Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1225-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Iceland–Faroe warm-water flow towards the Arctic estimated from satellite altimetry and in situ observations
Bogi Hansen
CORRESPONDING AUTHOR
Environmental Department, Faroe Marine Research Institute, Tórshavn, Faroe Islands
Karin M. H. Larsen
Environmental Department, Faroe Marine Research Institute, Tórshavn, Faroe Islands
Hjálmar Hátún
Environmental Department, Faroe Marine Research Institute, Tórshavn, Faroe Islands
Steffen M. Olsen
Danish Meteorological Institute, Copenhagen, Denmark
Andrea M. U. Gierisch
Danish Meteorological Institute, Copenhagen, Denmark
Svein Østerhus
NORCE Norwegian Research Centre, Bjerknes Centre for Climate
Research, Bergen, Norway
Sólveig R. Ólafsdóttir
Environmental Division, Marine and Freshwater Research Institute, Hafnarfjörður,
Iceland
Related authors
Sissal Vágsheyg Erenbjerg, Jon Albretsen, Knud Simonsen, Erna Lava Olsen, Eigil Kaas, and Bogi Hansen
Ocean Sci., 17, 1639–1655, https://doi.org/10.5194/os-17-1639-2021, https://doi.org/10.5194/os-17-1639-2021, 2021
Short summary
Short summary
Here, we describe a strait that has narrow and shallow sills in both ends and is close to an amphidromic region. This generates tidally driven flows into and out of the strait, but with very different exchange rates across the entrances in both ends so that it behaves like a mixture between a strait and a fjord. Using a numerical model, we find a fortnightly signal in the net transport through the strait, generated by long-period tides. Our findings are verified by observations.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Sofie Hedetoft, Olivia Bang Brinck, Ruth Mottram, Andrea M. U. Gierisch, Steffen Malskær Olsen, Martin Olesen, Nicolaj Hansen, Anders Anker Bjørk, Erik Loebel, Anne Solgaard, and Peter Thejll
EGUsphere, https://doi.org/10.5194/egusphere-2025-1907, https://doi.org/10.5194/egusphere-2025-1907, 2025
Short summary
Short summary
Iceberg mélange is the jumble of icebergs in front of some glaciers that calve into the sea. Some studies suggest mélange might help to control the retreat of glaciers. We studied 3 glaciers in NW Greenland where we used GPS sensors and satellites to track ice movement. We found that glaciers push forward and calve all year, including when mélange and landfast sea ice are present, suggesting mélange is not important in supporting glaciers, but may influence the seasonal calving cycle.
Angel Ruiz-Angulo, Esther Portela, Charly de Marez, Andreas Macrander, Sólveig Rósa Ólafsdóttir, Thomas Meunier, Steingrímur Jónsson, and M. Dolores Pérez-Hernández
EGUsphere, https://doi.org/10.5194/egusphere-2025-2102, https://doi.org/10.5194/egusphere-2025-2102, 2025
Short summary
Short summary
The ocean around Iceland is a key region for water mass transformation that drives global ocean circulation. We use 29 years of hydrographic data to examine the spatial and temporal variability of mixed layer depth and stratification, identifying three distinct regions: South, North, and Northeast. We present a comprehensive view of seasonal to multi-decadal variability in upper ocean structure and its link to a changing North Atlantic under global warming.
Vår Dundas, Kjersti Daae, Elin Darelius, Markus Janout, Jean-Baptiste Sallée, and Svein Østerhus
EGUsphere, https://doi.org/10.5194/egusphere-2025-1537, https://doi.org/10.5194/egusphere-2025-1537, 2025
Short summary
Short summary
Moored observations confirm that strong westward ocean surface stress events ("storms'') can increase the speed of the Antarctic Slope Current and the circulation in the Filchner Trough region. Roughly one-third of the identified storm events cause an increased southward current speed on the shelf. This enhances the southward transport of heat already present on the shelf and the likelihood that this heat reaches the ice shelf front before it is lost to the atmosphere during winter.
