Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Integration of microseism, wavemeter buoy, HF radar and hindcast data to analyze the Mediterranean cyclone Helios
Alfio Marco Borzì
CORRESPONDING AUTHOR
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali – Sezione di Scienze della Terra, Università degli Studi di Catania, 95127 Catania, Italy
Vittorio Minio
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, 95125 Catania, Italy
Raphael De Plaen
Seismology-Gravimetry, Royal Observatory of Belgium, 1180 Brussels, Belgium
Thomas Lecocq
Seismology-Gravimetry, Royal Observatory of Belgium, 1180 Brussels, Belgium
Salvatore Alparone
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, 95125 Catania, Italy
Salvatore Aronica
Institute for the study of anthropic impacts and sustainability in the marine environment, National Research Council (IAS-CNR), 00185 Roma, Italy
Flavio Cannavò
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, 95125 Catania, Italy
Fulvio Capodici
Dipartimento di Ingegneria, Università degli Studi di Palermo, Bd. 8, 90128 Palermo, Italy
Giuseppe Ciraolo
Dipartimento di Ingegneria, Università degli Studi di Palermo, Bd. 8, 90128 Palermo, Italy
Sebastiano D'Amico
Department of Geosciences, University of Malta, MSD 2080 Msida, Malta
Danilo Contrafatto
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, 95125 Catania, Italy
Giuseppe Di Grazia
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, 95125 Catania, Italy
Ignazio Fontana
Institute for the study of anthropic impacts and sustainability in the marine environment, National Research Council (IAS-CNR), 00185 Roma, Italy
Giovanni Giacalone
Institute for the study of anthropic impacts and sustainability in the marine environment, National Research Council (IAS-CNR), 00185 Roma, Italy
Graziano Larocca
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, 95125 Catania, Italy
Carlo Lo Re
Italian Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 48, 00144 Rome, Italy
Giorgio Manno
Dipartimento di Ingegneria, Università degli Studi di Palermo, Bd. 8, 90128 Palermo, Italy
Gabriele Nardone
Italian Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 48, 00144 Rome, Italy
Arianna Orasi
Italian Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 48, 00144 Rome, Italy
Marco Picone
Italian Institute for Environmental Protection and Research (ISPRA), via Vitaliano Brancati 48, 00144 Rome, Italy
Giovanni Scicchitano
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
Andrea Cannata
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali – Sezione di Scienze della Terra, Università degli Studi di Catania, 95127 Catania, Italy
Istituto Nazionale di Geofisica e Vulcanologia – Osservatorio Etneo, 95125 Catania, Italy
Related authors
No articles found.
Roberto Sorgente, Federica Pessini, Aldo Francis Drago, Alberto Ribotti, Simona Genovese, Marco Barra, Angelo Perilli, Giovanni Quattrocchi, Andrea Cucco, Ignazio Fontana, Giovanni Giacalone, Gualtiero Basilone, and Angelo Bonanno
EGUsphere, https://doi.org/10.5194/egusphere-2023-2193, https://doi.org/10.5194/egusphere-2023-2193, 2023
Preprint withdrawn
Short summary
Short summary
Presence and interannual variability of water masses on the continental shelf around Sardinia are studied by CTD data from three cruises carried out between 2019 and 2021. For the first time the analyses are identifying the water mass phenomenology on the south-western Sardinia shelf characterized by the presence of the Atlantic Water driven by Algerian eddies. On the southern and eastern shelves, the presence of the Atlantic Water the water column is affected by the South East Sardinia Gyre.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Thierry Camelbeeck, Koen Van Noten, Thomas Lecocq, and Marc Hendrickx
Solid Earth, 13, 469–495, https://doi.org/10.5194/se-13-469-2022, https://doi.org/10.5194/se-13-469-2022, 2022
Short summary
Short summary
Over the 20th century, shallow damaging seismicity occurred in and near the Hainaut coal mining area in Belgium. We provide an overview of earthquake parameters and impacts, combining felt and damage testimonies and instrumental measurements. Shallower earthquakes have a depth and timing compatible with mining activity. The most damaging events occurred deeper than the mines but could still have been triggered by mining-caused crustal changes. Our modelling can be applied to other regions.
