Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-649-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-649-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-model analysis of the Adriatic dense-water dynamics
Institute of Oceanography and Fisheries, Šetalište I.
Meštrovića 63, 21000 Split, Croatia
Cléa Denamiel
Ruđer Bošković Institute, Division for Marine and
Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Ivica Janeković
Ocean Graduate School and the UWA Oceans Institute, The University of
Western Australia, Crawley, WA, Australia
Ivica Vilibić
Ruđer Bošković Institute, Division for Marine and
Environmental Research, Bijenička cesta 54, 10000 Zagreb, Croatia
Related authors
Clea Lumina Denamiel, Iva Tojčić, and Petra Pranić
EGUsphere, https://doi.org/10.5194/egusphere-2024-2524, https://doi.org/10.5194/egusphere-2024-2524, 2024
Short summary
Short summary
We use a high-resolution atmosphere-ocean model to project Adriatic dense water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranic, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibic, and Maria Letizia Vitelletti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1468, https://doi.org/10.5194/egusphere-2024-1468, 2024
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (viz., use a of multiple simulations) allowing to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a ground for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Clea Lumina Denamiel, Iva Tojčić, and Petra Pranić
EGUsphere, https://doi.org/10.5194/egusphere-2024-2524, https://doi.org/10.5194/egusphere-2024-2524, 2024
Short summary
Short summary
We use a high-resolution atmosphere-ocean model to project Adriatic dense water dynamics under extreme warming. We find that a 15 % increase in sea surface evaporation will offset a 25 % decrease in extreme windstorms. As a result, future dense water will form at the same rate as today but will be too light to reach the Adriatic's deepest parts, making deep-water presence reliant on exchanges with the Ionian Sea.
Davide Bonaldo, Sandro Carniel, Renato R. Colucci, Cléa Denamiel, Petra Pranic, Fabio Raicich, Antonio Ricchi, Lorenzo Sangelantoni, Ivica Vilibic, and Maria Letizia Vitelletti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1468, https://doi.org/10.5194/egusphere-2024-1468, 2024
Short summary
Short summary
We present a high-resolution modelling effort to investigate the possible end-of-century evolution of the main physical processes in the Adriatic Sea in a severe climate change scenario, with an ensemble approach (viz., use a of multiple simulations) allowing to control the uncertainty of the predictions. Our model exhibits a satisfactory capability to reproduce the recent past and provides a ground for a set of multidisciplinary studies in this area over a multi-decadal horizon.
Cléa Denamiel and Ivica Vilibić
EGUsphere, https://doi.org/10.5194/egusphere-2023-913, https://doi.org/10.5194/egusphere-2023-913, 2023
Preprint archived
Short summary
Short summary
We present a new methodology using coupled atmosphere-ocean-wave models and demonstrate the feasibility to provide meter scale assessments of the impact of climate change on storm surge hazards. We show that sea level variations and distributions can be derived at the climate scale in the Adriatic Sea small lagoons and bays. We expect that the newly developed methodology could lead to more targeted adaptation strategies in regions of the world vulnerable to atmospherically driven extreme events.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Petra Pranić, Cléa Denamiel, and Ivica Vilibić
Geosci. Model Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, https://doi.org/10.5194/gmd-14-5927-2021, 2021
Short summary
Short summary
The Adriatic Sea and Coast model was developed due to the need for higher-resolution climate models and longer-term simulations to capture coastal atmospheric and ocean processes at climate scales in the Adriatic Sea. The ocean results of a 31-year-long simulation were compared to the observational data. The evaluation revealed that the model is capable of reproducing the observed physical properties with good accuracy and can be further used to study the dynamics of the Adriatic–Ionian basin.
Petra Zemunik, Jadranka Šepić, Havu Pellikka, Leon Ćatipović, and Ivica Vilibić
Earth Syst. Sci. Data, 13, 4121–4132, https://doi.org/10.5194/essd-13-4121-2021, https://doi.org/10.5194/essd-13-4121-2021, 2021
Short summary
Short summary
A new global dataset – MISELA (Minute Sea-Level Analysis) – has been developed and contains quality-checked sea-level records from 331 tide gauges worldwide for a period from 2004 to 2019. The dataset is appropriate for research on atmospherically induced high-frequency sea-level oscillations. Research on these oscillations is important, as they can, like all sea-level extremes, seriously threaten coastal zone infrastructure and populations.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021, https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Short summary
The atmospheric results of the Adriatic Sea and Coast (AdriSC) climate simulation (1987–2017) are evaluated against available observational datasets in the Adriatic region. Generally, the AdriSC model performs better than regional climate models that have resolutions that are 4 times more coarse, except concerning summer temperatures, which are systematically underestimated. High-resolution climate models may thus provide new insights about the local impacts of global warming in the Adriatic.
