Control Valve of the Steam Engine Climate, J. Hum. Earth Future, 2, 140–182, https://doi.org/10.28991/HEF-2021-02-02-06, 2021.
Feistel, R. and Hellmuth, O.: Thermodynamics of Evaporation from the Ocean Surface, Atmosphere 14, 560, https://doi.org/10.3390/atmos14030560, 2023.
Feistel, R. and Hellmuth, O.: Irreversible Thermodynamics of Seawater Evaporation, J. Mar. Sci. Eng., 12, 166, https://doi.org/10.3390/jmse12010166, 2024a.
Feistel, R. and Hellmuth, O.: TEOS-10 Equations for Determining the Lifted Condensation Level (LCL) and Climatic Feedback of Marine Clouds, Oceans, 5, 312–351, https://doi.org/10.3390/oceans5020020, 2024b.
Feistel, R. and Lovell-Smith, J. W.: Defining relative humidity in terms of water activity. Part 1: definition, Metrologia, 54, 566–576, https://doi.org/10.1088/1681-7575/aa7083, 2017.
Feistel, R. and Lovell-Smith, J. W.: Uncertainty Propagation using Dispersion Matrices Accounting for Systematic Error in Least-Squares Regression, Preprints, 2023, 2023111917, https://doi.org/10.20944/preprints202311.1917.v1, 2023.
Feistel, R. and Marion, G. M.: A Gibbs–Pitzer function for high-salinity seawater thermodynamics, Prog. Oceanogr., 74, 515–539, https://doi.org/10.1016/j.pocean.2007.04.020, 2007.
Feistel, R. and Wagner, W.: High-pressure thermodynamic Gibbs functions of ice and sea ice, J. Mar. Res., 63, 95–139, 2005.
Feistel, R. and Wagner, W.: A new equation of state for H2O ice Ih, J. Phys. Chem. Ref. Data, 35, 1021–1047, https://doi.org/10.1063/1.2183324, 2006.
Feistel, R. and Wagner, W.: Sublimation pressure and sublimation enthalpy of H2O ice Ih between 0 and 273.16 K, Geochim. Cosmochim. Ac., 71, 36–45, https://doi.org/10.1016/j.gca.2006.08.034, 2007.
Feistel, R., Wagner, W., Tchijov, V., and Guder, C.: Numerical implementation and oceanographic application of the Gibbs potential of ice, Ocean Sci., 1, 29–38, https://doi.org/10.5194/os-1-29-2005, 2005.
Feistel, R., McDougall, T. J., and Millero, F. J.: Eine neue Zustandsgleichung für Meerwasser, DGM-Mitteilungen 2/2006, 19–21, https://www.researchgate.net/publication/275769317_Eine_neue_Zustandsgleichung_des_Meerwassers (last access: 23 October 2024), 2006.
Feistel, R., Tailleux, R., and McDougall, T. (Eds.): Thermophysical Properties of Seawater, Ocean Sci., https://os.copernicus.org/articles/special_issue14.html, 2008a.
Feistel, R., Wright, D. G., Miyagawa, K., Harvey, A. H., Hruby, J., Jackett, D. R., McDougall, T. J., and Wagner, W.: Mutually consistent thermodynamic potentials for fluid water, ice and seawater: a new standard for oceanography, Ocean Sci., 4, 275–291, https://doi.org/10.5194/os-4-275-2008, 2008b.
Feistel, R., Wright, D. G., Kretzschmar, H.-J., Hagen, E., Herrmann, S., and Span, R.: Thermodynamic properties of sea air, Ocean Sci., 6, 91–141, https://doi.org/10.5194/os-6-91-2010, 2010a.
Feistel, R., Marion, G. M., Pawlowicz, R., and Wright, D. G.: Thermophysical property anomalies of Baltic seawater, Ocean Sci., 6, 949–981, https://doi.org/10.5194/os-6-949-2010, 2010b.
Feistel, R., Weinreben, S., Wolf, H., Seitz, S., Spitzer, P., Adel, B., Nausch, G., Schneider, B., and Wright, D. G.: Density and Absolute Salinity of the Baltic Sea 2006–2009, Ocean Sci., 6, 3–24, https://doi.org/10.5194/os-6-3-2010, 2010c.
Feistel, R., Wright, D. G., Jackett, D. R., Miyagawa, K., Reissmann, J. H., Wagner, W., Overhoff, U., Guder, C., Feistel, A., and Marion, G. M.: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations, Ocean Sci., 6, 633–677, https://doi.org/10.5194/os-6-633-2010, 2010d.
Feistel, R., Lovell-Smith, J. W., and Hellmuth, O.: Virial Approximation of the TEOS-10 Equation for the Fugacity of Water in Humid Air, Int. J. Thermophys., 36, 44–68, https://doi.org/10.1007/s10765-014-1784-0, 2015.
Feistel, R., Wielgosz, R., Bell, S. A., Camões, M. F., Cooper, J. R., Dexter, P., Dickson, A. G., Fisicaro, P., Harvey, A. H., Heinonen, M., Hellmuth, O., Kretzschmar, H.-J., Lovell-Smith, J. W., McDougall, T. J., Pawlowicz, R., Ridout, R., Seitz, S., Spitzer, P., Stoica, D., and Wolf, H.: Metrological challenges for measurements of key climatological observables: Oceanic salinity and pH, and atmospheric humidity, Part 1: overview, Metrologia, 53, R1–R11, https://doi.org/10.1088/0026-1394/53/1/R1, 2016a.
Feistel, R., Lovell-Smith, J. W., Saunders, P., and Seitz, S.: Uncertainty of empirical correlation equations, Metrologia, 53, 1079, https://doi.org/10.1088/0026-1394/53/4/1079, 2016b.
Feistel, R., Hellmuth, O. and Lovell-Smith, J.: Defining relative humidity in terms of water activity. III: Relations to dew-point and frost-point temperatures, Metrologia, 59, 045013, https://doi.org/10.1088/1681-7575/ac7185, 2022.
Flohn, H., Kapala, A., Knoche, H. R., and Mächel, H.: Water vapour as an amplifier of the greenhouse effect: new aspects, Meteorol. Z., 1, 120–138, https://doi.org/10.1127/metz/1/1992/122, 1992.