Anna Pedersen, Carolin R. Löscher, and Steffen M. Olsen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1218, https://doi.org/10.5194/egusphere-2025-1218, 2025
Short summary
Short summary
The North Atlantic plays a crucial role in absorbing atmospheric CO2, but its air-sea CO2 flux varies across time and space. Using historical climate model simulations, we investigate how physical and oceanic processes drive the variability. Our results show that sea ice, temperature, salinity, wind stress, and ocean circulation shape CO2 exchange, with short-term fluctuations playing a dominant role. Understanding these complex interactions is key to predicting future ocean carbon uptake.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Nico Lange, Björn Fiedler, Marta Álvarez, Alice Benoit-Cattin, Heather Benway, Pier Luigi Buttigieg, Laurent Coppola, Kim Currie, Susana Flecha, Dana S. Gerlach, Makio Honda, I. Emma Huertas, Siv K. Lauvset, Frank Muller-Karger, Arne Körtzinger, Kevin M. O'Brien, Sólveig R. Ólafsdóttir, Fernando C. Pacheco, Digna Rueda-Roa, Ingunn Skjelvan, Masahide Wakita, Angelicque White, and Toste Tanhua
Earth Syst. Sci. Data, 16, 1901–1931, https://doi.org/10.5194/essd-16-1901-2024, https://doi.org/10.5194/essd-16-1901-2024, 2024
Short summary
Short summary
The Synthesis Product for Ocean Time Series (SPOTS) is a novel achievement expanding and complementing the biogeochemical data landscape by providing consistent and high-quality biogeochemical time-series data from 12 ship-based fixed time-series programs. SPOTS covers multiple unique marine environments and time-series ranges, including data from 1983 to 2021. All in all, it facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Revised manuscript not accepted
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Michael Mayer, Takamasa Tsubouchi, Susanna Winkelbauer, Karin Margretha H. Larsen, Barbara Berx, Andreas Macrander, Doroteaciro Iovino, Steingrímur Jónsson, and Richard Renshaw
State Planet, 1-osr7, 14, https://doi.org/10.5194/sp-1-osr7-14-2023, https://doi.org/10.5194/sp-1-osr7-14-2023, 2023
Short summary
Short summary
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean reanalyses to largely independent observational data. Reanalyses tend to underestimate the inflow of warm waters of subtropical Atlantic origin and hence oceanic heat transport across the GSR. Investigation of a strong negative heat transport anomaly around 2018 highlights the interplay of variability on different timescales and the need for long-term monitoring of the GSR to detect forced climate signals.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Imke Sievers, Andrea M. U. Gierisch, Till A. S. Rasmussen, Robinson Hordoir, and Lars Stenseng
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-84, https://doi.org/10.5194/tc-2022-84, 2022
Preprint withdrawn
Short summary
Short summary
To predict Arctic sea ice models are used. Many ice models exists. They all are skill full, but give different results. Often this differences result from forcing as for example air temperature. Other differences result from the way the physical equations are solved in the model. In this study two commonly used models are compared under equal forcing, to find out how much the models differ under similar external forcing. The results are compared to observations and to eachother.
Filippa Fransner, Friederike Fröb, Jerry Tjiputra, Nadine Goris, Siv K. Lauvset, Ingunn Skjelvan, Emil Jeansson, Abdirahman Omar, Melissa Chierici, Elizabeth Jones, Agneta Fransson, Sólveig R. Ólafsdóttir, Truls Johannessen, and Are Olsen
Biogeosciences, 19, 979–1012, https://doi.org/10.5194/bg-19-979-2022, https://doi.org/10.5194/bg-19-979-2022, 2022
Short summary
Short summary
Ocean acidification, a direct consequence of the CO2 release by human activities, is a serious threat to marine ecosystems. In this study, we conduct a detailed investigation of the acidification of the Nordic Seas, from 1850 to 2100, by using a large set of samples taken during research cruises together with numerical model simulations. We estimate the effects of changes in different environmental factors on the rate of acidification and its potential effects on cold-water corals.