Ivica Vilibić, Petra Zemunik, Jadranka Šepić, Natalija Dunić, Oussama Marzouk, Hrvoje Mihanović, Clea Denamiel, Robert Precali, and Tamara Djakovac
Ocean Sci., 15, 1351–1362, https://doi.org/10.5194/os-15-1351-2019, https://doi.org/10.5194/os-15-1351-2019, 2019
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
S. Pasquet, I. Vilibić, and J. Šepić
Nat. Hazards Earth Syst. Sci., 13, 473–482, https://doi.org/10.5194/nhess-13-473-2013, https://doi.org/10.5194/nhess-13-473-2013, 2013
Cited articles
Alpers, W., Ivanov, A., and Horstman, J.: Observations of Bora Events over the Adriatic Sea and Black Sea by Spaceborne Synthetic Aperture Radar, Mon. Weather Rev., 137, 1150–1161, https://doi.org/10.1175/2008MWR2563.1, 2009.
Artegiani, A. and Salusti, E.: Field observation of the flow of dense water on
the bottom of the Adriatic Sea during the winter of 1981, Oceanol. Acta, 10,
387–391, 1987.
Artegiani, A., Bregant, D., Paschini, E., Pinardi, N., Raicich, F., and Russo,
A.: The Adriatic Sea general circulation, Part I: Air-sea interactions and
water mass structure, J. Phys. Oceanogr., 27, 1492–1514,
https://doi.org/10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2, 1997.
Batistić, M., Garić, R., and Molinero, J. C.: Interannual variations in
Adriatic Sea zooplankton mirror shifts in circulation regimes in the Ionian
Sea, Clim. Res., 61, 231–240, https://doi.org/10.3354/cr01248, 2014.
Beg Paklar, G., Isakov, V., Koračin, D., Kourafalou, V., and Orlić, M.:
A case study of bora-driven flow and density changes on the Adriatic shelf
(January 1987), Cont. Shelf Res., 21, 1751–1783,
https://doi.org/10.1016/S0278-4343(01)00029-2, 2001.
Belušić, D. and Klaić, Z. B.: Estimation of bora wind gusts using a
limited area model, Tellus A, 56, 296–307,
https://doi.org/10.1111/j.1600-0870.2004.00068.x, 2004.
Belušić, D., Žagar, M., and Grisogono, B.: Numerical simulation of
pulsations in the bora wind, Q. J. Roy. Meteorol. Soc., 133, 1371–1388,
2007.
Belušić, D., Hrastinski, M., Večenaj, Ž., and Grisogono, B.:
Wind regimes associated with a mountain gap at the northeastern Adriatic
coast, J. Appl. Meteorol. Clim., 52, 2089–2105,
https://doi.org/10.1175/JAMC-D-12-0306.1, 2013.
Belušić, A., Prtenjak, M. T., Güttler, I., Ban, N., Leutwyler,
D., and Schär, C.: Near-surface wind variability over the broader Adriatic
region: Insights from an ensemble of regional climate models, Clim. Dynam.,
50, 4455–4480, https://doi.org/10.1007/s00382-017-3885-5, 2017.
Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F. M., Sclavo, M.,
Langone, L., and Carniel, S.: Response of the Adriatic Sea to an intense cold
air outbreak: Dense water dynamics and wave-induced transport, Prog.
Oceanogr., 128, 115–138, https://doi.org/10.1016/j.pocean.2014.08.015, 2014.
Bensi, M., Cardin, V., Rubino, A., Notarstefano, G., and Poulain, P.-M.: Effects
of winter convection on the deep layer of the Southern Adriatic Sea in 2012,
J. Geophys. Res.-Ocean., 118, 6064–6075,
https://doi.org/10.1002/2013JC009432, 2013.
Bergamasco, A., Oguz, T., and Malanotte-Rizzoli, P.: Modeling dense water mass
formation and winter circulation in the northern and central Adriatic Sea,
J. Mar. Syst., 20, 279–300,
https://doi.org/10.1016/S0924-7963(98)00087-6, 1999.
