Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-453-2023
https://doi.org/10.5194/os-19-453-2023
Research article
 | 
17 Apr 2023
Research article |  | 17 Apr 2023

Intraseasonal variability of the South Vietnam upwelling, South China Sea: influence of atmospheric forcing and ocean intrinsic variability

Marine Herrmann, Thai To Duy, and Claude Estournel

Related authors

Optimizing physical scheme selection in RegCM5 for improved air–sea fluxes over Southeast Asia
Quentin Desmet, Marine Herrmann, and Thanh Ngo-Duc
EGUsphere, https://doi.org/10.5194/egusphere-2025-1579,https://doi.org/10.5194/egusphere-2025-1579, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Modeling Indian Ocean circulation to study marine debris dispersion: insights into high-resolution and Stokes drift effects with Symphonie 3.6.6
Lisa Weiss, Marine Herrmann, Patrick Marsaleix, Matthieu Bompoil, and Christophe Maes
EGUsphere, https://doi.org/10.5194/egusphere-2025-1918,https://doi.org/10.5194/egusphere-2025-1918, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Surface circulation characterization along the middle southern coastal region of Vietnam from high-frequency radar and numerical modeling
Thanh Huyen Tran, Alexei Sentchev, Thai To Duy, Marine Herrmann, Sylvain Ouillon, and Kim Cuong Nguyen
Ocean Sci., 21, 1–18, https://doi.org/10.5194/os-21-1-2025,https://doi.org/10.5194/os-21-1-2025, 2025
Short summary
Spurious numerical mixing under strong tidal forcing: a case study in the south-east Asian seas using the Symphonie model (v3.1.2)
Adrien Garinet, Marine Herrmann, Patrick Marsaleix, and Juliette Pénicaud
Geosci. Model Dev., 17, 6967–6986, https://doi.org/10.5194/gmd-17-6967-2024,https://doi.org/10.5194/gmd-17-6967-2024, 2024
Short summary
Mechanisms and intraseasonal variability in the South Vietnam Upwelling, South China Sea: the role of circulation, tides, and rivers
Marine Herrmann, Thai To Duy, and Patrick Marsaleix
Ocean Sci., 20, 1013–1033, https://doi.org/10.5194/os-20-1013-2024,https://doi.org/10.5194/os-20-1013-2024, 2024
Short summary

Cited articles

Bombar, D., Dippner, J. W., Doan, H. N., Ngoc, L. N., Liskow, I., Loick-Wilde, N., and Voss, M.: Sources of new nitrogen in the Vietnamese upwelling region of the South China Sea, J. Geophys. Res.-Ocean., 115, 6018, https://doi.org/10.1029/2008JC005154, 2010. 
Chen, C. and Wang, G.: Interannual variability of the eastward current in the western South China Sea associated with the summer Asian monsoon, J. Geophys. Res.-Ocean., 119, 5745–5754, https://doi.org/10.1002/2014JC010309, 2014. 
Chen, C., Lai, Z., Beardsley, R. C., Xu, Q., Lin, H., and Viet, N. T.: Current separation and upwelling over the southeast shelf of Vietnam in the South China Sea, J. Geophys. Res.-Ocean., 117, 1–16, https://doi.org/10.1029/2011JC007150, 2012. 
Da, N. D., Herrmann, M., Morrow, R., Niño, F., Huan, N. M., and Trinh, N. Q.: Contributions of Wind, Ocean Intrinsic Variability, and ENSO to the Interannual Variability of the South Vietnam Upwelling: A Modeling Study, J. Geophys. Res.-Ocean., 124, 6545–6574, https://doi.org/10.1029/2018JC014647, 2019. 
Dippner, J. W., Nguyen, K. V., Hein, H., Ohde, T., and Loick, N.: Monsoon-induced upwelling off the Vietnamese coast, Ocean Dynam., 57, 46–62, https://doi.org/10.1007/S10236-006-0091-0, 2007. 
Download
Short summary
The South Vietnam upwelling develops in summer along and off the Vietnamese coast. It brings cold and nutrient-rich waters to the surface, allowing photosynthesis essential to marine ecosystems and fishing resources. We show here that its daily variations are mainly due to the wind, thus predictable, in the southern shelf and coastal regions. However, they are more chaotic in the offshore area, and especially in the northern area, due to the influence of eddies of a highly chaotic nature.
Share