Fofonoff, N. P.: Interpretation of Oceanographic Measurements: Thermodynamics, Pacific Oceanographic Group, Nanaimo, B. C., 1958.
Fofonoff, N. P.: Physical properties of sea-water, in: The Sea, edited by: Hill, M. N., Wiley, New York, 3–30, 1962.
Fofonoff, N. P. and Millard Jr., R. C.: Algorithms for computation of fundamental properties of seawater, Unesco technical papers in marine science 44, Unesco, Paris, https://darchive.mblwhoilibrary.org/server/api/core/bitstreams/f77d18e9-e756-58eb-b042-a8870de55e3b/content (last access: 23 October 2024), 1983.
Foken, T.: 50 Jahre Monin-Obukhov'sche Ähnlichkeitstheorie, Universität Bayreuth, Abt. Mikrometeorologie, Bayreuth, Germany, https://www.bayceer.uni-bayreuth.de/mm/de/pub/html/2569605_Fo.pdf (last access: 23 October 2024), 2004.
Foken, T.: Angewandte Meteorologie, 3rd ed., Springer, Berlin, Germany, 2016.
Foken, T., Hellmuth, O., Huwe, B., and Sonntag, D.: Physical Quantities, in: Springer Handbook of Atmospheric Measurements, edited by: Foken, T., Springer Handbooks, Springer, Cham, 107–151, https://doi.org/10.1007/978-3-030-52171-4_5, 2021.
Foken, T. and Richter, S. H.: Konzept der Parametrisierung des Austauschs von Energie und Beimengungen in der bodennahen Luftschicht, Abh. Meteor. Dienst. DDR, 146, 7–13, 1991.
Foster, M. J., Phillips, C., Heidinger, A. K., Borbas, E. E., Li, Y., Menzel, P., Walther, A., and Weisz, E.: PATMOS-x Version 6.0: 40 Years of Merged AVHRR and HIRS Global Cloud Data, J. Climate, 36, 1143–1160, https://doi.org/10.1175/JCLI-D-22-0147.1, 2023.
Francis, J. A.: Vapor Storms, Scientific American Magazine, 325, 26, https://doi.org/10.1038/scientificamerican1121-26, 2021.
Gettelman, A. and Sherwood, S.C.: Processes Responsible for Cloud Feedback, Curr. Clim. Change Rep., 2, 179–189, https://doi.org/10.1007/s40641-016-0052-8, 2016.
Gibbs, J. W.: Graphical methods in the thermodynamics of fluids, Transactions of the Connecticut Academy of Arts and Science, 2, 309–342, https://www3.nd.edu/powers/ame.20231/gibbs1873a.pdf (last access: 23 October 2024), 1873a.
Gibbs, J. W.: A Method of Graphical Representation of the Thermodynamic Properties of Substances by Means of Surfaces, Trans. Conn. Acad. Arts Sci., 2, 382–404, https://www3.nd.edu/~powers/ame.20231/gibbs1873b.pdf (last access: 23 October 2024), 1873b.
Gibbs, J. W.: On the equilibrium of heterogeneous substances, The Transactions of the Connecticut Academy of Arts and Science, 3, 108–248, https://www.biodiversitylibrary.org/page/27725812 (last access: 23 October 2024), 1874–1878.
Gill, A. E.: Atmosphere-Ocean Dynamics, Academic Press, San Diego, 1982.
Gimeno, L., Nieto, R., Drumond, A., and Durán-Quesada, A. M.: Ocean Evaporation and Precipitation, in: Earth System Monitoring: Selected Entries from the Encyclopedia of Sustainability Science and Technology, edited by: Orcutt, J., Springer, New York, NY, USA, https://doi.org/10.1007/978-1-4614-5684-1_13, 2013.
Glansdorff, P. and Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience, London, 1971.
Graham, F. S. and McDougall, T. J.: Quantifying the Nonconservative Production of Conservative Temperature, Potential Temperature, and Entropy, J. Phys. Oceanogr., 43, 838–862, https://doi.org/10.1175/JPO-D-11-0188.1, 2013.
Guggenheim, E. A.: Thermodynamics, North-Holland, Amsterdam, 1949.
Gutzow, I. S. and Schmelzer, J. W. P.: Glasses and the Third Law of Thermodynamics, Chapter 9, in: Glasses and the Glass Transition, edited by: Schmelzer, J. W. P. and Gutzow, I. S., Wiley-VCH, Weinheim, Germany, 357–378, 2011.
Harvey, A.: Thermodynamic Properties of Water: Tabulation From the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, https://doi.org/10.6028/NIST.IR.5078, 1998.
Harvey, A. H., Hrubý, J., and Meier, K.: Improved and Always Improving: Reference Formulations for Thermophysical Properties of Water, J. Phys. Chem. Ref. Data, 52, 011501, https://doi.org/10.1063/5.0125524, 2023.
Held, I. M. and Soden, B. J.: Robust Responses of the Hydrological Cycle to Global Warming, J. Climate, 19, 5686–5699, https://doi.org/10.1175/JCLI3990.1, 2006.
Hellmuth, O. and Feistel, R.: Analytical Determination of the Nucleation-Prone, Low-Density Fraction of Subcooled Water, Entropy, 22, 933, https://doi.org/10.3390/e22090933, 2020.
Hellmuth, O. and Shchekin, A. K.: Determination of interfacial parameters of a soluble particle in a nonideal solution from measured deliquescence and efflorescence humidities, Atmos. Chem. Phys., 15, 3851–3871, https://doi.org/10.5194/acp-15-3851-2015, 2015.
Hellmuth, O., Schmelzer, J. W. P., and Feistel, R.: Ice-Crystal Nucleation in Water: Thermodynamic Driving Force and Surface Tension. Part I: Theoretical Foundation, Entropy, 22, 50, https://doi.org/10.3390/e22010050, 2020.
Hellmuth, O., Feistel, R., and Foken, T.: Intercomparison of different state-of-the-art formulations of the mass density of humid air, Bull. Atmos. Sci. Technol., 2, 13, https://doi.org/10.1007/s42865-021-00036-7, 2021.