Yu Yan, Wei Gu, Andrea M. U. Gierisch, Yingjun Xu, and Petteri Uotila
Geosci. Model Dev., 15, 1269–1288, https://doi.org/10.5194/gmd-15-1269-2022, https://doi.org/10.5194/gmd-15-1269-2022, 2022
Short summary
Short summary
In this study, we developed NEMO-Bohai, an ocean–ice model for the Bohai Sea, China. This study presented the scientific design and technical choices of the parameterizations for the NEMO-Bohai model. The model was calibrated and evaluated with in situ and satellite observations of ocean and sea ice. NEMO-Bohai is intended to be a valuable tool for long-term ocean and ice simulations and climate change studies.
Sissal Vágsheyg Erenbjerg, Jon Albretsen, Knud Simonsen, Erna Lava Olsen, Eigil Kaas, and Bogi Hansen
Ocean Sci., 17, 1639–1655, https://doi.org/10.5194/os-17-1639-2021, https://doi.org/10.5194/os-17-1639-2021, 2021
Short summary
Short summary
Here, we describe a strait that has narrow and shallow sills in both ends and is close to an amphidromic region. This generates tidally driven flows into and out of the strait, but with very different exchange rates across the entrances in both ends so that it behaves like a mixture between a strait and a fjord. Using a numerical model, we find a fortnightly signal in the net transport through the strait, generated by long-period tides. Our findings are verified by observations.
Jon Olafsson, Solveig R. Olafsdottir, Taro Takahashi, Magnus Danielsen, and Thorarinn S. Arnarson
Biogeosciences, 18, 1689–1701, https://doi.org/10.5194/bg-18-1689-2021, https://doi.org/10.5194/bg-18-1689-2021, 2021
Short summary
Short summary
The Atlantic north of 50° N is an intense ocean sink area for atmospheric CO2. Observations in the vicinity of Iceland reveal a previously unrecognized Arctic contribution to the North Atlantic CO2 sink. Sustained CO2 influx to waters flowing from the Arctic Ocean is linked to their excess alkalinity derived from sources in the changing Arctic. The results relate to the following question: will the North Atlantic continue to absorb CO2 in the future as it has in the past?
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Cited articles
Arias, P. A., Bellouin, N., Coppola, E., Jones, R. G., Krinner, G., Marotzke, J., Naik, V., Palmer, M. D., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., Thorne, P. W., Trewin, B., Achuta Rao, K., Adhikary, B., Allan, R. P., Armour, K., Bala, G., Barimalala, R., Berger, S., Canadell, J. G., Cassou, C., Cherchi, A., Collins, W., Collins, W. D., Connors, S. L., Corti, S., Cruz, F., Dentener, F. J., Dereczynski, C., Di Luca, A., Diongue Niang, A., Doblas-Reyes, F. J., Dosio, A., Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., Fuglestvedt, J. S., Fyfe, J. C., Gillett, N. P., Goldfarb, L., Gorodetskaya, I., Gutierrez, J. M., Hamdi, R., Hawkins, E., Hewitt, H. T., Hope, P., Islam, A. S., Jones, C., Kaufman, D. S., Kopp, R. E., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., Li, J., Mauritsen, T., Maycock, T. K., Meinshausen, M., Min, S.-K., Monteiro, P. M. S., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., Ranasinghe, R., Ruane, A. C., Ruiz, L., Sallée, J.-B., Samset, B. H., Sathyendranath, S., Seneviratne, S. I., Sörensson, A. A., Szopa, S., Takayabu, I., Tréguier, A.-M., van den Hurk, B., Vautard, R., von Schuckmann, K., Zaehle, S., Zhang, X., and Zickfeld, K.: Technical Summary, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, Z., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 33–144,
https://doi.org/10.1017/9781009157896.002, 2021.
Beaird, N. L., Rhines, P. B., and Eriksen, C. C.: Overflow waters at the
Iceland-Faroe Ridge observed in multiyear Seaglider surveys, J. Phys.