Blockley, J. A. and Lyons, T. J.: Airflow over a two-dimensional escarpment,
III: Nonhydrostatic flow, Q. J. Roy. Meteorol. Soc., 120, 79–109,
https://doi.org/10.1002/qj.49712051507, 1994.
Boldrin, A., Carniel, S., Giani, M., Marini, M., Bernardi Aubry, F.,
Campanelli, A., Grilli, F., and Russo, A.: Effects of bora wind on physical and
biogeochemical properties of stratified waters in the northern Adriatic, J.
Geophys. Res.-Ocean., 114, C08S92, https://doi.org/10.1029/2008JC004837,
2009.
Borenas, K. M., Wahlin, A. K., Ambar, I., and Serra, N.: The Mediterranean
outflow splitting – a comparison between theoretical models and CANIGO
data, Deep-Sea Res. Pt. II, 49, 4195–4205,
https://doi.org/10.1016/S0967-0645(02)00150-9, 2002,
Bowman, A. W. and Azzalini, A.: Applied Smoothing Techniques for Data Analysis,
New York: Oxford University Press Inc., ISBN 0191545694, 1997.
Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta,
M. M., Ricchi, A., and Sclavo, M.: Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of
a dense water formation event, Ocean Model., 101, 101–112,
https://doi.org/10.1016/j.ocemod.2016.03.007, 2016.
Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser,
G., and Zampieri, M.: Predictability of extreme meteo-oceanographic events in
the Adriatic Sea, Q. J. Roy. Meteorol. Soc., 136, 400–413,
https://doi.org/10.1002/qj.567, 2010.
Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J.-R.,
Breivik, Ø., Carniel, S., Jensen, R. E., Portilla-Yandun, Rogers, W. E.,
Roland, A., Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van
Vledder, G. P., and van der Westhuysen, A. J.: Wave modelling in coastal and
inner seas, Prog. Oceanogr., 167, 164–233,
https://doi.org/10.1016/j.pocean.2018.03.010, 2018.
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.:
Geographical Variability of the First Baroclinic Rossby Radius of
Deformation, J. Phys. Oceanogr., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998.
Chiggiato, J. and Oddo, P.: Operational ocean models in the Adriatic Sea: a
skill assessment, Ocean Sci., 4, 61–71,
https://doi.org/10.5194/os-4-61-2008, 2008.
Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach, Q. J.
Roy. Meteorol. Soc., 120, 1367–1387, 1994.
Crocker, R., Maksymczuk, J., Mittermaier, M., Tonani, M., and Pequignet, C.:
An approach to the verification of high-resolution ocean models using
spatial methods, Ocean Sci., 16, 831–845,
https://doi.org/10.5194/os-16-831-2020, 2020.
Denamiel, C.: AdriSC Climate Model: Evaluation Run, OSF [code],
https://doi.org/10.17605/OSF.IO/ZB3CM, 2021.
Denamiel, C., Šepić, J., and Vilibić, I.: Impact of geomorphological
changes to harbor resonance during meteotsunamis: The Vela Luka Bay Test
Case, Pure Appl. Geophys., 175, 3839–3859,
https://doi.org/10.1007/s00024-018-1862-5, 2018.
Denamiel, C., Šepić, J., Ivanković, D., and Vilibić, I.: The
Adriatic Sea and Coast modelling suite: Evaluation of the meteotsunami
forecast component, Ocean Model., 135, 71–93,
https://doi.org/10.1016/j.ocemod.2019.02.003, 2019.
Denamiel, C., Tojčić, I., and Vilibić, I.: Far future climate
(2060–2100) of the northern Adriatic air–sea heat transfers associated
with extreme bora events, Clim. Dynam., 55, 3043–3066,
https://doi.org/10.1007/s00382-020-05435-8, 2020a.
Denamiel, C., Pranić, P., Quentin, F., Mihanović, H., and Vilibić,
I.: Pseudo-global warming projections of extreme wave storms in complex
coastal regions: The case of the Adriatic Sea, Clim. Dynam., 55, 2483–2509,
https://doi.org/10.1007/s00382-020-05397-x, 2020b.
Denamiel, C., Tojčić, I., and Vilibić, I.: Balancing accuracy and
efficiency of atmospheric models in the northern Adriatic during severe bora
events, J. Geophys. Res.-Atmos., 126, e2020JD033516, https://doi.org/10.1029/2020JD033516,
2021a.
