Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-793-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-793-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
DUACS DT2021 reprocessed altimetry improves sea level retrieval in the coastal band of the European seas
Antonio Sánchez-Román
CORRESPONDING AUTHOR
Departamento de Oceanografía y Cambio Global, Instituto Mediterráneo de Estudios Avanzados, C/Miquel
Marqués, 21, 07190 Esporles, Spain
M. Isabelle Pujol
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10
rue Hermès, 31520 Ramonville-Saint-Agne, France
Yannice Faugère
Collecte Localisation Satellites, Parc Technologique du Canal, 8–10
rue Hermès, 31520 Ramonville-Saint-Agne, France
Ananda Pascual
Departamento de Oceanografía y Cambio Global, Instituto Mediterráneo de Estudios Avanzados, C/Miquel
Marqués, 21, 07190 Esporles, Spain
Related authors
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Pierre-Yves Le Traon, Gérald Dibarboure, Jean-Michel Lellouche, Marie-Isabelle Pujol, Mounir Benkiran, Marie Drevillon, Yann Drillet, Yannice Faugère, and Elisabeth Remy
Ocean Sci., 21, 1329–1347, https://doi.org/10.5194/os-21-1329-2025, https://doi.org/10.5194/os-21-1329-2025, 2025
Short summary
Short summary
By providing all weather, global, and real-time observations of sea level, a key variable to constrain ocean analysis and forecasting systems, satellite altimetry has had a profound impact on the development of operational oceanography. This paper provides an overview of the development and evolution of satellite altimetry and operational oceanography over the past 20 years from the launch of Jason-1 in 2001 to the launch of SWOT (Surface Water and Ocean Topography) in 2022.
Gerald Dibarboure, Cécile Anadon, Frédéric Briol, Emeline Cadier, Robin Chevrier, Antoine Delepoulle, Yannice Faugère, Alice Laloue, Rosemary Morrow, Nicolas Picot, Pierre Prandi, Marie-Isabelle Pujol, Matthias Raynal, Anaelle Tréboutte, and Clément Ubelmann
Ocean Sci., 21, 283–323, https://doi.org/10.5194/os-21-283-2025, https://doi.org/10.5194/os-21-283-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission delivers unprecedented swath-altimetry products. In this paper, we describe how we extended the Level-3 algorithms to handle SWOT’s unique swath-altimeter data. We also illustrate and discuss the benefits, relevance, and limitations of Level-3 swath-altimeter products for various research domains.
Florence Birol, François Bignalet-Cazalet, Mathilde Cancet, Jean-Alexis Daguze, Wassim Fkaier, Ergane Fouchet, Fabien Léger, Claire Maraldi, Fernando Niño, Marie-Isabelle Pujol, and Ngan Tran
Ocean Sci., 21, 133–150, https://doi.org/10.5194/os-21-133-2025, https://doi.org/10.5194/os-21-133-2025, 2025
Short summary
Short summary
We take advantage of the availability of several algorithms for most of the terms/corrections used to calculate altimetry sea level data to quantify and analyze the sources of uncertainty associated with the approach to the coast. The results highlight their hierarchy. Tidal corrections and mean sea surface height contribute to coastal sea level data uncertainties. Improving the retracking algorithm is today the main factor to bring accurate altimetry sea level data closer to the shore.
Blanca Fernández-Álvarez, Bàrbara Barceló-Llull, and Ananda Pascual
EGUsphere, https://doi.org/10.5194/egusphere-2024-4065, https://doi.org/10.5194/egusphere-2024-4065, 2025
Short summary
Short summary
Marine heatwaves (MHWs) standard detection method uses a fixed baseline, showing rising MHW frequency and intensity due to global warming, eventually reaching saturation. To address this, alternative approaches separate long-term warming from extreme events. Here we compare two in the Balearic Sea: moving baseline and detrending data. We found a warming trend of 0.036 °C/year, with major MHWs in 2003 and 2022 identified by all methods. Only the fixed baseline shows rising MHW frequency.