Baptiste Frankinet, Thomas Lecocq, and Thierry Camelbeeck
The Cryosphere, 15, 5007–5016, https://doi.org/10.5194/tc-15-5007-2021, https://doi.org/10.5194/tc-15-5007-2021, 2021
Short summary
Short summary
Icequakes are the result of processes occurring within the ice mass or between the ice and its environment. Having a complete catalogue of those icequakes provides a unique view on the ice dynamics. But the instruments recording these events are polluted by different noise sources such as the wind. Using the data from multiple instruments, we found how the wind noise affects the icequake monitoring at the Princess Elisabeth Station in Antarctica.
Xyoli Pérez-Campos, Víctor H. Espíndola, Daniel González-Ávila, Betty Zanolli Fabila, Víctor H. Márquez-Ramírez, Raphael S. M. De Plaen, Juan Carlos Montalvo-Arrieta, and Luis Quintanar
Solid Earth, 12, 1411–1419, https://doi.org/10.5194/se-12-1411-2021, https://doi.org/10.5194/se-12-1411-2021, 2021
Short summary
Short summary
Mexican seismic stations witnessed a reduction in noise level as a result of the COVID-19 lockdown strategies. The largest drop was observed in Hermosillo, which is also the city with the fastest noise-level recovery and a quick increase in confirmed COVID-19 cases. Since 1 June 2020, a traffic-light system has modulated the re-opening of economic activities for each state, which is reflected in noise levels. Noise reduction has allowed the identification and perception of smaller earthquakes.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Kasper van Wijk, Calum J. Chamberlain, Thomas Lecocq, and Koen Van Noten
Solid Earth, 12, 363–373, https://doi.org/10.5194/se-12-363-2021, https://doi.org/10.5194/se-12-363-2021, 2021
Short summary
Short summary
The Auckland Volcanic Field is monitored by a seismic network. The lockdown measures to combat COVID-19 in New Zealand provided an opportunity to evaluate the performance of seismic stations in the network and to search for small(er) local earthquakes, potentially hidden in the noise during "normal" times. Cross-correlation of template events resulted in detection of 30 new events not detected by GeoNet, but there is no evidence of an increase in detections during the quiet period of lockdown.
Andrea Cannata, Flavio Cannavò, Giuseppe Di Grazia, Marco Aliotta, Carmelo Cassisi, Raphael S. M. De Plaen, Stefano Gresta, Thomas Lecocq, Placido Montalto, and Mariangela Sciotto
Solid Earth, 12, 299–317, https://doi.org/10.5194/se-12-299-2021, https://doi.org/10.5194/se-12-299-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic, most countries put in place social interventions, aimed at restricting human mobility, which caused a decrease in the seismic noise, generated by human activities and called anthropogenic seismic noise. In densely populated eastern Sicily, we observed a decrease in the seismic noise amplitude reaching 50 %. We found similarities between the temporal patterns of seismic noise and human mobility, as quantified by mobile-phone-derived data and ship traffic data.
Giorgio Manno, Carlo Lo Re, and Giuseppe Ciraolo
Ocean Sci., 13, 661–671, https://doi.org/10.5194/os-13-661-2017, https://doi.org/10.5194/os-13-661-2017, 2017
Short summary
Short summary
Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence.
Koen Van Noten, Thomas Lecocq, Christophe Sira, Klaus-G. Hinzen, and Thierry Camelbeeck
Solid Earth, 8, 453–477, https://doi.org/10.5194/se-8-453-2017, https://doi.org/10.5194/se-8-453-2017, 2017
Short summary
Short summary
Every person is a seismometer. By using people’s reports submitted online to European seismological agencies, we made new grid cell shaking intensity maps of the 2011 Goch (DE) and 2015 Ramsgate (UK) M4 earthquakes. Both events were widely felt in NW Europe and had non-concentric shaking intensity patterns which are strongly linked to the bedrock depth in the felt area. Storing intensity data in grid cells is a promising tool for seismological agencies to share intensity data anonymously.