Denamiel, C., Pranić, P., Ivanković, D., Tojčić, I.,
and Vilibić, I.: Performance of the Adriatic Sea and Coast (AdriSC) climate
component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite:
atmospheric dataset, Geosci. Model Dev., 14, 3995–4017,
https://doi.org/10.5194/gmd-14-3995-2021, 2021b.
Denamiel, C., Tojčić, I., Pranić, P., and Vilibić, I.: Modes of
the BiOS-driven Adriatic Sea thermohaline variability, Clim. Dynam., 59,
1097–1113, https://doi.org/10.1007/s00382-022-06178-4, 2022.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational
data assimilation scheme, Ocean Model., 22, 89–105,
https://doi.org/10.1016/j.ocemod.2008.01.004, 2008.
Dorman, C. E., Carniel, S., Cavaleri, L., Sclavo, M., Chiggiato, J., Doyle,
J., Haack, T., Pullen, J., Grbec, B., Vilibić, I., Janeković, I.,
Lee, C., Malačić, V., Orlić, M., Paschini, E., Russo, A.,
and Signell, R. P.: Winter 2003 marine atmospheric conditions and the bora over
the northern Adriatic, J. Geophys. Res.-Ocean., 112, C03S03,
https://doi.org/10.1029/2005JC003134, 2007.
Dukowicz, J. K.: Reduction of pressure and pressure gradient errors in ocean
simulations, J. Phys. Oceanogr., 31, 1915–1921,
https://doi.org/10.1175/1520-0485(2001)031<1915:RODAPG>2.0.CO;2, 2001.
Dutour Sikirić, M., Janeković, I., and Kuzmić, M.: A new approach to
bathymetry smoothing in sigma-coordinate ocean models, Ocean Model., 29,
128–136, https://doi.org/10.1016/j.ocemod.2009.03.009, 2009.
Escudier, R., Clementi, E., Omar, M., Cipollone, A., Pistoia, J., Aydogdu, A., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Cretí, S., Masina, S., Coppini, G., and Pinardi, N.: Mediterranean Sea Physical Reanalysis (CMEMS MED-Currents)
(Version 1), Copernicus Monitoring Environment Marine Service
(CMEMS) [data set], 10.25423/CMCC/MEDSEA, 2020.
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A.,
Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., Omar, M., Masina, S.,
Coppini, G., and Pinardi, N.: A high resolution reanalysis for the Mediterranean
Sea, Front. Earth Sci., 9, 2296–6463,
https://doi.org/10.3389/feart.2021.702285, 2021.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk
parameterization of air-sea fluxes for tropical ocean-global atmosphere
coupled-ocean atmosphere response experiment, J. Geophys. Res., 101,
3747–3764, https://doi.org/10.1029/95JC03205, 1996.
Gačić, M., Civitarese, G., Miserocchi, S., Cardin, V., Crise, A.,
and Mauri, E.: The open-ocean convection in the Southern Adriatic: A controlling
mechanism of the spring phytoplankton bloom, Cont. Shelf Res., 22,
1897–1908, https://doi.org/10.1016/S0278-4343(02)00050-X, 2002.
Gačić, M., Borzelli, G. E., Civitarese, G., Cardin, V., and Yari, S.:
Can internal processes sustain reversals of the ocean upper circulation? The
Ionian Sea example, Geophys. Res. Lett., 37, L09608,
https://doi.org/10.1029/2010GL043216, 2010.
Garcia-Quintana, Y., Grivault, N., Hu, X., and Myers, P. G.: Dense water
formation on the Icelandic shelf and its contribution to the North Icelandic
Jet, J. Geophys. Res.-Ocean., 126,
e2020JC016951, https://doi.org/10.1029/2020JC016951, 2021
Gohm, A., Mayr, G. J., Fix, A., and Giez, A.: On the onset of bora and the
formation of rotors and jumps near a mountain gap, Q. J. Roy. Meteorol.
Soc., 134, 21–46, https://doi.org/10.1002/qj.206, 2008.
Grisogono, B. and Belušić, D.: A review of recent advances in
understanding the meso- and microscale properties of the severe Bora wind,
Tellus A, 61, 1–16, 2009.
Grubišíć, V.: Bora-driven potential vorticity banners over the
Adriatic, Q. J. Roy. Meteorol. Soc., 130, 2571–2603,
https://doi.org/10.1256/qj.03.71, 2004.
Heggelund, Y., Vikebø, F., Berntsen, J., and Furnes, G.: Hydrostatic and
non-hydrostatic studies of gravitational adjustment over a slope, Cont.