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
Ocean Sci., 21, 63–80, https://doi.org/10.5194/os-21-63-2025, https://doi.org/10.5194/os-21-63-2025, 2025
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Alice Laloue, Malek Ghantous, Yannice Faugère, Alice Dalphinet, and Lotfi Aouf
State Planet, 4-osr8, 6, https://doi.org/10.5194/sp-4-osr8-6-2024, https://doi.org/10.5194/sp-4-osr8-6-2024, 2024
Short summary
Short summary
Satellite altimetry shows that daily mean significant wave heights (SWHs) and extreme SWHs have increased in the Southern Ocean, the South Atlantic, and the southern Indian Ocean over the last 2 decades. In winter in the North Atlantic, SWH has increased north of 45°N and decreased south of 45°N. SWHs likely to be exceeded every 100 years have also increased in the North Atlantic and the eastern tropical Pacific. However, this study also revealed the need for longer and more consistent series.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Oscar Vergara, Rosemary Morrow, Marie-Isabelle Pujol, Gérald Dibarboure, and Clément Ubelmann
Ocean Sci., 19, 363–379, https://doi.org/10.5194/os-19-363-2023, https://doi.org/10.5194/os-19-363-2023, 2023
Short summary
Short summary
Recent advances allow us to observe the ocean from space with increasingly higher detail, challenging our knowledge of the ocean's surface height signature. We use a statistical approach to determine the spatial scale at which the sea surface height signal is no longer dominated by geostrophic turbulence but in turn becomes dominated by wave-type motions. This information helps us to better use the data provided by ocean-observing satellites and to gain knowledge on climate-driving processes.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Marie-Isabelle Pujol, Stéphanie Dupuy, Oscar Vergara, Antonio Sánchez-Román, Yannice Faugère, Pierre Prandi, Mei-Ling Dabat, Quentin Dagneaux, Marine Lievin, Emeline Cadier, Gérald Dibarboure, and Nicolas Picot
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-292, https://doi.org/10.5194/essd-2022-292, 2022
Manuscript not accepted for further review
Short summary
Short summary
An altimeter sea level along-track level-3 product with a 5 Hz (~1.2 km) sampling is proposed. It takes advantage of recent advances in radar altimeter processing, and improvements made to different stages of the processing chain. Compared to the conventional 1 Hz (~7 km) product, it significantly improves the observability of the short wavelength signal in open ocean and near coast areas (> 5 km). It also contributes to improving high resolution numerical model outputs via data assimilation.
Clément Ubelmann, Loren Carrere, Chloé Durand, Gérald Dibarboure, Yannice Faugère, Maxime Ballarotta, Frédéric Briol, and Florent Lyard
Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, https://doi.org/10.5194/os-18-469-2022, 2022
Short summary
Short summary
The signature of internal tides has become an important component for high-resolution altimetry over oceans. Several studies have proposed some solutions to resolve part of these internal tides based on the altimetry record. Following these studies, we propose here a new inversion approach aimed to mitigate aliasing with other dynamics. After a description of the methodology, the solution for the main tidal components has been successfully validated against independent observations.
Cori Pegliasco, Antoine Delepoulle, Evan Mason, Rosemary Morrow, Yannice Faugère, and Gérald Dibarboure
Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, https://doi.org/10.5194/essd-14-1087-2022, 2022
Short summary
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Pierre Prandi, Jean-Christophe Poisson, Yannice Faugère, Amandine Guillot, and Gérald Dibarboure
Earth Syst. Sci. Data, 13, 5469–5482, https://doi.org/10.5194/essd-13-5469-2021, https://doi.org/10.5194/essd-13-5469-2021, 2021
Short summary
Short summary
We investigate how mapping sea level in the Arctic Ocean can benefit from combining data from three satellite radar altimeters: CryoSat-2, Sentinel-3A and SARAL/AltiKa. A dedicated processing for SARAL/AltiKa provides a baseline for the cross-referencing of CryoSat-2 and Sentinel-3A before mapping. We show that by combining measurements coming from three missions, we are able to increase the resolution of gridded sea level fields in the ice-covered Arctic Ocean.
Cited articles
Ablain, M. and Legeais, J. F.: SLOOP Tache 2.4: Amélioration du filtrage
de la correction ionospherique bifréquence, 2010.
Agha, K. A., Bagherbandi, M., and Horemuz, M.: Multidecadal Sea Level
Variability in the Baltic Sea and Its Impact on Acceleration Estimations,
Front. Mar. Sci., 8, 702512, https://doi.org/10.3389/fmars.2021.702512, 2021.