Flavio Cannavò, Salvatore Gambino, Biagio Puglisi, and Rosanna Velardita
Nat. Hazards Earth Syst. Sci., 16, 2443–2453, https://doi.org/10.5194/nhess-16-2443-2016, https://doi.org/10.5194/nhess-16-2443-2016, 2016
Short summary
Short summary
In 1984, several seismic events, caused one fatality, 12 injuries and produced serious damage in eastern flank of Mt. Etna. We inverted ground deformation (EDM) data finding that in 1980–84 period, the Fiandaca Fault was affected by a strike slip and normal dip slip of ca. 20.4 and 12.7 cm. This is consistent with field observations (ground ruptures) but it it is notably large compared to displacements estimated by seismicity, then suggesting that most of most of the slip was aseismic.
M. Casaioli, F. Catini, R. Inghilesi, P. Lanucara, P. Malguzzi, S. Mariani, and A. Orasi
Adv. Sci. Res., 11, 11–23, https://doi.org/10.5194/asr-11-11-2014, https://doi.org/10.5194/asr-11-11-2014, 2014
Cited articles
Androulidakis, Y., Makris, C., Mallios, Z., Pytharoulis, I., Baltikas, V., and Krestenitis, Y.: Storm surges during a Medicane in the Ionian Sea, Proceedings of the Marine and Inland Waters Research Symposium, Marine and Inland Waters Research Symposium 16–19 September 2022, Isbn 978-960-9798-31-0, Porto Heli, Greece, 16–19, 2022.
Ardhuin, F. and Roland, A.: Coastal wave reflection, directional spread, and seismoacoustic noise sources, J. Geophys. Res.-Oceans, 117, C11, https://doi.org/10.1029/2011JC007832, 2012.
Ardhuin, F., Gualtieri, L., and Stutzmann, E.: How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s, Geophys. Res. Lett., 42.3, 765–772, https://doi.org/10.1002/2014GL062782, 2015.
Ardhuin, F., Stopa, J. E., Chapron, B., Collard, F., Husson, R., Jensen, R. E., Johannessen, J., Mouche, A., Passaro, M., Quartly, G. D., Swail, V., and Young, I.: Observing sea states, Front. Mar. Sci., 124, https://doi.org/10.3389/fmars.2019.00124, 2019.
Battaglia, J. and Aki, K.: Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes, J. Geophys. Res.-Sol. Ea., 108, B8, https://doi.org/10.1029/2002JB002193, 2003.
Battaglia, J., Aki, K., and Ferrazzini, V.: Location of tremor sources and estimation of lava output using tremor source amplitude on the Piton de la Fournaise volcano: 1. Location of tremor sources, J. Volcanol. Geoth. Res., 147, 268–290, https://doi.org/10.1016/j.jvolgeores.2005.04.005, 2005.
Bencivenga, M., Nardone, G., Ruggiero, F., and Calore, D.: The Italian Data Buoy Network, WTI Trans. Eng. Sci., 74, 321–332, 2012.
Borzì, A. M., Minio, V., Cannavò, F., Cavallaro, A., D'Amico, S., Gauci, A., De Plaen, R., Lecocq, T., Nardone, G., Orasi, A., Picone, M., and Cannata, A.: Monitoring extreme meteo-marine events in the Mediterranean area using the microseism (Medicane Apollo case study), Sci. Rep., 12, 21363, https://doi.org/10.1038/s41598-022-25395-9, 2022.
Bouin, M.-N. and Lebeaupin Brossier, C.: Surface processes in the 7 November 2014 medicane from air–sea coupled high-resolution numerical modelling, Atmos. Chem. Phys., 20, 6861–6881, https://doi.org/10.5194/acp-20-6861-2020, 2020.