Shelf Res., 24, 2133–2148, https://doi.org/10.1016/j.csr.2004.07.005, 2004.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalia, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thepaut, J.-N.: The ERA5 Global Reanalysis, Q. J. Roy.
Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Horvath, K., Ivatek-Šahdan, S., Ivančan-Picek, B., and Grubišić,
V.: Evolution and structure of two severe cyclonic bora events: Contrast
between the northern and southern Adriatic, Weather Forecast., 24, 946–964,
https://doi.org/10.1175/2009WAF2222174.1, 2009.
Iermano, I., Moore, A. M., and Zambianchi, E.: Impacts of a 4-dimensional
variational data assimilation in a coastal ocean model of southern
Tyrrhenian Sea, J. Mar. Syst., 154, 157–171,
https://doi.org/10.1016/j.jmarsys.2015.09.006, 2015.
Ivanov, V. V., Shapiro, G. I., Huthnance, J. M., Aleynik, D. L., and Golovin, P.
N.: Cascades of dense water around the world ocean, Prog. Oceanogr., 60,
47–98, https://doi.org/10.1016/j.pocean.2003.12.002, 2004.
Janeković, I., Powell, B. S., McManus, M. A., and Sevadjian, J.: 4D-Var data
assimilation in a nested, coastal ocean model: A Hawaiian case study, J.
Geophys. Res.-Ocean., 118, 5022–5035, https://doi.org/10.1002/jgrc.20389,
2013.
Janeković, I., Mihanović, H., Vilibić, I., and Tudor, M.: Extreme
cooling and dense water formation estimates in open and coastal regions of
the Adriatic Sea during the winter of 2012, J. Geophys. Res.-Ocean., 119,
3200–3218, https://doi.org/10.1002/ 2014JC009865, 2014.
Janeković, I., Mihanović, H., Vilibić, I., Grčić, B.,
Ivatek-Šahdan, S., Tudor, M., and Djakovac, T.: Using multi-platform 4D-Var
data assimilation to improve modeling of Adriatic Sea dynamics, Ocean
Model., 146, 1463–5003, https://doi.org/10.1016/j.ocemod.2019.101538, 2020.
Jasprica, N., Čalić, M., Kovačević, V., Bensi, M.,
Radić, I. D., Garić, R., and Batistić, M.: Phytoplankton distribution
related to different winter conditions in 2016 and 2017 in the open southern
Adriatic Sea (eastern Mediterranean), J. Mar. Syst., 226, 103665,
https://doi.org/10.1016/j.jmarsys.2021.103665, 2022.
Jiang, Q. and Doyle, J. D.: Wave breaking induced surface wakes and jets
observed during a bora event, Geophys. Res. Lett., 32, L17807,
https://doi.org/10.1029/2005GL022398, 2005.
Klemp, J. B. and Durran, D. R.: Numerical modelling of bora winds, Meteorol.
Atmos. Phys., 36, 215–227, https://doi.org/10.1007/BF0104515, 1987.
Kokkini, Z., Mauri, E., Gerin, R., Poulain, P. M., Simoncelli, S.,
and Notarstefano, G.: On the salinity structure in the South Adriatic as derived
from float and glider observations in 2013–2016, Deep-Sea Res. Pt. II, 171,
104625, https://doi.org/10.1016/j.dsr2.2019.07.013, 2020.
Kurkin, A., Kurkina, O., Rybin, A., and Talipova, T.: Comparative analysis of
the first baroclinic Rossby radius in the Baltic, Black, Okhotsk, and
Mediterranean seas, Russ. J. Earth Sci., 20, ES4008, https://doi.org/10.2205/2020ES000737, 2020.
Kuzmić, M., Grisogono, B., Li, X., and Lehner, S.: Examining deep and
shallow Adriatic bora events, Q. J. Roy. Meteorol. Soc., 141, 3434–3438,
https://doi.org/10.1002/qj.2578, 2015.
Leredde, Y., Denamiel, C., Brambilla, E., Lauer-Leredde, C., Bouchette,
F., and Marsaleix, P.: Hydrodynamics in the Gulf of Aigues-Mortes, NW
Mediterranean Sea: In situ and modelling data, Cont. Shelf Res., 27,
2389–2406, https://doi.org/10.1016/j.csr.2007.06.006, 2007.