Hirota, N., Ogura, T., Shiogama, H., Caldwell, P., Watanabe, M., Kamae, Y., and Suzuki, K.: Underestimated marine stratocumulus cloud feedback associated with overly active deep convection in models, Environ. Res. Lett., 16, 074015, https://doi.org/10.1088/1748-9326/abfb9e, 2021.
Holliday, N. P., Hughes, S. L., Borenäs, K., Feistel, R., Gaillard, F. Lavìn, A., Loeng, H., Mork, K.-A., Nolan, G., Quante, M., and Somavilla, R.: Chapter 3. Long-term Physical Variability in the North Atlantic Ocean, in: ICES status report on climate change in the North Atlantic, edited by: Reid, P. C. and Valdes, L., ICES Cooperative Research Report 310, ICES, Copenhagen, 21–46, https://www.researchgate.net/publication/259679095_Chapter_4_Long-term_Physical_Variability_in_the_North_Atlantic_Ocean (last access: 24 October 2024), 2011.
Holzapfel, W. B. and Klotz, S.: Coherent thermodynamic model for ice Ih – A model case for complex behaviour, J. Chem. Phys., 155, 024506, https://doi.org/10.1063/5.0049215, 2021.
Holzapfel, W. B. and Klotz, S.: Thermophysical properties of H2O and D2O ice Ih with contributions from proton disorder, quenching, relaxation, and extended defects: A model case for solids with quenching and relaxation, J. Chem. Phys., 160, 154508, https://doi.org/10.1063/5.0203614, 2024.
IAPWS AN6-16: Advisory Note No. 6: Relationship between Various IAPWS Documents and the International Thermodynamic Equation of Seawater–2010 (TEOS-10), The International Association for the Properties of Water and Steam, Dresden, Germany, http://www.iapws.org (last access: 24 October 2024), 2016.
IAPWS G8-10: Guideline on an Equation of State for Humid Air in Contact with Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater (Niagara Falls, Canada: The International Association for the Properties of Water and Steam), http://www.iapws.org (last access: 24 October 2024), 2010.
IAPWS R10-06: Revised Release on the Equation of State 2006 for H2O Ice Ih (Doorwerth, The Netherlands: The International Association for the Properties of Water and Steam), http://www.iapws.org (last access: 24 October 2024), 2009.
IAPWS R13-08: Release on the IAPWS Formulation 2008 for the Thermodynamic Properties of Seawater, Berlin, Germany: The International Association for the Properties of Water and Steam, http://www.iapws.org (last access: 24 October 2024), 2008.
IAPWS R6-95: Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (Dresden, Germany: The International Association for the Properties of Water and Steam), http://www.iapws.org (last access: 24 October 2024), 2016.
IAPWS SR1-86: Revised Supplementary Release on Saturation Properties of Ordinary Water Substance, The International Association for the Properties of Water and Steam, St. Petersburg, Russia, http://www.iapws.org (last access: 24 October 2024), 1992.
IOC, SCOR, and IAPSO: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English), 196 pp., Paris, https://unesdoc.unesco.org/ark:/48223/pf0000188170 (last access: 24 October 2024), 2010.
IOC-UNESCO: Resolution XXV-7 International Thermodynamic Equation of Seawater (TEOS-10), in: Proceedings of the Intergovernmental Oceanographic Commission, Twenty-Fifth Session of the Assembly, Paris, France, 16–25 June 2009, http://unesdoc.unesco.org/images/0018/001878/187890e.pdf (last access: 24 October 2024), 2009.
IUGG: Resolution 4: Adoption of the International Thermodynamic Equation of Seawater–2010 (TEOS-10), in: Proceedings of the International Union of Geodesy and Geophysics, XXV General Assembly, Melbourne, Australia, 27 June–7 July 2011, https://iugg.org/wp-content/uploads/2022/03/IUGG-Resolutions-XXV-GA-Melbourne-English.pdf (last access: 24 October 2024), 2011.
Jackett, D. R., McDougall, T. J., Feistel, R., Wright, D. G., and Griffies, S. M.: Algorithms for Density, Potential Temperature, Conservative Temperature, and the Freezing Temperature of Seawater, J. Atmos. Ocean. Tech., 23, 1709–1728, https://doi.org/10.1175/JTECH1946.1, 2006.
Ji, F., Pawlowicz, R., and Xiong, X.: Estimating the Absolute Salinity of Chinese offshore waters using nutrients and inorganic carbon data, Ocean Sci., 17, 909–918, https://doi.org/10.5194/os-17-909-2021, 2021.
Ji, F., Yang, J., Ding, F., Zheng, B., and Ning, P.: The salinity anomalies due to nutrients and inorganic carbon in the Bohai Sea, Front. Mar. Sci., 11, 1418860, https://doi.org/10.3389/fmars.2024.1418860, 2024.
Josey, S. A., Kent, E. C., and Taylor, P. K.: New Insights into the Ocean Heat Budget Closure Problem from Analysis of the SOC Air–Sea Flux Climatology, J. Climate, 12, 2856–2880, https://doi.org/10.1175/1520-0442(1999)012<2856:NIITOH>2.0.CO;2, 1999.
Josey, S. A., Gulev, S., and Yu, L.: Exchanges through the ocean surface, in: Ocean Circulation and Climate, edited by: Siedler, G., Griffies, S. M., Gould, J., and Church, J. A., A 21st Century Perspective, Elsevier, Amsterdam, the Netherlands, 115–140, https://doi.org/10.1016/B978-0-12-391851-2.00005-2, 2013.
Jucker, M., Lucas, C., and Dutta, D.: Long-Term Climate Impacts of Large Stratospheric Water Vapor Perturbations, J. Climate, 37, 4507–4521, https://doi.org/10.1175/JCLI-D-23-0437.1, 2024.
Kalisch, J. and Macke, A.: Radiative budget and cloud radiative effect over the Atlantic from ship-based observations, Atmos. Meas. Tech., 5, 2391–2401, https://doi.org/10.5194/amt-5-2391-2012, 2012.
Kittel, C.: Thermal Physics, Wiley, New York, 1969.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, T. Faraday Soc., 32, 1152–1161, https://doi.org/10.1039/tf9363201152, 1936.