Bromirski, P. D., Reinhard, E. F., and Graham, N.: Ocean wave height determined from inland seismometer data: Implications for investigating wave climate changes in the NE Pacific, J. Geophys. Res.-Oceans, 104, 20753–20766, https://doi.org/10.1029/1999JC900156, 1999.
Bromirski, P. D.: Vibrations from the “perfect storm”, Geochem. Geophy. Geosy., 2.7, https://doi.org/10.1029/2000GC000119, 2001.
Bromirski, P. D., Duennebier, F. K., and Stephen, R. A.: Mid-ocean microseisms, Geochem. Geophy. Geosy., 6.4, https://doi.org/10.1029/2004GC000768, 2005.
Cannata, A., Di Grazia, G., Aliotta, M., Cassisi, C., Montalto, P., and Patanè, D.: Monitoring seismo-volcanic and infrasonic signals at volcanoes: Mt. Etna case study, Pure Appl. Geophys., 170, 1751–1771, https://doi.org/10.1007/s00024-012-0634-x, 2013.
Cannata, A., Cannavò, F., Moschella, S., Di Grazia, G., Nardone, G., Orasi, A., Picone, M., Ferla, M., and Gresta, S.: Unravelling the relationship between microseisms and spatial distribution of sea wave height by statistical and machine learning approaches, Remote Sens., 12, 761, https://doi.org/10.3390/rs12050761, 2020.
Carrió, D. S., Homar, V., Jansa, A., Romero, R., and Picornell, M. A.: Tropicalization process of the 7 November 2014 Mediterranean cyclone: Numerical sensitivity study, Atmos. Res., 197, 300–312, https://doi.org/10.1016/j.atmosres.2017.07.018, 2017.
Capodici, F., Cosoli, S., Ciraolo, G., Nasello, C., Maltese, A., Poulain, P. M., Drago, A., Azzopardi, J., and Gauci, A.: Validation of HF radar sea surface currents in the Malta-Sicily Channel, Remote Sens. Environ., 225, 65–76, https://doi.org/10.1016/j.rse.2019.02.026, 2019.
Cavicchia, L., von Storch, H., and Gualdi, S.: Mediterranean tropical-like cyclones in present and future climate, J. Climate, 27.19, 7493–7501, https://doi.org/10.1175/JCLI-D-14-00339.1, 2014.
Comellas Prat, A., Federico, S., Torcasio, R. C., D'Adderio, L. P., Dietrich, S., and Panegrossi, G.: Evaluation of the sensitivity of medicane Ianos to model microphysics and initial conditions using satellite measurements, Remote Sens., 13, 4984, https://doi.org/10.3390/rs13244984, 2021.
Corsini, S., Franco, L., Inghilesi, R., and Piscopia, R.: Atlante delle onde nei mari italiani, Università degli studi di Roma Tre http://opac.apat.it/sebina/repository/catalogazione/immagini/pdf/atlante mari 1_60_2_.pdf, last access: 20 Decembe 2023.
Craig, D., Bean, C. J., Lokmer, I., and Möllhoff, M.: Correlation of wavefield-separated ocean-generated microseisms with North Atlantic source regions, B. Seismol. Soc. Am., 106, 1002–1010, 2016.
Cutroneo, L., Ferretti, G., Barani, S., Scafidi, D., De Leo, F., Besio, G., and Capello, M.: Near real-time monitoring of significant sea wave height through microseism recordings: Analysis of an exceptional sea storm event, J. Mar. Sci. Eng., 9, 319, https://doi.org/10.3390/jmse9030319, 2021.
D'Adderio, L. P., Panegrossi, G., Dafis, S., Rysman, J. F., Casella, D., Sanò, P., Fuccello, A., Miglietta, M M., Helios, and Juliette: Two Falsely Acclaimed Medicanes, Atmos. Res., 2023.
Dafis, S., Rysman, J. F., Claud, C., and Flaounas, E.: Remote sensing of deep convection within a tropical-like cyclone over the Mediterranean Sea, Atmos. Sci. Lett., 19, e823, https://doi.org/10.1002/asl.823, 2018.
Davies R.: Cyclone Helios, Malta and Italy, https://www.efas.eu/en/news/cyclone-helios-malta-and-italy-february-2023 (last access: 13 pril 2023), 2023.
Delibera di Giunta – Regione Siciliana https://www2.regione.sicilia.it/deliberegiunta/file/giunta/allegati/N.099_15.02.2023.pdf, last access: 13 April 2023.
Di Muzio, E., Riemer, M., Fink, A. H., and Maier-Gerber, M.: Assessing the predictability of Medicanes in ECMWF ensemble forecasts using an object-based approach, Q. J. Roy. Meteor. Soc., 145, 1202–1217, https://doi.org/10.1002/qj.3489, 2019.
Emanuel, K.: Increasing destructiveness of tropical cyclones over the past 30 years, Nature, 436, 686–688, https://doi.org/10.1038/nature03906, 2005.
Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Noyelle, R., Pons, F., Yiou, P., and Messori, G.: A climate-change attribution retrospective of some impactful weather extremes of 2021, Weather Clim. Dynam., 3, 1311–1340, https://doi.org/10.5194/wcd-3-1311-2022, 2022.
Ferretti, G., Zunino, A., Scafidi, D., Barani, S., and Spallarossa, D.: On microseisms recorded near the Ligurian coast (Italy) and their relationship with sea wave height, Geophys. J. Int., 194, 524–533, https://doi.org/10.1093/gji/ggt114, 2013.
Ferretti, G., Barani, S., Scafidi, D., Capello, M., Cutroneo, L., Vagge, G., and Besio, G.: Near real-time monitoring of significant sea wave height through microseism recordings: An application in the Ligurian Sea (Italy), Ocean Coast. Manage., 165, 185–194, https://doi.org/10.3390/jmse9030319, 2018.
Flaounas, E., Davolio, S., Raveh-Rubin, S., Pantillon, F., Miglietta, M. M., Gaertner, M. A., Hatzaki, M., Homar, V., Khodayar, S., Korres, G., Kotroni, V., Kushta, J., Reale, M., and Ricard, D.: Mediterranean cyclones: current knowledge and open questions on dynamics, prediction, climatology and impacts, Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, 2022.
GEOFON Data Center: GEOFON Seismic Network, Deutsches GeoForschungsZentrum GFZ, Other/Seismic Network [data set], https://doi.org/10.14470/TR560404, 1993.
Gerstoft, P., Fehler, M. C., and Sabra, K. G.: When katrina hit california, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027270, 2006.
Gualtieri, L., Camargo, S. J., Pascale, S., Pons, F. M., and Ekström, G.: The persistent signature of tropical cyclones in ambient seismic noise, Earth Planet. Sc. Lett., 484, 287–294, https://doi.org/10.1016/j.epsl.2017.12.026, 2018.
Guerin, G., Rivet, D., Van Den Ende, M. P. A., Stutzmann, E., Sladen, A., and Ampuero, J. P.: Quantifying microseismic noise generation from coastal reflection of gravity waves recorded by seafloor DAS, Geophys. J. Int., 231, 394–407, https://doi.org/10.1093/gji/ggac200, 2022.
Johnson, R. W.: An introduction to the bootstrap, Teaching Statistics, 23, 49–54, 2001.
Hart, R. E.: A cyclone phase space derived from thermal wind and thermal asymmetry, Mon. Weather Rev., 131, 585–616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2, 2003.
Hasselmann, K.: A statistical analysis of the generation of microseisms, Rev. Geophys., 1.2, 177–210, 1963.
Haubrich, R. A. and McCamy, K.: Microseisms: Coastal and pelagic sources, Rev. Geophys., 7.3, 539–571, 1969.
Kerkmann, J. and Bachmeier, S.: Development of a tropical storm in the Mediterranean Sea (6–9 November 2011), https://www.eumetsat.int/tropical-storm-develops-mediterranean-sea (last access: 15 February 2023), 2011.