Andersen, O., Stenseng, L., Piccioni, G., and Knudsen, P.: The DTU15 MSS (Mean
Sea Surface) and DTU15LAT (Lowest Astronomical Tide) reference surface, ESA
Living Planet Symposium 2016 – Prague, Czech Republic, Solid Earth & Near Earth Posters, Prague, 1579, http://lps16.esa.int/page_session189.php#1579p (last access: 11 April 2023), 2016.
Aulicino, G., Cotroneo, Y., Ruiz, A., Sánchez Román, A. J., Pascual,
A., Fusco, G., Tintoré, J., and Budillon, G.: Monitoring the Algerian Basin
through glider observations, satellite altimetry and numerical simulations
along a SARAL/AltiKa track, J. Mar. Syst., 179, 55–71, 2018.
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F.,
Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure,
G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci.,
15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019.
Barceló-Llull, B., Pascual, A., Sánchez-Román, A., Cutolo, E., d'Ovidio, F., Fifani,
G., Ser-Giacomi, E., Ruiz, S., Mason, E., Cyr, F., Doglioli, A., Mourre, B., Allen, J. T.,
Alou-Font, E., Casas, B., Díaz-Barroso, L., Dumas, F., Gómez-Navarro, L., and Muñoz,
C.: Fine-Scale Ocean Currents Derived From in situ Observations in
Anticipation of the Upcoming SWOT Altimetric Mission, Front. Mar. Sci.,
8, 679844, https://doi.org/10.3389/fmars.2021.679844, 2021.
Birol, F., Fuller, N., Lyard, F., Cancet, M., Niño, F., Delebecque, C.,
Fleury, S., Toublanc, F., Melet, A., Saraceno, M., and Léger, F.: Coastal
applications from nadir altimetry: Example of the X-TRACK regional products,
Adv. Space Res., 59, 936–953, 2017.
Birol, F., Léger, F., Passaro, M., Cazenave, A., Niño, F., Calafat, F. M.,
Shaw, A., Legeais, J.-F., Gouzenes, Y., Schwatke, C., and Benveniste, J.: The
X-TRACK/ALES multi-mission processing system: New advances in altimetry
towards the coast, Adv. Space Res., 67, 2398–2415, 2021.
Carrère, L. and Lyard, F.: Modeling the barotropic response of the
global ocean to atmospheric wind and pressure forcing – comparisons with
observations, Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473, 2003.
Carrere, L., Lyard, F., Allain, D., Cancet, M., Picot, N., Guillot, A.,
Faugère, Y., Dupuy, S., and Baghi, R.: Final version of the FES2014 global
ocean tidal model, which includes a new loading tide solution, OSTST, La
Rochelle, France,
https://ostst.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/Poster_FES2014b_OSTST_2016.pdf (last access: 11 April 2023), 2016.
Cartwright, D. E. and Tayler, R. J.: New Computations of the Tide-generating
Potential, Geophys. J. Int., 23, 45–73,
https://doi.org/10.1111/j.1365-246X.1971.tb01803.x, 1971.
Cartwright, D. E. and Edden, A. C.: Corrected Tables of Tidal Harmonics,
Geophys. J. Int., 33, 253–264,
https://doi.org/10.1111/j.1365-246X.1973.tb03420.x, 1973.
Cipollini, P., Calafat, F.-M., Jevrejeva, S., Melet, A., and Prandi, P.:
Monitoring sea level in the coastal zone with satellite altimetry and tide
gauges, Surv. Geophys., 38, 33–57,
https://doi.org/10.1007/s10712-016-9392-0, 2017.
Codiga, D. L.: Unified Tidal Analysis and Prediction Using the UTide Matlab
Functions, Technical Report 2011-01, Graduate School of Oceanography,
University of Rhode Island, Narragansett, RI, 59 pp., ftp://www.po.gso.uri.edu/pub/downloads/codiga/pubs/2011Codiga-UTide-Report.pdf (last access: 10 June 2022),
2011.
Copernicus Climate Change Service, Climate Data Store: Sea level gridded data from satellite observations for the global ocean from 1993 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.4c328c78, 2018.
Desai, S., Wahr, J., and Beckley, B.: Revisiting the pole tide for and from
satellite altimetry, J. Geodesy, 89, 1233–1243,
https://doi.org/10.1007/s00190-015-0848-7, 2015.