Oceanogr., 43, 2334–2351, https://doi.org/10.1175/JPO-D-13-029.1, 2013.
Beaird, N. L., Rhines, P. B., and Eriksen, C. C.: Observations of seasonal
subduction at the Iceland-Faroe Front, J. Geophys. Res.-Oceans, 121,
4026–4040, https://doi.org/10.1002/2015JC011501, 2016.
Berx, B., Hansen, B., Østerhus, S., Larsen, K. M., Sherwin, T., and Jochumsen, K.: Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe–Shetland Channel, Ocean Sci., 9, 639–654, https://doi.org/10.5194/os-9-639-2013, 2013.
Darelius, E., Fer, I., and Quadfasel, D.: Faroe Bank Channel overflow:
mesoscale variability, J. Phys. Oceanogr., 41, 2137–2154,
https://doi.org/10.1175/JPO-D-11-035.1, 2011.
Darelius, E., Fer, I., Rasmussen, T., Guo, C., and Larsen, K. M. H.: On the modulation of the periodicity of the Faroe Bank Channel overflow instabilities, Ocean Sci., 11, 855–871, https://doi.org/10.5194/os-11-855-2015, 2015.
Dickson, R. R. and Brown, J.: The production of North Atlantic deep water,
sources, rates, and pathways, J. Geophys. Res., 99, 12319–12341,
https://doi.org/10.1029/94JC00530, 1994.
ENVOFAR: ENVOFAR, http://www.envofar.fo, last access: 10 August 2023.
Geyer, F., Østerhus, S., Hansen, B., and Quadfasel, D.: Observations of
highly regular oscillations in the overflow plume downstream of the Faroe
Bank Channel, J. Geophys. Res., 111, C12020,
https://doi.org/10.1029/2006JC003693, 2006.
Hansen, B. and Meincke, J.: Eddies and meanders in the Iceland-Faroe Ridge
area, Deep-Sea Res, 26, 1067–1082,
https://doi.org/10.1016/0198-0149(79)90048-7, 1979.
Hansen, B. and Østerhus, S.: North Atlantic–Nordic Seas exchanges, Prog.
Oceanogr., 45, 109–208, https://doi.org/10.1016/s0079-6611(99)00052-x,
2000.
Hansen, B., Østerhus, S., Hátún, H., Kristiansen, R., and Larsen,
K. M. H.: The Iceland-Faroe inflow of Atlantic water to the Nordic Seas,
Prog. Oceanogr., 59, 4, 443–474,
https://doi.org/10.1016/j.pocean.2003.10.003, 2003.
Hansen, B., Hátún, H., Kristiansen, R., Olsen, S. M., and Østerhus, S.: Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic, Ocean Sci., 6, 1013–1026, https://doi.org/10.5194/os-6-1013-2010, 2010.
Hansen, B., Larsen, K. M. H., Hátún, H., Kristiansen, R., Mortensen, E., and Østerhus, S.: Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993–2013, Ocean Sci., 11, 743–757, https://doi.org/10.5194/os-11-743-2015, 2015.
Hansen, B., Larsen, K. M. H., Kristiansen, R., Mortensen, E., Quadfasel, D.,
Jochumsen, K., and Østerhus, S.: Observations from the WOW field
experiment in the Western Valley 2016–2017 Data report, Havstovan nr.:
17-03, Technical report, http://www.hav.fo/PDF/Ritgerdir/2017/TecRep1703.pdf
(last access: 27 June 2023), 2017.
Hansen, B., Larsen, K. M. H., Olsen, S. M., Quadfasel, D., Jochumsen, K., and Østerhus, S.: Overflow of cold water across the Iceland–Faroe Ridge through the Western Valley, Ocean Sci., 14, 871–885, https://doi.org/10.5194/os-14-871-2018, 2018.
Hansen, B., Larsen, K. M. H., and Hátún, H.: Monitoring the velocity
structure of the Faroe Current, Havstovan Technical Report Nr.: 19-01,
http://www.hav.fo/PDF/Ritgerdir/2019/TechRep1901.pdf (last access: 27 June 2023), 2019.