Korres, G., Ravdas, M., and Zacharioudaki, A.: Mediterranean Sea Waves Hindcast (CMEMS MED-Waves), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_HINDCAST_WAV_006_012, 2019.
Korres, G., Ravdas, M., Denaxa, D., and Sotiropoulou, M.: Mediterranean Sea Waves Reanalysis INTERIM (CMEMS Med-Waves, MedWAM3I system) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org.10.25423/CMCC/MEDSEA_MULTIYEAR_WAV_006_012_MEDWAM3I, 2021.
Korres, G., Oikonomou, C., Denaxa, D., and Sotiropoulou, M.: Mediterranean Sea Waves Monthly Climatology (CMS Med-Waves, MedWAM3 system) (Version 1), Copernicus Marine Service (CMS)[data set], https://doi.org.10.25423/CMCC/MEDSEA_MULTIYEAR_WAV_006_012_CLIM, 2023.
Kumagai, H., Placios, P., Ruiz, M., Yepes, H., and Kozono, T.: Ascending seismic source during an explosive eruption at Tungurahua volcano, Ecuador, Geophys. Res. Lett., 38, https://doi.org/10.1029/2010GL045944, 2011.
Lagouvardos, K., Karagiannidis, A., Dafis, S., Kalimeris, A., and Kotroni, V.: Ianos – A hurricane in the Mediterranean, B. Am. Meteor. Soc., 103, E1621–E1636, https://doi.org/10.1175/BAMS-D-20-0274.1, 2022.
Lepore, S. and Grad, M.: Analysis of the primary and secondary microseisms in the wavefield of the ambient noise recorded in northern Poland, Acta Geophys., 66, 915–929, 2018.
Lin, J., Lin, J., and Xu, M.: Microseisms generated by super typhoon Megi in the western Pacific Ocean, J. Geophys. Res.-Oceans, 122, 9518–9529, https://doi.org/10.1002/2017JC013310, 2017.
Lionello, P., Conte, D., and Reale, M.: The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast, Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, 2019.
Long, R. M., Barrick, D., Largier, J. L., and Garfield, N.: Wave observations from central California: SeaSonde systems and in situ wave buoys, J. Sensors, 2011, 728936, https://doi.org/10.1155/2011/728936, 2011.
Longuet-Higgins, M. S.: A theory of the origin of microseisms, Philos. T. Roy. Soc. Lond. A, 243.857, 1–35, 1950.
Lorente, P., Lin-Ye, J., García-León, M., Reyes, E., Fernandes, M., Sotillo, M. G., Espino, M., Ruiz, M. I., Gracia, V., Perez, S., Aznar, R., and Alonso-Martirena, A.: On the performance of high frequency radar in the western mediterranean during the record-breaking storm gloria, Front. Mar. Sci., 8, 645762, https://doi.org/10.3389/fmars.2021.645762, 2021.
MedCyclones [@MedCyclones]: A warm-air seclusion has formed south of #Malta According to GFS the warm core will remain shallow today. Indeed, the absence of deep convection close to the center of the cyclone distinguishes it from #Medicanes. Heavy rainfall and snowfall events will continue to affect #Italy, https://twitter.com/medcyclones/status/1623992335104081921?s=20 (last access: 23 May 2023), X, posted: 11:28, 10 February 2023a.
MedCyclones [@MedCyclones]: A nasty warm conveyor belt has covered southern Italy and is associated with a Mediterranean cyclone with a center of minimum MSLP SE of Malta. @meteonetwork weather stations report very high accumulations of rainfall and snow in Sicily on Thu 9/2, https://twitter.com/medcyclones/status/1623795373423620096?s=20 (last access: 23 May 2023), X, posted: 10:26, 9 February 2023b.