Levitus, S. and Boyer, T. P.: World Ocean Atlas 1994, Volume 4: Temperature,
NOAA Atlas NESDIS 4, US Dept. of Commerce, https://repository.library.noaa.gov/view/noaa/1381 (last access: 26 April 2023), 1994a.
Levitus, S., Burgett, R., and Boyer, T. P.: World Ocean Atlas 1994, Vol. 3,
Salinity, NOAA Atlas NESDIS 3, US Dept. Commerce, https://repository.library.noaa.gov/view/noaa/1382 (last access: 26 April 2023), 1994b.
Ličer, M., Smerkol1, P., Fettich, A., Ravdas, M., Papapostolou, A.,
Mantziafou, A., Strajnar, B., Cedilnik, J., Jeromel, M., Jerman, J., Petan,
S., Malačič, V., and Sofianos, S.: Modeling the ocean and atmosphere
during an extreme bora event in northern Adriatic using one-way and two-way
atmosphere–ocean coupling, Ocean Sci., 12, 71–86,
https://doi.org/10.5194/os-12-71-2016, 2016.
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C.,
Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethe, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Levy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO Ocean Engine, Paris,
France: Notes du Pôle de modélisation de l'Institut
Pierre-Simon Laplace (IPSL), Zenodo, https://doi.org/10.5281/zenodo.1472492, 2017.
Marini, M., Russo, A., Paschini, E., Grilli, F., and Campanelli, A.: Short-term
physical and chemical variations in the bottom water of middle Adriatic
depressions, Clim. Res., 31, 227–237, 2006.
Mihanović, H., Janeković, I., Vilibić, I., Bensi, M.,
and Kovačević, V.: Modelling interannual changes in dense water
formation on the northern Adriatic Shelf, Pure Appl. Geophys., 175,
4065–4081, https://doi.org/10.1007/s00024-018-1935-5, 2018.
Oddo, P. and Guarnieri, A.: A study of the hydrographic conditions in the
Adriatic Sea from numerical modelling and direct observations (2000–2008),
Ocean Sci., 7, 549–567, https://doi.org/10.5194/os-7-549-2011, 2011.
Oddo, P., Pinardi, N., Zavatarelli, M., and Coluccelli, A.: The Adriatic basin
forecasting system, Acta Adriat., 47, 169–184, 2006.
Orlić, M., Dadić, V., Grbec, B., Leder, N., Marki, A., Matić,
F., Mihanović, H., Beg Paklar, G., Pasarić, M., Pasarić, Z.,
and Vilibić, I.: Wintertime buoyancy forcing, changing seawater properties
and two different circulation systems produced in the Adriatic, J. Geophys.
Res.-Ocean., 112, C03S07, https://doi.org/10.1029/2005JC003271, 2007.
Pranić, P.: Multi-model analysis of the adriatic dense water dynamics,
OSF [data set], https://osf.io/9jvk3/ (last access: 26 April 2023), 2022.
Pranić, P., Denamiel, C., and Vilibić, I.: Performance of the Adriatic
Sea and Coast (AdriSC) climate component – a COAWST V3.3-based one-way
coupled atmosphere–ocean modelling suite: ocean results, Geosci. Model
Dev., 14, 5927–5955, https://doi.org/10.5194/gmd-14-5927-2021, 2021.
Pullen, J., Doyle, J. D., Haack, T., Dorman, C., Signell, R. P., and Lee, C. M.:
Bora event variability and the role of air-sea feedback, J. Geophys. Res.-Ocean., 112, C03S18, https://doi.org/10.1029/2006JC003726, 2007.
Querin, S., Bensi, M., Cardin, V., Solidoro, C., Bacer, S., Mariotti, L.,
Stel, F., and Malačič, V.: Saw-tooth modulation of the deep-water
thermohaline properties in the southern Adriatic Sea, J. Geophys. Res.-Ocean., 121, 4585–4600, https://doi.org/10.1002/2015JC011522, 2016.
Raicich, F.: Notes on the flow rates of the Adriatic rivers, Technical
Report RF 02/94, CNR, Istituto sperimentale talassografico, Trieste, Italy,
8 pp., 1994.
Ricchi, A., Miglietta, M. M., Falco, P. P., Benetazzo, A., Bonaldo, D.,
Bergamasco, A., Sclavo, M., and Carniel, S.: On the use of a coupled
ocean–atmosphere–wave model during an extreme cold air outbreak over the
Adriatic Sea, Atmos. Res., 172/173, 48–65,
https://doi.org/10.1016/j.atmosres.2015.12.023, 2016.
Rubino, A., Romanenkov, D., Zanchettin, D., Cardin, V., Hainbucher, D.,
Bensi, M., Boldrin, A., Langone, L., Miserocchi, S., and Turchetto, M.: On the
descent of dense water on a complex canyon system in the southern Adriatic
basin, Cont. Shelf Res., 44, 20–29,
https://doi.org/10.1016/j.csr.2010.11.009, 2012.
Shapiro, G. I. and Hill, A. E.: Dynamics of dense water cascade at the shelf
edge, J. Phys. Oceanogr., 33, 390–406,
https://doi.org/10.1175/1520-0485(1997)027<2381:DODWCA>2.0.CO;2, 1997.
Shapiro, G. I. and Hill, A. E.: The alternative density structures of
cold/saltwater pools on a sloping bottom: The role of friction, J. Phys.
Oceanogr., 27, 2381–2394,
https://doi.org/10.1175/1520-0485(2003)033<0390:TADSOC>2.0.CO;2, 2003.
Shapiro, G. I., Huthnance, J. M., and Ivanov, V. V. L.: Dense water cascading off
the continental shelf, J. Geophys. Res., 108, 3390,
https://doi.org/10.1029/2002JC001610, 2003.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system: a
split-explicit, free-surface, topography-following coordinate ocean model,
Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “Ocean
forecasting in terrain-following coordinates: Formulation and skill
assessment of the regional ocean modeling system” by Haidvogel et al., J.
Comput. Phys. 227, pp. 3595–3624, J. Comp. Phys., 228, 8985–9000,
https://doi.org/10.1016/j.jcp.2009.09.002, 2009.
Signell, R. P., Chiggiato, J., Horstmann, J., Doyle, J. D., Pullen, J.,
and Askari, F.: High-resolution mapping of Bora winds in the northern Adriatic
Sea using synthetic aperture radar, J. Geophys. Res., 115, C04020,
https://doi.org/10.1029/2009JC005524, 2010.
Simoncelli, S., Masina, S., Axell, L., Liu, Y., Salon, S., Cossarini, G.,
Bertino, L., Xie, J., Samuelsen, A., Levier, B., Reffray, G., O'Dea, E., McEwan, R., and Kristiansen, T.: MyOcean regional
reanalyses: overview of reanalyses systems and main results, Mercator Ocean
J. 54: Special issue on main outcomes of the MyOcean2 and MyOcean follow-on
projects, https://www.mercator-ocean.fr/wp-content/uploads/2016/03/JournalMO-54.pdf
(last access: 24 February 2023), 2016.
Simoncelli, S., Fratianni, C., Pinardi, N., Grandi, A., Drudi, M., Oddo, P.,
and Dobricic, S.: Mediterranean Sea Physical Reanalysis (CMEMS
MED-Physics) (Version 1), Copernicus Monitoring
Environment Marine Service (CMEMS) [data set], https://www.cmcc.it/mediterranean-sea-physical-reanalysis-cmems-med-physics (last access: 12 May 2023), 2019.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M.,
Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Version
2, NCAR Technical Note NCAR/TN468 + STR, https://doi.org/10.5065/D6DZ069T,
2005.
Smith, R. B.: Aerial observations of the Yugoslavian Bora, J. Atmos. Sci.,
44, 269–297, 1987.
Sperrevik, A. K., Röhrs, J., and Christensen, K. H.: Impact of data
assimilation on Eulerian versus Lagrangian estimates of upper ocean
transport, J. Geophys. Res.-Ocean., 122, 5445–5457,
https://doi.org/10.1002/2016JC012640, 2017.
Stiperski, I., Ivančan-Picek, B., Grubišić, V., and Bajić, A.:
Complex bora flow in the lee of Southern Velebit, Q. J. Roy. Meteorol. Soc.,
138, 1490–1506, https://doi.org/10.1002/qj.1901, 2021.
Taylor, K.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Thorne, P. W. and Vose, R. S.: Reanalyses suitable for characterizing long-term
trends, Bull. Am. Meteorol.
Soc., 91, 353–361, https://doi.org/10.1175/2009bams2858.1, 2010.
Tojčić, I., Denamiel, C., and Vilibić, I.: Kilometer-scale trends
and variability of the Adriatic present climate (1987–2017), Clim. Dynam.,
https://doi.org/10.1007/s00382-023-06700-2, 2023.