Hansen, B., Larsen, K. M. H., Hátún, H., and Østerhus, S.:
Atlantic water extent on the Faroe Current monitoring section, Havstovan
Technical Report Nr.: 20-03,
http://www.hav.fo/PDF/Ritgerdir/2020/TechRep2003.pdf (last access: 27 June 2023), 2020.
Hátún, H., Hansen, B., and Haugan, P.: Using an ”inverse dynamic
method” to determine temperature and salinity fields from ADCP
measurements, J. Atmos. Ocean. Tech., 21, 527–534,
https://doi.org/10.1175/1520-0426(2004)021<0527:UAIDMT>2.0.CO;2, 2004.
Helland-Hansen, B. and Nansen, F.: The Norwegian Sea, its physical
oceanography. Based on the Norwegian researches 1900–1904, Report on
Norwegian fishery and marine-investigations Vol. 11 1909 No.2, 390 pp. +
325 plates, https://imr.brage.unit.no/imr-xmlui/handle/11250/114874 (last access: 10 August 2023), 1909.
Hermann, F.: Hydrographic Conditions in the South-Western Part of the
Norwegian Sea, Ann. Biol. Cons. Int. Explor. Mer., 5, 19–21, 1949.
Hermann, F.: The TS diagram analysis of the water masses over the
Iceland-Faroe Ridge and in the Faroe Bank Channel, Rapp. PV Reun. Cons. Int.
Explor. Mer., 157, 139–149, 1967.
Heuzé, C. and Årthun, M.: The Atlantic inflow across the
Greenland-Scotland ridge in global climate models (CMIP5), Elem. Sci. Anth.,
7, 16, https://doi.org/10.1525/elementa.354, 2019.
Jónsson, S. and Valdimarsson, H.: Water mass transport variability to
the North Icelandic shelf, 1994–2010, ICES J. Mar. Sci., 69, 809–815,
https://doi.org/10.1093/icesjms/fss024, 2012.
Knudsen, M.: Den Danske Ingolf-expedition, Bianco Lunos Kgl. Hof-Bogtrykkeri
(F. Dreyer), København, 1, 21–154, 1898.
Koman, G., Johns, W. E., Houk, A., Houpert, L., and Li, F.: Circulation and
overturning in the eastern North Atlantic subpolar gyre, Prog. Oceanogr.,
208, 102884, https://doi.org/10.1016/j.pocean.2022.102884, 2022.
Larsen, K. M. H., Hátún, H., Hansen, B., and Kristiansen, R.:
Atlantic water in the Faroe area: sources and variability, ICES J. Mar.
Sci., 69, 802–808, https://doi.org/10.1093/icesjms/fss028, 2012.
Logemann, K., Ólafsson, J., Snorrason, Á., Valdimarsson, H., and Marteinsdóttir, G.: The circulation of Icelandic waters – a modelling study, Ocean Sci., 9, 931–955, https://doi.org/10.5194/os-9-931-2013, 2013.
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A.,
de Jong, M. F., de Steur, L., deYoung, B., Fischer, J., Gary, S. F.,
Greenan, B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E.,
Johns, W. E., Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le
Bras, I. A., Lin, X., Mackay, N., Marshall, D. P., Mercier, H., Oltmanns,
M., Pickart, R. S., Ramsey, A. L., Rayner, D., Straneo, F., Thierry, V.,
Torres, D. J., Williams, R. G., Wilson, C., Yang, J., Yashayaev, I., and
Zhao, J.: A sea change in our view of overturning in the subpolar North
Atlantic, Science, 363, 516–521, https://doi.org/10.1126/science.aau6592,
2019.
Mayer, M., Tsubouchi, T., Winkelbauer, S., Larsen, K. M. H., Berx, B.,
Macrander, A., Iovino, D., Jónsson, S., and Renshaw, R.: Recent
variations in oceanic transports across the Greenland-Scotland Ridge,
Copernicus Ocean State Report, 7, J.
Oper. Oceanogr., accepted, 2023.
McCartney, M. S. and Talley, L. D.: Warm-to-Cold Water Conversion in the
Northern North Atlantic Ocean, J. Phys. Oceanogr., 14, 922–935,
https://doi.org/10.1175/1520-0485(1984)014<0922:WTCWCI>2.0.CO;2, 1984.
Meincke, J.: The Hydrographic Section along the Iceland-Faroe Ridge carried
out by R.V. “Anton Dohrn” in 1959–1971, Ber. Dt. Wiss. Kommiss.
Meeresforsch., 22, 372—384, 1972.
Meincke, J.: On the distribution of low salinity intermediate waters around
the Faroes, Deutsche Hydrographische Zeitschrift, 31, 50–64,
https://doi.org/10.1007/bf02226000, 1978.
Meincke, J.: The Modern Current Regime Across the Greenland-Scotland Ridge,
in: Structure and Development of the Greenland-Scotland Ridge, edited by:
Bott, M. H. P., Saxov, S., Talwani, M., and Thiede, J., NATO Conference
Series (IV Marine Science), 8, Springer, Boston, MA, 637–650,
https://doi.org/10.1007/978-1-4613-3485-9_31, 1983.
Melnikov, S. P. and Popov, V. I.: The Distribution and Specific Features of
the Biology of Deepwater Redfish Sebastes mentella (Scorpaenidae) During
Mating in the Pelagial of the Northern Atlantic, J. Ichthyol., 2009,
300–312, https://doi.org/10.1134/S0032945209040031, 2009.
Moat, B. I., Smeed, D. A., Frajka-Williams, E., Desbruyères, D. G., Beaulieu, C., Johns, W. E., Rayner, D., Sanchez-Franks, A., Baringer, M. O., Volkov, D., Jackson, L. C., and Bryden, H. L.: Pending recovery in the strength of the meridional overturning circulation at 26° N, Ocean Sci., 16, 863–874, https://doi.org/10.5194/os-16-863-2020, 2020.
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021.
Nielsen, J. N.: Hydrography of the waters by the Faroe Islands and Iceland
during the cruises of the danish research steamer “Thor” in the summer 1903,
Medd. Komm. f. Havunders. Serie Hydrogr., Bind I Nr. 4, 42 pp., 1904.
Olsen, S. M., Hansen, B., Østerhus, S., Quadfasel, D., and Valdimarsson, H.: Biased thermohaline exchanges with the Arctic across the Iceland–Faroe Ridge in ocean climate models, Ocean Sci., 12, 545–560, https://doi.org/10.5194/os-12-545-2016, 2016.
Orvik, K. A. and Niiler, P.: Major pathways of Atlantic water in the
northern North Atlantic and Nordic Seas toward Arctic, Geophys. Res. Lett.,
29, 1896, https://doi.org/10.1029/2002GL015002, 2002.
Østerhus, S., Sherwin, T., Quadfasel, D., and Hansen, B.: The overflow
transport east of Iceland, Chap. 18, in: Arctic-Subarctic Ocean Fluxes:
Defining the Role of the Northern Seas in Climate, edited by: Dickson, R.
R., Meincke, J., and Rhines, P., Springer Science C Business Media B. V.,
427–441, https://doi.org/10.1007/978-1-4020-6774-7_19, 2008.
Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., de Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., Jónsson, S., Johnson, C., Jochumsen, K., Hansen, B., Curry, B., Cunningham, S., and Berx, B.: Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations, Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, 2019.
Pacariz, S. V., Hátún, H., Jacobsen, J. A., Johnson, C., Eliasen,
S., and Rey, F.: Nutrient-driven poleward expansion of the Northeast
Atlantic mackerel (Scomber scombrus) stock: A new hypothesis, Elem. Sci.
Anth., 4, 105, https://doi.org/10.12952/journal.elementa.000105, 2016.
Perkins, H., Hopkins, T. S., Malmberg, S. A., Poulain, P. M., and
Warn-Varnas, A.: Oceanographic conditions east of Iceland, J. Geophys.