Kozliak, E. and Lambert, F. L.: Residual Entropy, the Third Law and Latent Heat, Entropy, 10, 274–284, https://doi.org/10.3390/e10030274, 2008.
Kraus, E. B. and Businger, J. A.: Atmosphere–Ocean Interaction, Oxford University Press/Clarendon, New York, Oxford, 1994.
Kretzschmar, H. J., Feistel, R., Wagner, W., Miyagawa, K., Harvey, A. H., Cooper, J. R., Hiegemann, M., Blangettit, F. L., Orlov, K. A., Weber, I., Singh, A., and Herrmann, S.: The IAPWS industrial formulation for the thermodynamic properties of seawater, Desalin. Water Treat., 55, 1177–1199, https://www.sciencedirect.com/journal/desalination-and-water-treatment/vol/55/issue/5 (last access: 25 October 2024), 2015.
Kuhlbrodt, T., Swaminathan, R., Ceppi, P., and Wilder, T.: A Glimpse into the Future: The 2023 Ocean Temperature and Sea Ice Extremes in the Context of Longer-Term Climate Change, B. Am. Meteor. Soc., 105, E474–E485, https://doi.org/10.1175/BAMS-D-23-0209.1, 2024.
Lago, S., Giuliano Albo, P. A., von Rohden, C., and Rudtsch, S.: Speed of sound measurements in North Atlantic Seawater and IAPSO Standard Seawater up to 70 MPa, Mar. Chem., 177, 662–667, https://doi.org/10.1016/j.marchem.2015.10.007, 2015.
Laliberte, F.: Python bindings for TEOS-10, GitHub, https://github.com/laliberte/pyteos_air (last access: 24 October 2024), 2015.
Landau, L. D. and Lifschitz, E. M.: Statistische Physik, Akademie-Verlag, Berlin, 1966.
Landau, L. D. and Lifschitz, E. M.: Hydrodynamik, Akademie-Verlag, Berlin, 1974.
Le Menn, M., Giuliano Albo, P. A., Lago, S., Romeo, R., and Sparasci, F.: The absolute salinity of seawater and its measurands, Metrologia, 56, 015005, https://doi.org/10.1088/1681-7575/aaea92 , 2018.
Lemmon, E. W., Jacobsen, R. T., Penoncello, S. G., and Friend, D. G.: Thermodynamic Properties of Air and Mixtures of Nitrogen, Argon, and Oxygen From 60 to 2000 K at Pressures to 2000 MPa, J. Phys. Chem. Ref. Data, 29, 331–385, https://doi.org/10.1063/1.1285884, 2000.
Linke, F. and Baur, F.: Meteorologisches Taschenbuch, Geest & Portig, Leipzig, 1970.
Liu, W. T., Katsaros, K. B., and Businger, J. A.: Bulk parameterizaJon of air-sea exchanges of heat and water vapor including the molecular constraints at the interface, J. Atmos. Sci., 36, 1722–1735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2, 1979.
Lovell-Smith, J. W., Feistel, R., Harvey, A. H., Hellmuth, O., Bell, S. A., Heinonen, M., and Cooper, J. R.: Metrological challenges for measurements of key climatological observables. Part 4: Atmospheric relative humidity, Metrologia, 53, R39–R59, https://doi.org/10.1088/0026-1394/53/1/R40, 2016.
Luo, H., Quaas, J., and Han, Y.: Diurnally asymmetric cloud cover trends amplify greenhouse warming, Sci. Adv., 10, eado5179, https://doi.org/10.1126/sciadv.ado5179, 2024.
Manaure, E., Olivera-Fuentes, C., Wilczek-Vera, G., and Vera, J.H.: Pitzer Equations and a Model-Free Version of the Ion Interaction Approach for the Activity of Individual Ions, Chem. Eng. Sci., 241, 116619, https://doi.org/10.1016/j.ces.2021.116619, 2021.
Margenau, H. and Murphy, G. M.: Die Mathematik für Physik und Chemie, B. G. Teubner, Leipzig, 1964.
Marion, G. M., Millero, F. J., and Feistel, R.: Precipitation of solid phase calcium carbonates and their effect on application of seawater SA–T–P models, Ocean Sci., 5, 285–291, https://doi.org/10.5194/os-5-285-2009, 2009.
Marion, G. M., Mironenko, M. V., and Roberts, M. W.: FREZCHEM: A geochemical model for cold aqueous solutions, Comput. Geosci., 36, 10–15, https://doi.org/10.1016/j.cageo.2009.06.004, 2010.
Marion, G. M., Millero, F. J., Camões, F., Spitzer, P., Feistel, R., and Chen, C.-T. A.: pH of Seawater, Mar. Chem., 126, 89–96, https://doi.org/10.1016/j.marchem.2011.04.002, 2011.
Martins, C. G. and Cross, J.: Technical note: TEOS-10 Excel – implementation of the Thermodynamic Equation Of Seawater – 2010 in Excel, Ocean Sci., 18, 627–638, https://doi.org/10.5194/os-18-627-2022, 2022.
Maxwell, J. C.: Theory of Heat, Longmans, Green and Co., London and New York, 1888.
McDougall, T. J.: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes, J. Phys. Oceanogr., 33, 945–963, https://doi.org/10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2, 2003.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, https://www.teos-10.org/pubs/Getting_Started.pdf (last access: 25 October 2024), 2011.
McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R., and Barker, P. M.: A global algorithm for estimating Absolute Salinity, Ocean Sci., 8, 1123–1134, https://doi.org/10.5194/os-8-1123-2012, 2012.
McDougall, T. J., Feistel, R., and Pawlowicz, R.: Chapter 6 – Thermodynamics of Seawater, in: Ocean Circulation and Climate – A 21st Century Perspective, edited by: Siedler, G., Griffies, S. M., Gould, J., and Church, J. A., Academic Press, Oxford, 141–158, https://doi.org/10.1016/B978-0-12-391851-2.00006-4, 2013.
McDougall, T. J., Barker, P. M., Feistel, R., and Galton-Fenzi, B. K.: Melting of Ice and Sea Ice into Seawater and Frazil Ice Formation, J. Phys. Oceanogr., 44, 1751–1775, https://doi.org/10.1175/JPO-D-13-0253.1, 2014.
