Articles | Volume 19, issue 1
https://doi.org/10.5194/os-19-169-2023
https://doi.org/10.5194/os-19-169-2023
Research article
 | 
22 Feb 2023
Research article |  | 22 Feb 2023

Observation-based estimates of volume, heat, and freshwater exchanges between the subpolar North Atlantic interior, its boundary currents, and the atmosphere

Sam C. Jones, Neil J. Fraser, Stuart A. Cunningham, Alan D. Fox, and Mark E. Inall

Related authors

Storm-driven across-shelf oceanic flows into coastal waters
Sam Jones, Mark Inall, Marie Porter, Jennifer A. Graham, and Finlo Cottier
Ocean Sci., 16, 389–403, https://doi.org/10.5194/os-16-389-2020,https://doi.org/10.5194/os-16-389-2020, 2020
Short summary

Related subject area

Approach: In situ Observations | Properties and processes: Overturning circulation | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Challenges: Oceans and climate
Mixing and air–sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic and Nordic Seas
Dafydd Gwyn Evans, N. Penny Holliday, Sheldon Bacon, and Isabela Le Bras
Ocean Sci., 19, 745–768, https://doi.org/10.5194/os-19-745-2023,https://doi.org/10.5194/os-19-745-2023, 2023
Short summary
A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline
Emma L. Worthington, Ben I. Moat, David A. Smeed, Jennifer V. Mecking, Robert Marsh, and Gerard D. McCarthy
Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021,https://doi.org/10.5194/os-17-285-2021, 2021
Short summary

Cited articles

Barnier, B., Madec, G., Penduff, T., Molines, J.M., Treguier, A.M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., and Derval, C.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. 
Berx, B., Hansen, B., Østerhus, S., Larsen, K. M., Sherwin, T., and Jochumsen, K.: Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe–Shetland Channel, Ocean Sci., 9, 639–654, https://doi.org/10.5194/os-9-639-2013, 2013. 
Biastoch, A., Schwarzkopf, F. U., Getzlaff, K., Rühs, S., Martin, T., Scheinert, M., Schulzki, T., Handmann, P., Hummels, R., and Böning, C. W.: Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X, Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, 2021. 
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., Paver, C.R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K., and Zweng, M. M.: World Ocean Database 2018, NOAA Atlas NESDIS 87 [data set], https://www.ncei.noaa.gov/access/world-ocean-database-select/dbsearch.html (last access: 3 September 2019), 2018. 
Brambilla, E. and Talley, L. D.: Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and mean circulation, J. Geophys. Res.-Oceans, 113, C04025, doi:10.1029/2006JC004062, 2008. 
Download
Short summary
Warm water is transported from the tropical Atlantic towards western Europe and the Arctic. It loses heat to the atmosphere on the way, which strongly influences the climate. We construct a dataset encircling the North Atlantic basin north of 47° N. We calculate how and where heat enters and leaves the basin and how much cooling must happen in the interior. We find that cooling in the north-eastern Atlantic is a crucial step in controlling the conversion of water to higher densities.