Dibarboure, G., Pujol, M.-I., Briol, F., Le Traon, P.-Y., Larni- col, G.,
Picot, N., Mertz, F., Escudier, P., Ablain, M., and Dufau, C.: Jason-2 in
DUACS: first tandem results and impact on processing and products, OSTM Jason-2 Calibration/Validation Special Edition – Part 2, Mar.
Geod., 34,
214–241, https://doi.org/10.1080/01490419.2011.584826, 2011.
Dorandeu, J. and Le Traon, P.-Y.: Effects of global mean atmospheric
pressure variations on mean sea level changes from Topex/Poseidon, J. Atmos.
Ocean. Technol., 16, 1279–1283, 1999.
Efron, B. and Tibshirani, R.: Bootstrap methods for standart errors,
condifence intervals, and other measures of statistical accuracy,
Stat. Sci., 1, 54–77, 1986.
EU Copernicus Marine Service Product: Global Ocean In Situ Near Real Time Observartions, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00036, 2022.
EU Copernicus Marine Service Product: Global Ocean Gridded L4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, Mercator Ocean International [data set], https://doi.org/10.48670/moi-00148, 2023.
Faugère, Y., Taburet, G., Ballarotta, M., Pujol, I., Legeais, J. F., Maillard, G., Durand, C., Dagneau, Q., Lievin, M., Sanchez Roman, A., and Dibarboure, G.: DUACS DT2021: 28 years of reprocessed sea level altimetry products, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7479, https://doi.org/10.5194/egusphere-egu22-7479, 2022.
Fernandes, M. J., Lázaro, C., Ablain, M., and Pires, N.: Improved wet path
delays for all ESA and reference altimetric missions, Remote Sens.
Environ., 169, 50–74, https://doi.org/10.1016/j.rse.2015.07.023, 2015.
Fernandes, M. J. and Laìzaro, C.: GPD+ Wet Tropospheric Corrections for
CryoSat-2 and GFO Altimetry Missions, Remote Sens., 8, 851,
https://doi.org/10.3390/rs8100851, 2016.
Gaspar, P. and Ogor, F.: Estimation and analysis of the sea state bias of
the ERS-1 altimeter, technical report of IFREMER contract 94/2.426016/C,
1994.
Greìgoire, M.: EO4SIBS Consortium (ESA Project). Earth Observation Products
for Science and Innovation in the Black Sea, Presented at EGU21, Gather
Online, https://meetingorganizer.copernicus.org/EGU21/EGU21-10237.html (last access:
12 April 2023) 2021.
Heslop, E. E., Saìnchez-Romaìn, A., Pascual, A., Rodriìguez, D., Reeve,
K. A., Faugère, Y., and Raynal, M.: Sentinel-3A views ocean variability more
accurately at finer resolution, Geophy. Res. Lett., 44, 1–8, 2017.
Iijima, B. A., Harris, I. L., Ho, C. M., Lindqwister, U. J., Mannucci, A.
J., Pi, X., Reyes, M. J., Sparks, L. C., and Wilson, B. D.: Automated daily
process for global ionospheric total electron content maps and satellite
ocean altimeter ionospheric calibration based on Global Positioning System
data, J. Atmos. Sol.-Terr. Phys., 61, 1205–1218,
https://doi.org/10.1016/S1364- 6826(99)00067-X, 1999.
International Altimetry Team: Altimetry for the future: Building on 25 years
of progress, Adv. Space Res., 68, 319–363,
https://doi.org/10.1016/j.asr.2021.01.022, 2021.
Laíz, I., Goìmez-Enri, J., Tejedor, B., Aboitiz, A., and Villares, P.:
Seasonal sea level varia- tions in the gulf of Cadiz continental shelf from
in-situ measurements and satellite altimetry, Cont. Shelf Res., 53, 77–88,
https://doi.org/10.1016/j.csr.2012.12.008, 2013.
Laíz, I., Tejedor, B., Gómez-Enri, J., Aboitiz, A., and Villares, P.:
Contributions to the sea level seasonal cycle within the Gulf of Cadiz
(Southwestern Iberian Peninsula), J. Mar. Syst., 159, 55–66, https://doi.org/10.1016/j.jmarsys.2016.03.006, 2016.