McDougall, T. J., Barker, P. M., Holmes, R. M., Pawlowicz, R., Griffies, S. M., and Durack, P. J.: The interpretation of temperature and salinity variables in numerical ocean model output and the calculation of heat fluxes and heat content, Geosci. Model Dev., 14, 6445–6466, https://doi.org/10.5194/gmd-14-6445-2021, 2021.
McDougall, T. J., Barker, P. M., Feistel, R., and Roquet, F.: A thermodynamic potential of seawater in terms of Absolute Salinity, Conservative Temperature, and in situ pressure, Ocean Sci., 19, 1719–1741, https://doi.org/10.5194/os-19-1719-2023, 2023.
MetOffice: New marine surface humidity climate monitoring product, https://www.metoffice.gov.uk/research/news/2020/new-marine-surface-humidity-climate-monitoring-product (last access: 24 October 2024), 2020.
Millero, F. J.: The thermodynamics of seawater. Part I. The PVT properties, Ocean Phys. Eng. 7, 403–460, https://www.researchgate.net/publication/289966693_THERMODYNAMICS_OF_SEAWATER_-_1_THE_PVT_PROPERTIES (last access: 24 October 2024), 1982.
Millero, F. J.: The Thermodynamics of Seawater. Part II. Thermochemical Properties, Ocean Phys. Eng., 8, 1–40, https://www.researchgate.net/publication/289966823_THERMODYNAMICS_OF_SEAWATER_PART_II_THERMOCHEMICAL_PROPERTIES (last access: 24 October 2024), 1983.
Millero, F. J.: History of the Equation of State of Seawater, Oceanography, 23, 18–33, https://doi.org/10.5670/oceanog.2010.21, 2010.
Millero, F. J. and Huang, F.: The density of seawater as a function of salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K), Ocean Sci., 5, 91–100, https://doi.org/10.5194/os-5-91-2009, 2009.
Millero, F. J. and Huang, F.: Corrigendum to ”The density of seawater as a function of salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K)” published in Ocean Sci., 5, 91–100, 2009, Ocean Sci., 6, 379–379, https://doi.org/10.5194/os-6-379-2010, 2010.
Millero, F. J. and Leung, W. H.: The thermodynamics of seawater at one atmosphere, Am. J. Sci., 276, 1035–1077, https://doi.org/10.2475/ajs.276.9.1035, 1976.
Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J.: The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale, Deep-Sea Res. Pt. I, 55, 50–72, https://doi.org/10.1016/j.dsr.2007.10.001, 2008.
Montgomery, R. B.: Observations of vertical humidity distribution above the ocean surface and their relation to evaporation, Pap. Phys. Oceanogr. Meteorol., 7, 2–30, https://doi.org/10.1575/1912/1099, 1940.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set, J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
Muhlbauer, A., McCoy, I. L., and Wood, R.: Climatology of stratocumulus cloud morphologies: microphysical properties and radiative effects, Atmos. Chem. Phys., 14, 6695–6716, https://doi.org/10.5194/acp-14-6695-2014, 2014.
Mulligan, J. F. and Hertz, G. G.: An unpublished lecture by Heinrich Hertz: “On the energy balance of the Earth”, Am. J. Phys., 65, 36–45, https://doi.org/10.1119/1.18565, 1997.
Myers, T. A., Scott, R. C., Zelinka, M. D., Klein, S. A., Norris, J. R., and Caldwell, P.: Observational Constraints on Low Cloud Feedback Reduce Uncertainty of Climate Sensitivity, Nat. Clim. Change, 11, 501–507, https://doi.org/10.1038/s41558-021-01039-0, 2021.
Nayar, K. G., Sharqawy, M. H., Banchik, L. D., and Lienhard V, J. H.: Thermophysical properties of seawater: A review and new correlations that include pressure dependence, Desalination, 390, 1–24, https://doi.org/10.1016/j.desal.2016.02.024, 2016.
Pawlowicz, R.: A model for predicting changes in the electrical conductivity, practical salinity, and absolute salinity of seawater due to variations in relative chemical composition, Ocean Sci., 6, 361–378, https://doi.org/10.5194/os-6-361-2010, 2010.
Pawlowicz, R.: Key Physical Variables in the Ocean: Temperature, Salinity, and Density, Nature Education Knowledge 4, 13, https://www.nature.com/scitable/knowledge/library/key-physical-variables-in-the-ocean-temperature-102805293/ (last access: 24 October 2024), 2013.
Pawlowicz, R.: Report to SCOR on JCS Activities Jun 2022–Jun 2023, Joint SCOR/IAPWS/IAPSO Committee on the Properties of Seawater (JCS), https://scor-int.org/wp-content/uploads/2023/07/JCS-2023.pdf (last access: 24 October 2024), 2023.
Pawlowicz, R. and Feistel, R.: Limnological applications of the Thermodynamic Equation of Seawater 2010 (TEOS-10), Limnol. Oceanogr.-Meth., 10, 853–867, https://doi.org/10.4319/lom.2012.10.853, 2012.
Pawlowicz, R. and Yerubande, R.: Chapter 3 – Water as a Substance, in: Wetzel's Limnology, Lake and River Ecosystems, edited by: Jones, I. D. and Smol, J. P., Academic Press, 15–24, https://doi.org/10.1016/C2019-0-04412-3, 2024.
Pawlowicz, R., Wright, D. G., and Millero, F. J.: The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater, Ocean Sci., 7, 363–387, https://doi.org/10.5194/os-7-363-2011, 2011.
Pawlowicz, R., McDougall, T. J., Feistel, R., and Tailleux, R.: An historical perspective on the development of the Thermodynamic Equation of Seawater – 2010, Ocean Sci., 8, 161–174, https://doi.org/10.5194/os-8-161-2012, 2012.
Pawlowicz, R., Feistel, R., McDougall, T. J., Ridout, P., Seitz, S., and Wolf, H.: Metrological challenges for measurements of key climatological observables. Part 2: Oceanic salinity, Metrologia, 53, R12–R25, https://doi.org/10.1088/0026-1394/53/1/R12, 2016.
Peters-Lidard, C. D., Hossain, F., Leung, L. R., McDowell, N., Rodell, M., Tapiadore, F. J., Turk, F. J., and Wood, A.: 100 Years of Progress in Hydrology, Am. Meteor. Soc., 59, 25.1–25.51, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0019.1, 2019.
Phillips, C. and Foster, M. J.: Cloudiness, in: State of the Climate in 2022, edited by: Blunden, J., Boyer, T., and Bartow-Gillies, E., B. Am. Meteor. Soc., 104, S60–S61, https://doi.org/10.1175/2023BAMSStateoftheClimate.1, 2023.
Pierrehumbert, R. T.: Principles of Planetary Climate, Cambridge University Press, Cambridge, 2010.
Pinker, R. T., Bentamy, A., Katsaros, K. B., Ma, Y., and Li, C.: Estimates of net heat fluxes over the Atlantic Ocean, J. Geophys. Res.-Oceans, 119, 1–18, https://doi.org/10.1002/2013JC009386, 2014.
Planck, M.: Vorlesungen über die Theorie der Wärmestrahlung, Johann Ambrosius Barth, Leipzig, Germany, 1906.
Pöhlker, M. L., Pöhlker, C., Quaas, J., Mülmenstädt, J., Pozzer, A., Andreae, M. O., Artaxo, P., Block, K., Coe, H., Ervens, B., Gallimore, P., Gaston, C. J., Gunthe, S. S., Henning, S., Herrmann, H., Krüger, O. O., McFiggans, G., Poulain, L., Raj, S. S., Reyes-Villegas, E., Royer, H. M., Walter, D., Wang, Y., and Pöschl, U.: Global organic and inorganic aerosol hygroscopicity and its effect on radiative forcing, Nat. Commun., 14, 6139, https://doi.org/10.1038/s41467-023-41695-8, 2023.
Pollack, H. N., Hurter, S. J., and Johnson, J. R.: Heat Flow from the Earth's Interior: Analysis of the Global Data Set, Rev. Geophys., 30, 267–280, https://doi.org/10.1029/93RG01249, 1993.
Prigogine, I.: Etude Thermodynamique des Phénomènes Irreversibles (These, Bruxelles 1945), Desoer, Liege, Belgium, 1947.
Prigogine, I.: Time, structure, and fluctuations (Nobel Lecture, 8 December 1977), Science, 201, 777–785, https://doi.org/10.1126/science.201.4358.777, 1978.
Randall, D. A.: Atmosphere, Clouds, and Climate, Princeton University Press, Princeton, 2012.
Rapp, D.: Assessing Climate Change. Temperatures, Solar Radiation, and Heat Balance, Springer, Cham, Switzerland, 2014.
Romer, R. H.: Heat is not a noun, Am. J. Phys., 69, 107–109, https://doi.org/10.1119/1.1341254, 2001.
Romps, D. M.: Exact Expression for the Lifting Condensation Level, J. Atmos. Sci., 74, 3891–3900, https://doi.org/10.1175/jas-d-17-0102.1, 2017.
Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.: Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard, Ocean Model., 90, 29–43, https://doi.org/10.1016/j.ocemod.2015.04.002, 2015.
Safarov, J., Millero, F., Feistel, R., Heintz, A., and Hassel, E.: Thermodynamic properties of standard seawater: extensions to high temperatures and pressures, Ocean Sci., 5, 235–246, https://doi.org/10.5194/os-5-235-2009, 2009.
Safarov, J., Berndt, S., Millero, F., Feistel, R., Heintz, A., and Hassel, E.: ( ) properties of seawater: Extensions to high salinities, Deep-Sea Res. Pt. I, 65, 146–156, https://doi.org/10.1016/j.dsr.2012.03.010, 2012.
Safarov, J., Berndt, S., Millero, F. J., Feistel, R., Heintz, A., and Hassel, E. P.: ( ) Properties of seawater at brackish salinities: Extensions to high temperatures and pressures, Deep-Sea Res. Pt. I, 78, 95–101, https://doi.org/10.1016/j.dsr.2013.04.004, 2013.
Sharqawy, M. H., Lienhard V, J. H., and Subair, S. M.: Thermophysical properties of seawater: a review of existing correlations and data, Desalin. Water Treat., 16, 354–380, https://doi.org/10.5004/dwt.2010.1079, 2010.
Schmelzer, J. W. P. and Tropin, T. V.: Glass Transition, Crystallization of Glass-Forming Melts, and Entropy, Entropy, 20, 103, https://doi.org/10.3390/e20020103, 2018.
Schmidt, G.: Climate models can't explain 2023's huge heat anomaly – we could be in uncharted territory, Nature, 627, 467, https://doi.org/10.1038/d41586-024-00816-z, 2024.
Schmidt, H., Wolf, H., and Hassel, E.: A method to measure the density of seawater accurately to the level of 10−6, Metrologia 53, 770, https://doi.org/10.1088/0026-1394/53/2/770, 2016.
Schmidt, H., Seitz, S., Hassel, E., and Wolf, H.: The density–salinity relation of standard seawater, Ocean Sci., 14, 15–40, https://doi.org/10.5194/os-14-15-2018, 2018.
Seitz, S., Spitzer, P., and Brown, R. J. C.: CCQM-P111 study on traceable determination of practical salinity and mass fraction of major seawater components, Accredit. Qual. Assur., 15, 9–17, https://doi.org/10.1007/s00769-009-0578-8, 2010.
Seitz, S., Feistel, R., Wright, D. G., Weinreben, S., Spitzer, P., and De Bièvre, P.: Metrological traceability of oceanographic salinity measurement results, Ocean Sci., 7, 45–62, https://doi.org/10.5194/os-7-45-2011, 2011.
Shirai, K.: Residual Entropy of Glasses and the Third Law Expression, Condensed Matter, arXiv [preprint], https://doi.org/10.48550/arXiv.2207.11421, 2023.
Smythe-Wright, D., Gould, W. J., McDougall, T. J., Sparnocchia, S., and Woodworth, P. L.: IAPSO: tales from the ocean frontier, Hist. Geo Space. Sci., 10, 137–150, https://doi.org/10.5194/hgss-10-137-2019, 2019.
Sommerfeld, A.: Thermodynamik und Statistik, Verlag Harri Deutsch, Thun, 1988.
Spänkuch, D., Hellmuth, O., and Görsdorf, U.: What Is a Cloud? B. Am. Meteor. Soc., 103, E1894–E1929, https://doi.org/10.1175/BAMS-D-21-0032.1, 2022.
Spall, M. A., Heywood, K., Kessler, W., Kunze, E., MacCready, P., Smith, J. A., Speer, K., and Fernau, M. E.: EDITORIAL, J. Phys. Oceanogr., 43, 837, https://doi.org/10.1175/JPO-D-13-082.1, 2013.
Stewart, R. H.: Introduction to Physical Oceanography, Texas A & M University, College Station, TX, USA, https://doi.org/10.1119/1.18716, 2008.
Sun, H., Feistel, R., Koch, M., and Markoe, A.: New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid, Deep-Sea Res. Pt. I, 55, 1304–1310, https://doi.org/10.1016/j.dsr.2008.05.011, 2008.
Sverdrup, H. U.: Das maritime Verdunstungsproblem, Annalen der Hydrographie und maritimen Meteorologie, 64, 41–47, 1936.
Sverdrup, H. U.: On the Evaporation from the Oceans, J. Mar. Res., 1, 2–14, 1937.
Tailleux, R.: Understanding mixing efficiency in the oceans: do the nonlinearities of the equation of state for seawater matter?, Ocean Sci., 5, 271–283, https://doi.org/10.5194/os-5-271-2009, 2009.
Tailleux, R.: Entropy versus APE production: on the buoyancy power input in the oceans energy cycle, Geophys. Res. Lett., 37, L22602, https://doi.org/10.1029/2010GL044962, 2010.
Tailleux, R.: Local available energetics of multicomponent compressible stratified fluids, J. Fluid Mech. Rapids, 842, R1, https://doi.org/10.1017/jfm.2018.196, 2018.
Tailleux, R. and Dubos, T.: A Simple and transparent method for improving the energetics and thermodynamics of seawater approximations: Static energy asymptotics (SEA), Ocean Model., 188, 102339, https://doi.org/10.1016/j.ocemod.2024.102339, 2024.
Takada, A., Conradt, R., and Richet, P.: Residual entropy and structural disorder in glass: A review of history and an attempt to resolve two apparently conflicting views, J. Non-Cryst. Solids, 429, 33–44, https://doi.org/10.1016/j.jnoncrysol.2015.08.019, 2015.
Thol, M., Pohl, S. M., Saric, D., Span, R., and Vrabec, J.: Fundamental equation of state for mixtures of nitrogen, oxygen, and argon based on molecular simulation data, J. Chem. Phys., 160, 174102, https://doi.org/10.1063/5.0188232, 2024.
Tchijov, V., Cruz-León, G., Rodríguez-Romo, S., and Feistel, R.: Thermodynamics of ice at high pressures and low temperatures, J. Phys. Chem. Solids, 69, 1704–1710, https://doi.org/10.1016/j.jpcs.2007.12.018, 2008.
Turner, D. R., Achterberg, E. P., Chen, C.-T. A., Clegg, S. L., Hatje, V., Maldonado, M. T., Sander, S. G., van den Berg, C. M. G., and Wells, M.: Toward a Quality-Controlled and Accessible Pitzer Model for Seawater and Related Systems, Front. Mar. Sci., 3, 139, https://doi.org/10.3389/fmars.2016.00139, 2016.
Uchida, H., Kayukawa, Y., and Maeda, Y.: Ultra high-resolution seawater density sensor based on a refractive index measurement using the spectroscopic interference method, Sci. Rep., 9, 1548, https://doi.org/10.1038/s41598-019-52020-z, 2019.
Uchida, H., Kawano, T., Nakano, T., Wakita, M., Tanaka, T., and Tanihara, S.: An Expanded Batch-to-Batch Correction for IAPSO Standard Seawater, J. Atmos. Ocean. Tech., 37, 1507–1520, https://doi.org/10.1175/JTECH-D-19-0184.1, 2020.
Ulfsbo, A., Abbas, Z., and Turner, D. R.: Activity coefficients of a simplified seawater electrolyte at varying salinity (5–40) and temperature (0 and 25 ° C) using Monte Carlo simulations, Mar. Chem., 171, 78–86, https://doi.org/10.1016/j.marchem.2015.02.006, 2015.
Unesco: Background papers and supporting data on the International Equation of State of Sea water 1980, Unesco Technical Paper Marine Science 38, UNESCO, Paris, https://www.jodc.go.jp/info/ioc_doc/UNESCO_tech/047363eb.pdf (last access: 24 October 2024), 1981.
Valladares, J., Fennel, W., and Morozov, E. G.: Announcement: Replacement of EOS-80 with the International Thermodynamic Equation of Seawater – 2010 (TEOS-10), Deep-Sea Res., 58, 978, https://doi.org/10.1016/j.dsr.2011.07.005. Ocean Modeling 40, 1, https://doi.org/10.1016/S1463-5003(11)00154-5, 2011.
Vömel, H., Evan, S., and Tully, M.: Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha'apai, Science, 377, 1444–1447, https://doi.org/10.1126/science.abq2299, 2022.
Von Rohden, C., Fehres, F., and Rudtsch, S.: Capability of pure water calibrated time-of-flight sensors for the determination of speed of sound in seawater, J. Acoust. Soc. Am., 138, 651–662, https://doi.org/10.1121/1.4926380, 2015.
von Rohden, C., Weinreben, S., and Fehres, F.: The sound speed anomaly of Baltic seawater, Ocean Sci., 12, 275–283, https://doi.org/10.5194/os-12-275-2016, 2016.
von Schuckmann, K., Minière, A., Gues, F., Cuesta-Valero, F. J., Kirchengast, G., Adusumilli, S., Straneo, F., Ablain, M., Allan, R. P., Barker, P. M., Beltrami, H., Blazquez, A., Boyer, T., Cheng, L., Church, J., Desbruyeres, D., Dolman, H., Domingues, C. M., García-García, A., Giglio, D., Gilson, J. E., Gorfer, M., Haimberger, L., Hakuba, M. Z., Hendricks, S., Hosoda, S., Johnson, G. C., Killick, R., King, B., Kolodziejczyk, N., Korosov, A., Krinner, G., Kuusela, M., Landerer, F. W., Langer, M., Lavergne, T., Lawrence, I., Li, Y., Lyman, J., Marti, F., Marzeion, B., Mayer, M., MacDougall, A. H., McDougall, T., Monselesan, D. P., Nitzbon, J., Otosaka, I., Peng, J., Purkey, S., Roemmich, D., Sato, K., Sato, K., Savita, A., Schweiger, A., Shepherd, A., Seneviratne, S. I., Simons, L., Slater, D. A., Slater, T., Steiner, A. K., Suga, T., Szekely, T., Thiery, W., Timmermans, M.-L., Vanderkelen, I., Wjiffels, S. E., Wu, T., and Zemp, M.: Heat stored in the Earth system 1960–2020: where does the energy go?, Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, 2023.