MedCyclones [@MedCyclones]: A nasty warm conveyor belt has covered southern Italy and is associated with a Mediterranean cyclone with a center of minimum MSLP SE of Malta. @meteonetwork weather stations report very high accumulations of rainfall and snow in Sicily on Thu 9/2, https://twitter.com/medcyclones/status/1624143740800536591?s=20 (last access: 23 May 2023), X, posted: 10:26, 9 February 2023c.
Miglietta, M. M., Moscatello, A., Conte, D., Mannarini, G., Lacorata, G., and Rotunno, R.: Numerical analysis of a Mediterranean “hurricane” over south-eastern Italy: Sensitivity experiments to sea surface temperature, Atmos. Res., 101, 412–426, https://doi.org/10.1016/j.atmosres.2011.04.006, 2011.
Miglietta, M. M., Laviola, S., Malvaldi, A., Conte, D., Levizzani, V., and Price, C.: Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modeling and satellite approach, Geophys. Res. Lett., 40, 2400–2405, https://doi.org/10.1002/grl.50432, 2013.
Miglietta, M. M. and Rotunno, R.: Development mechanisms for Mediterranean tropical-like cyclones (medicanes), Q. J. Roy. Meteor. Soc., 145, 1444–1460, https://doi.org/10.1002/qj.3503, 2019.
Minio, V., Borzì, A. M., Saitta, S., Alparone, S., Cannata, A., Ciraolo, G., Contraffatto, D., D’Amico, S., Di Grazia, G., Larocca, G., and Cannavò, F.: Towards a monitoring system of the sea state based on microseism and machine learning, Environ. Model. Softw., 167, 105781, 2023.
Moschella, S., Cannata, A., Cannavò, F., Di Grazia, G., Nardone, G., Orasi, A., Picone, M., Ferla, M., and Gresta, S.: Insights into microseism sources by array and machine learning techniques: Ionian and Tyrrhenian sea case of study, Front. Earth Sci., 8, 114, https://doi.org/10.3389/feart.2020.00114, 2020.
Nastos, P. T., Papadimou, K. K., and Matsangouras, I. T.: Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns, Atmos. Res., 208, 156–166, https://doi.org/10.1016/j.atmosres.2017.10.023, 2018.
Oliver, J. and Page, R.: Concurrent storms of long and ultralong period microseisms, B. Seismol. Soc. Am., 53, 15–26, 1963.
Orasi, A., Picone, M., Drago, A., Capodici, F., Gauci, A., Nardone, G., Inghilesi, R., Azzopardi, J., Galea, A., Ciraolo, G., Musilim, J. S., and Alonso-Martinera, A.: HF radar for wind waves measurements in the Malta-Sicily Channel, Measurement, 128, 446–454, https://doi.org/10.1016/j.measurement.2018.06.060, 2018.
Pravia-Sarabia, E., Gómez-Navarro, J. J., Jiménez-Guerrero, P., and Montávez, J. P.: Influence of sea salt aerosols on the development of Mediterranean tropical-like cyclones, Atmos. Chem. Phys., 21, 13353–13368, https://doi.org/10.5194/acp-21-13353-2021, 2021.
Portmann, R., González-Alemán, J. J., Sprenger, M., and Wernli, H.: How an uncertain short-wave perturbation on the North Atlantic wave guide affects the forecast of an intense Mediterranean cyclone (Medicane Zorbas), Weather Clim. Dynam., 1, 597–615, https://doi.org/10.5194/wcd-1-597-2020, 2020.
Reguero, B. G., Losada, I. J., and Méndez, F. J.: A recent increase in global wave power as a consequence of oceanic warming, Nat. Commun., 10, 205, https://doi.org/10.1038/s41467-018-08066-0, 2019.
Retailleau, L. and Gualtieri, L.: Toward high-resolution period-dependent seismic monitoring of tropical cyclones, Geophys. Res. Lett., 46, 1329–1337, https://doi.org/10.1029/2018GL080785, 2019.
Retailleau, L. and Gualtieri, L.: Multi-phase seismic source imprint of tropical cyclones, Nat. Commun., 12, 2064, https://doi.org/10.1038/s41467-021-22231-y, 2021.