LEGOS/CNRS/CLS: Dynamic Atmospheric Correction, CNES [data set], https://doi.org/10.24400/527896/A01-2022.001, 1992.
Marcos, M., Pascual, A., and Pujol, I.: Improved satellite altimeter mapped
sea level anomalies in the Mediterranean Sea: A comparison with tide gauges,
Adv. Space Res., 56, 596–604, https://doi.org/10.1016/j.asr.2015.04.027, 2015.
Mercier, F., Rosmorduc, V., Carrere, L., and Thibaut, P.: Coastal and Hydrology
Altimetry Product (PISTACH) Handbook, https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_Pistach.pdf (last access: 12 April 2023), 2010.
Mertz, F., Mercier, F., Labroue, S., Tran, N., and Dorandeu, J.: ERS-2 OPR
data quality assessment, Long-term monitoring – particular investigation,
2005.
Morrow, R., Fu, L. L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d'Ovidio, F.,
Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P.-Y., Pascual, A., Ponte, A., Qiu, B.,
Rascle, N., Ubelmann, C., Wang, J., and Zaron, E.: Global observations of fine-scale
ocean surface topography with the surface water and ocean topography (SWOT)
mission, Front. Mar. Sci., 6, 232,
https://doi.org/10.3389/fmars.2019.0023, 2019.
Morrow, R., Fu, L. L., Rio, M. H., Ray, R., Prandi, P., Le Traon, P.-Y., Benveniste, J.: Ocean Circulation from Space, Surv,
Geophys., https://doi.org/10.1007/s10712-023-09778-9, 2023.
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021.
Pascual, A., Faugère, Y., Larnicol, G., and Le Traon, P.-Y.: Improved
description of the ocean mesoscale variability by combining four satellite
altimeters, Geophys. Res. Lett., 33, L02611, https://doi.org/10.1029/2005GL024633, 2006.
Pascual, A., Marcos, M., and Gomis, D.: Comparing the sea level response to
pressure and wind forcing of two barotropic models: validation with tide
gauge and altimetry data, J. Geophys. Res., 113, C07011, https://doi.org/10.1029/2007jc004459, 2008.
Pascual, A., Boone, C., Larnicol, G., and Le Traon, P. Y.: On the quality of
real-time altimeter gridded fields: comparison with in situ data, J. Atmos.
Ocean. Technol., 26, 556–569,
https://doi.org/10.1175/2008JTECHO556.1, 2009.
Pascual, A., Lana, A., Troupin, C., Ruiz, S., Faugère, Y., Escudier R., and
Tintoré, J.: Assessing SARAL/AltiKa Data in the Coastal Zone: Comparisons
with HF Radar Observations, Mar. Geodesy, 38, 260–276,
https://doi.org/10.1080/01490419.2015.1019656, 2015.
Peltier, W. R.: Postglacial Variations in the Level of the Sea: Implications
for Climate Dynamics and Solid-Earth Geophysics, Rev. Geophys.,
36, 603–689, 1998.
Peltier, W. R.: Global Glacial Isostasy and the Surface of the Ice-Age Earth:
The ICE-5G(VM2) model and GRACE, Ann. Rev. Earth. Planet. Sci.,
32, 111–149, 2004.
PSMSL: Permanent Service for Mean Sea Level: “Tide Gauge Data”, http://www.psmsl.org/data/obtaining/ (last access: 4 July 2022), 2016.
PUGS: PUGS document of the sea level products version vDT2021
D3.SL.1-v2.0_PUGS_of_v2DT2021_SeaLevel_ products_v1.1, https://datastore.copernicus-climate.eu (last access: 4 July 2022) 2021.
Pujol, M., Schaeffer, P., Faugère, Y., Raynal, M., Dibarboure, G., and
Picot, N.: Gauging the Improvement of Recent Mean Sea Surface Models: A New
Approach for Identifying and Quantifying Their Errors, J. Geophys. Res.-Ocean., 123, 5889–5911, https://doi.org/10.1029/2017JC013503,
2018
Pujol, M.-I., Dupuy, S., Vergara, O., Sánchez Román, A., Faugère, Y.,
Prandi, P., Dabat, M.-L., Dagneaux, Q., Lievin, M., Cadier, E., Dibarboure, G., and Picot, N.:
Refining the Resolution of DUACS Along-Track Level-3 Sea Level Altimetry
Products, Remote Sens., 15, 1–30, https://doi.org/10.3390/rs15030793, 2023.