Vose, R. S., Adler, R., Gu, G., Schneider, U., and Yin, X.: Precipitation, in: State of the Climate in 2022, edited by: Blunden, J., Boyer, T., and Bartow-Gillies, E., B. Am. Meteor. Soc., 104, S57, https://doi.org/10.1175/BAMS-D-23-0090.1, 2023.
Wagner, W. and Pruß, A.: The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem. Ref. Data, 31, 387–535, https://doi.org/10.1063/1.1461829, 2002.
Wagner, W., Riethmann, T., Feistel, R., and Harvey, A.H.: New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih, J. Phys. Chem. Ref. Data, 40, 043103, https://doi.org/10.1063/1.3657937, 2011.
Waldmann, C., Fischer, P.F., Seitz, S., Köllner, M., Fischer, J.-G., Bergenthal, M., Brix, H., Weinreben, S., and Huber, R.: A Methodology to Uncertainty Quantification of Essential Ocean Variables, Front. Mar. Sci., 9, 1002153, https://doi.org/10.3389/fmars.2022.1002153, 2022.
Wang, H., Zheng, X.-T., Cai, W., and Zhou, L.: Atmosphere teleconnections from abatement of China aerosol emissions exacerbate Northeast Pacific warm blob events, P. Natl. Acad. Sci. USA, 121, e2313797121, https://doi.org/10.1073/pnas.2313797121, 2024.
Weinreben, S. and Feistel, R.: Anomalous salinity-density relations of seawater in the eastern central Atlantic, Deep-Sea Res. Pt. I, 154, 103160, https://doi.org/10.1016/j.dsr.2019.103160, 2019.
Weller, R. A., Lukas, R., Potemra, J., Plueddemann, A. J., Fairall, C., and Bigorre, S.: Ocean Reference Stations: Long-Term, Open-Ocean Observations of Surface Meteorology and Air–Sea Fluxes Are Essential Benchmarks, Cover, B. Am. Meteor. Soc., 103, E1968–E1990, https://doi.org/10.1175/BAMS-D-21-0084.1, 2022.
Wikipedia: TEOS-10, https://en.wikipedia.org/wiki/TEOS-10 (last access: 24 October 2024), 2024.
Willett, K. M., Simmons, A. J., Bosilovich, M., and Lavers, D. A.: Surface Humidity, in: State of the Climate in 2022, edited by: Blunden, J., Boyer, T., and Bartow-Gillies, E., B. Am. Meteor. Soc., 104, S49–S52, https://doi.org/10.1175/BAMS-D-23-0090.1, 2023.
WMO: Provisional State of the Global Climate 2023, World Meteorological Organization, Geneva, https://wmo.int/publication-series/provisional-state-of-global-climate-2023 (last access: 24 October 2024), 2024.
Wood, R.: Stratocumulus Clouds, Mon. Weather Rev., 140, 2373–2423, https://doi.org/10.1175/MWR-D-11-00121.1, 2012.
Woosley, R. J., Huang, F., and Millero, F. J.: Estimating absolute salinity (SA) in the world's oceans using density and composition, Deep-Sea Res. Pt. I, 93, 14–20, https://doi.org/10.1016/j.dsr.2014.07.009, 2014.
Wright, D. G., Feistel, R., Reissmann, J. H., Miyagawa, K., Jackett, D. R., Wagner, W., Overhoff, U., Guder, C., Feistel, A., and Marion, G. M.: Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines, Ocean Sci., 6, 695–718, https://doi.org/10.5194/os-6-695-2010, 2010.
Wright, D. G., Pawlowicz, R., McDougall, T. J., Feistel, R., and Marion, G. M.: Absolute Salinity, ”Density Salinity” and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10, Ocean Sci., 7, 1–26, https://doi.org/10.5194/os-7-1-2011, 2011.
Wüst, G.: Die Verdunstung auf dem Meere, Veröffentlichungen des Instituts für Meereskunde an der Universität Berlin, Neue Folge, A. Geographisch-naturwissenschaftliche Reihe, 6, 1–95, 1920.
You, X.: Oceans break heat records five years in a row. The heat stored in the world's oceans increased by the greatest margin ever in 2023, Nature, 625, 434–435, https://doi.org/10.1038/d41586-024-00081-0, 2024.
Young, W. R.: Dynamic Enthalpy, Conservative Temperature, and the Seawater Boussinesq Approximation, J. Phys. Oceanogr., 40, 394–400, https://doi.org/10.1175/2009JPO4294.1, 2010.
Yu, L.: Global Variations in Oceanic Evaporation (1958–2005): The Role of the Changing Wind Speed, J. Climate, 20, 5376–5390, https://doi.org/10.1175/2007JCLI1714.1, 2007.
Zhang, W., Furtado, K., Wu, P., Zhou, T., Chadwick, R., Marzin, C., Rostron, J., and Sexton, D.: Increasing precipitation variability on daily-to-multiyear time scales in a warmer world, Sci. Adv., 7, eabf8021, https://doi.org/10.1126/sciadv.abf8021, 2021.
Short summary
Around 90 % global warming occurs in the ocean but is insufficiently understood at the air–sea interface. Thermodynamics of the standard TEOS-10 is an improved tool for the description of heat exchange processes.
Around 90 % global warming occurs in the ocean but is insufficiently understood at the air–sea...
Special issue