Rost, S. and Thomas, C.: Array seismology: Methods and applications, Rev. Ceophys., 40, 2–1, https://doi.org/10.1029/2000RG000100, 2002.
Rumora, I., Jukić, O., Filić, M., and Filjar, R.: A study of GPS positioning error associated with tropospheric delay during Numa Mediterranean cyclone, Int. J. Transp. Traff. Eng., 8, 282–293, https://doi.org/10.7708/ijtte.2018.8(3).03, 2018.
Sarpkaya, T. and Isaacson, M.: Mechanics of wave forces on offshore structures Van Nostrand Reinhold Company, New York, New York, https://doi.org/10.1115/1.3162189, 1981.
Saviano, S., Kalampokis, A., Zambianchi, E., and Uttieri, M.: A year-long assessment of wave measurements retrieved from an HF radar network in the Gulf of Naples (Tyrrhenian Sea, Western Mediterranean Sea), J. Oper. Oceanogr., 12, 1–15, https://doi.org/10.1080/1755876X.2019.1565853, 2019.
Scardino, G., Scicchitano, G., Chirivì, M., Costa, P. J. M., Luparelli, A., and Mastronuzzi, G.: Convolutional Neural Network and Optical Flow for the Assessment ofWave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring, Remote Sens., 14, 2994, https://doi.org/10.3390/rs14132994, 2022.
Scicchitano, G., Scardino, G., Monaco, C., Piscitelli, A., Milella, M., De Giosa, F., and Mastronuzzi, G.: Comparing impact effects of common storms and Medicanes along the coast of south-eastern Sicily, Mar. Geol., 439, 106556, https://doi.org/10.1016/j.margeo.2021.106556, 2021.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and future scenarios for the Mediterranean Sea, Oceanologia, 56, 411–443, https://doi.org/10.5697/oc.56-3.411, 2014.
Soubestre, J., Shapiro, N. M., Seydoux, L., De Rosny, J., Droznin, D. V., Droznina, S. Y., Senyukov, S. L., and Gordeev, E. I.: Network-based detection and classification of seismovolcanic tremors: Example from the Klyuchevskoy volcanic group in Kamchatka, J. Geophys. Res.-Sol. Ea., 123, 564–582, https://doi.org/10.1002/2017JB014726, 2018.
Sun, T., Xue, M., Le, K. P., Zhang, Y., and Xu, H.: Signatures of ocean storms on seismic records in South China Sea and East China Sea, Mar. Geophys. Res., 34, 431–448, https://doi.org/10.1007/s11001-013-9204-6, 2013.
Tous, M., and Romero, R.: Meteorological environments associated with medicane development, Int. J. Climatol., 33, 1–14, https://doi.org/10.1002/joc.3428, 2013.
Trnkoczy, A., Bormann, P., Hanka, W., Holcomb, L. G., and Nigbor, R. L.: Site selection, preparation and installation of seismic stations., in: New Manual of Seismological Observatory Practice 2 (NMSOP-2), 1–139, Deutsches GeoForschungsZentrum GFZ, 2012.
Varlas, G., Vervatis, V., Spyrou, C., Papadopoulou, E., Papadopoulos, A., and Katsafados, P.: Investigating the impact of atmosphere–wave–ocean interactions on a Mediterranean tropical-like cyclone, Ocean Model., 153, 101675, https://doi.org/10.1016/j.ocemod.2020.101675, 2020.
Welch, P. D.: The use of Fast Fourier Transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE T. Audio Electroacoust., 15, 70–73, https://doi.org/10.1109/TAU.1967.1161901, 1967.
Zhang, J., Gerstoft, P., and Bromirski, P. D.: Pelagic and coastal sources of P-wave microseisms: Generation under tropical cyclones, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL044288, 2010.
Zimbo, F., Ingemi, D., and Guidi, G.: The tropical-like cyclone “ianos” in September 2020, Meteorology, 1, 29–44, https://doi.org/10.3390/meteorology1010004, 2022.
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its...