CMEMS-SL-QUID: QUID document for Sea Level TAC DUACS products CMEMS-SL-QUID-008-032-068, https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-068.pdf
(last access: 4 July 2022)
2022.
Ries, J. C. and Desai, S.: Conventional model update for rotational
deformation, Vol. 2017, 2017.
Roblou, L., Lamouroux, J., Bouffard, J., Lyard, F., Le Hénaff, M., Lombard,
A., Marsaleix, P., De Mey, P., and Birol, F.: Post-processing altimeter data
towards coastal applications and integration into coastal models, in: Coastal
Altimetry, edited by: Vignudelli, S., Kostianoy, A., Cipollini, P., and Benveniste, J.,
Springer, Berlin/Heidelberg, Germany, 217–246, 2011.
Sánchez-Román, A., Ruiz, S., Pascual, A., Mourre, B., and Guinehut,
S.: On the mesoscale monitoring capability of Argo floats in the
Mediterranean Sea, Ocean Sci., 13, 223–234,
https://doi.org/10.5194/os-13-223-2017, 2017.
Sánchez-Román, A., Pascual, A., Pujol, M.-I., Taburet, G., Marcos,
M., and Faugère, Y.: Assessment of DUACS Sentinel-3A Altimetry Data in the
Coastal Band of the European Seas: Comparison with Tide Gauge
Measurements, Remote Sens., 12, 3970, https://doi.org/10.3390/rs12233970, 2020.
Sandwell, D., Schaeffer, P., Dibarboure, G., and Picot, N.: High Resolution Mean Sea
Surface for SWOT, https://spark.adobe.com/page/MkjujdFYVbHsZ/ (last access: 11 April 2023),
2017.
Scharroo, R. and Smith, W. H. F.: A global positioning system–based
climatology for the total electron content in the ionosphere, 115,
https://doi.org/10.1029/2009JA014719, 2010.
Taibi, H. and Haddad, M.: Estimating trends of the Mediterranean Sea level
changes from tide gauge and satellite altimetry data (1993–2015), J. Ocean.
Limnol., 37, 1176–1185,
https://doi.org/10.1007/s00343-019-8164-3, 2019.
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F., Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, 2019.
Tran, N., Labroue, S., Philipps, S., Bronner, E., and Picot, N.: Overview
and Update of the Sea State Bias Corrections for the Jason-2, Jason-1 and
TOPEX Missions, Mar. Geod., 33, 348–362, https://doi.org/10.1080/01490419.2010.487788,
2010.
Tran, N., Philipps, S., Poisson, J.-C., Urien, S., Bronner, E., and Picot,
N.: Impact of GDR_D standards on SSB corrections, OSTST,
Venice, Italie,
http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/02_friday_28/01_instr_processing_I/01_IP1_Tran.pdf (last access: 11 April 2023), 2012.
Tran, N.: Rapport Annuel d'activité SALP – Activité SSB, 2015.
Tran, N.: Envisat ESL Phase-F: Tuning activities for Envisat reprocessing
baseline v3.0 (Wind, SSB, Rain and Ice), 2017.
Tran, N.: ESL Cryosat-2: Tuning activities: wind speed and SSB, 2018.
Tran, N.: Rapport Annuel d'activité SALP - Activité SSB, 2019.
Vignudelli, S., Birol, F., Benveniste, J., Fu, L.-L., Picot, N., Raynal, M.,
and Roinard, H.: Satellite Altimetry Measurements of Sea Level in the
Coastal Zone, Surv. Geophys., 40, 1319–1349,
https://doi.org/10.1007/s10712-019-09569-1, 2019.
Von Schuckmann, K., Le Traon, P.-Y., Smith, N., et al.:
Copernicus Marine Service Ocean State Report, J. Oper. Ocean., 11, S1–S142,
2018.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key
to understanding sea level change and variability, Rev. Geophys., 54, 64–92,
https://doi.org/10.1002/2015RG000502, 2016.
Zaron, E. D.: Baroclinic Tidal Sea Level from Exact-Repeat Mission
Altimetry, J. Phys. Oceanogr., 49, 193–210,
https://doi.org/10.1175/JPO-D-18-0127.1, 2019.
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry...