Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-453-2023
https://doi.org/10.5194/os-19-453-2023
Research article
 | 
17 Apr 2023
Research article |  | 17 Apr 2023

Intraseasonal variability of the South Vietnam upwelling, South China Sea: influence of atmospheric forcing and ocean intrinsic variability

Marine Herrmann, Thai To Duy, and Claude Estournel

Related authors

Spurious numerical mixing under strong tidal forcing: a case study in the South East Asian Seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
EGUsphere, https://doi.org/10.5194/egusphere-2024-613,https://doi.org/10.5194/egusphere-2024-613, 2024
Short summary
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024,https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Mechanisms and intraseasonal variability of the South Vietnam Upwelling, South China Sea: role of circulation, tides and rivers
Marine Herrmann and Thai To Duy
EGUsphere, https://doi.org/10.5194/egusphere-2024-368,https://doi.org/10.5194/egusphere-2024-368, 2024
Short summary
The role of wind, mesoscale dynamics, and coastal circulation in the interannual variability of the South Vietnam Upwelling, South China Sea – answers from a high-resolution ocean model
Thai To Duy, Marine Herrmann, Claude Estournel, Patrick Marsaleix, Thomas Duhaut, Long Bui Hong, and Ngoc Trinh Bich
Ocean Sci., 18, 1131–1161, https://doi.org/10.5194/os-18-1131-2022,https://doi.org/10.5194/os-18-1131-2022, 2022
Short summary
Sensitivity study on the main tidal constituents of the Gulf of Tonkin by using the frequency-domain tidal solver in T-UGOm
Violaine Piton, Marine Herrmann, Florent Lyard, Patrick Marsaleix, Thomas Duhaut, Damien Allain, and Sylvain Ouillon
Geosci. Model Dev., 13, 1583–1607, https://doi.org/10.5194/gmd-13-1583-2020,https://doi.org/10.5194/gmd-13-1583-2020, 2020
Short summary

Cited articles

Bombar, D., Dippner, J. W., Doan, H. N., Ngoc, L. N., Liskow, I., Loick-Wilde, N., and Voss, M.: Sources of new nitrogen in the Vietnamese upwelling region of the South China Sea, J. Geophys. Res.-Ocean., 115, 6018, https://doi.org/10.1029/2008JC005154, 2010. 
Chen, C. and Wang, G.: Interannual variability of the eastward current in the western South China Sea associated with the summer Asian monsoon, J. Geophys. Res.-Ocean., 119, 5745–5754, https://doi.org/10.1002/2014JC010309, 2014. 
Chen, C., Lai, Z., Beardsley, R. C., Xu, Q., Lin, H., and Viet, N. T.: Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea, J. Geophys. Res.-Ocean., 117, 1–16, https://doi.org/10.1029/2011JC007150, 2012. 
Da, N. D., Herrmann, M., Morrow, R., Niño, F., Huan, N. M., and Trinh, N. Q.: Contributions of Wind, Ocean Intrinsic Variability, and ENSO to the Interannual Variability of the South Vietnam Upwelling: A Modeling Study, J. Geophys. Res.-Ocean., 124, 6545–6574, https://doi.org/10.1029/2018JC014647, 2019. 
Dippner, J. W., Nguyen, K. V., Hein, H., Ohde, T., and Loick, N.: Monsoon-induced upwelling off the Vietnamese coast, Ocean Dynam., 57, 46–62, https://doi.org/10.1007/S10236-006-0091-0, 2007. 
Download
Short summary
The South Vietnam upwelling develops in summer along and off the Vietnamese coast. It brings cold and nutrient-rich waters to the surface, allowing photosynthesis essential to marine ecosystems and fishing resources. We show here that its daily variations are mainly due to the wind, thus predictable, in the southern shelf and coastal regions. However, they are more chaotic in the offshore area, and especially in the northern area, due to the influence of eddies of a highly chaotic nature.