Tudor, M., Ivatek-Šahdan, S., Stanešić, A., Horvath, K.,
and Bajić, A.: Forecasting weather in Croatia using ALADIN numerical weather
prediction model, in: Climate Change and Regional/Local Responses, edited
by: Zhang, Y. and Ray, P., InTech, Rijeka, Croatia, 59–88,
https://doi.org/10.5772/55698, 2013.
Tudor, M., Stanešić, A., Ivatek-Šahdan, S., Hrastinski, M., Odak
Plenković, I., Horvath, K., Bajić, A., and Kovačić, T.:
Operational validation and verification of ALADIN forecast in meteorological
and hydrological service of Croatia, Croat. Meteorol. J., 50, 47–70, 2015.
Vested, H. J., Berg, P., and Uhrenholdt, T.: Dense water formation in the northern Adriatic, J. Mar. Syst., 18, 135–160,
https://doi.org/10.1016/S0924-7963(98)00009-8, 1998.
Vilibić, I.: Evaluation of the AdriSC Climate Component: Ocean Results,
Zenodo [dataset], https://doi.org/10.5281/zenodo.5707773, 2021.
Vilibić, I. and Mihanović, H.: Observing the bottom density current
over a shelf using an Argo profiling float, Geophys. Res. Lett., 40,
910–915, https://doi.org/10.1002/grl.50215, 2013.
Vilibić, I., Mihanović, H., Janeković, I., and Šepić, J.:
Modelling the formation of dense water in the northern Adriatic: sensitivity
studies, Ocean Model., 101, 17–29,
https://doi.org/10.1016/j.ocemod.2016.03.001, 2016.
Vilibić, I., Mihanović, H., Janeković, I., Denamiel, C.,
Poulain, P.-M., Orlić, M., Dunić, N., Dadić, V., Pasarić,
M., Muslim, S., Gerin, R., Matić, F., Šepić, J., Mauri, E.,
Kokkini, Z., Tudor, M., Kovač, Ž., and Džoić, T.: Wintertime
dynamics in the coastal north-eastern Adriatic Sea: the NAdEx 2015
experiment, Ocean Sci., 14, 237–258,
https://doi.org/10.5194/os-14-237-2018, 2018.
Vodopivec, M., Zaimi, K., and Peliz, Á., J.: The freshwater balance of the
Adriatic Sea: A sensitivity study, J. Geophys. Res.-Ocean., 127,
e2022JC018870, https://doi.org/10.1029/2022JC018870, 2022.
Yaremchuk, M., Martin, P., Koch, A., and Beattie, C.: Comparison of the adjoint
and adjoint-free 4dVar assimilation of the hydrographic and velocity
observations in the Adriatic Sea, Ocean Model., 97, 129–140,
https://doi.org/10.1016/j.ocemod.2015.10.010, 2016.
Wahlin, A. K.: Topographic steering of dense currents with application to
submarine canyons, Deep-Sea Res. Pt. I, 49, 305–320,
https://doi.org/10.1016/S0967-0637(01)00058-9, 2002.
Wahlin, A. K.: Downward channeling of dense water in topographic
corrugations, Deep-Sea Res. Pt. I, 51, 577–590,
https://doi.org/10.1016/j.dsr.2003.11.002, 2004.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a
Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling
System, Ocean Model., 35, 230–244,
https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T.,
Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini,
V., and Wigley, R.: A new digital bathymetric model of
the world's oceans, Earth Space Sci., 2, 331–345,
https://doi.org/10.1002/2015EA000107, 2015.
Zavatarelli, M., Pinardi, N., Kourafalou, V. H., and Maggiore, A.:
Diagnostic and prognostic model studies of the Adriatic Sea general
circulation: Seasonal variability, J. Geophys. Res., 107, 3004,
https://doi.org/10.1029/2000JC000210, 2002.
Zore-Armanda, M.: Les masses d'eau de la mer Adriatique, Acta Adriat., 10,
5–88, 1963.
Short summary
In this study, we analyse and compare the results of four different approaches in modelling bora-driven dense-water dynamics in the Adriatic. The study investigated the likely requirements for modelling the ocean circulation in the Adriatic and found that a 31-year run of a fine-resolution Adriatic climate model is able to outperform most aspects of the newest reanalysis product, a short-term hindcast and data-assimilated simulation, in reproducing the dense-water dynamics in the Adriatic Sea.
In this study, we analyse and compare the results of four different approaches in modelling...