Res.-Oceans, 103, 21531–21542, https://doi.org/10.1029/98JC00890,
1998.
Pyper, B. J. and Peterman, R. M.: Comparison of methods to account for
autocorrelation in correlation analyses of fish data, Can. J. Fish. Aquat.
Sci., 55, 2127–2140, https://doi.org/10.1139/f98-104, 1998.
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean
dynamic topography computed from the combination of GRACE data, altimetry,
and in situ measurements, J. Geophys. Res., 116,
C07018, https://doi.org/10.1029/2010JC006505, 2011.
Rossby, T., Prater, M. D., and Søiland, H.: Pathways of inflow and
dispersion of warm waters in the Nordic seas, J. Geophys. Res.-Oceans, 114,
C04011, https://doi.org/10.1029/2008JC005073, 2009.
Rossby, T., Flagg, C., Chafik, L., Harden, B., and Søiland, H.: A Direct
Estimate of Volume, Heat, and Freshwater Exchange Across the
Greenland-Iceland-Faroe-Scotland Ridge, J. Geophys. Res.-Oceans, 123,
7139–7153, https://doi.org/10.1029/2018jc014250, 2018.
Sarafanov, A., Falina, A., Mercier, H., Sokov, A., Lherminier, P., Gourcuff,
C., Gladyshev, S., Gaillard, F., and Daniault, N.: Mean full-depth summer
circulation and transports at the northern periphery of the Atlantic Ocean
in the 2000s, J. Geophys. Res., 117, C01014,
https://doi.org/10.1029/2011JC007572, 2012.
Smeed, D. A., McCarthy, G. D., Cunningham, S. A., Frajka-Williams, E., Rayner, D., Johns, W. E., Meinen, C. S., Baringer, M. O., Moat, B. I., Duchez, A., and Bryden, H. L.: Observed decline of the Atlantic meridional overturning circulation 2004–2012, Ocean Sci., 10, 29–38, https://doi.org/10.5194/os-10-29-2014, 2014.
Smeed, D. A., Josey, S. A., Beaulieu, C., Johns, W. E., Moat, B. I.,
Frajka-Williams, E., Rayner, D., Meinen, C. S., Baringer, M. O., Bryden, H.
L., and McCarthy, G. D.: The North Atlantic Ocean Is in a State of Reduced
Overturning, Geophys. Res. Lett., 45, 1527–1533,
https://doi.org/10.1002/2017gl076350, 2018.
Tait, J. B., Lee, A. J., Stefansson, U., and Hermann, F.: Temperature and
salinity distributions and water-masses of the region, Rapp. PV Reun. Cons.
Int. Explor. Mer., 157, 38–149, 1967.
Tsubouchi, T., Våge, K., Hansen, B., Larsen, K. M. H., Østerhus, S.,
Johnson, C., Joìnsson, S., and Valdimarsson, H.: Increased ocean heat
transport into the Nordic Seas and Arctic Ocean over the period 1993–2016,
Nat. Clim. Change, 11, 21–26, https://doi.org/10.1038/s41558-020-00941-3,
2021.
Ullgren, J. E., Darelius, E., and Fer, I.: Volume transport and mixing of the Faroe Bank Channel overflow from one year of moored measurements, Ocean Sci., 12, 451–470, https://doi.org/10.5194/os-12-451-2016, 2016.
Voet, G.: On the Nordic Overturning Circulation, Dissertation zur Erlangung
des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften
der Universität Hamburg, Hamburg, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a39f14525c76072f3b4f93fc56b32aaa4b8bd06f (last access: 14 August 2023), 98 pp., 2010.
von Storch, H.: Misuses of Statistical Analysis in Climate Research, in:
Analysis of Climate Variability, edited by: von Storch, H. and Navarra, A.,
Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-662-03744-7_2, 1999.
Worthington, E. L., Moat, B. I., Smeed, D. A., Mecking, J. V., Marsh, R., and McCarthy, G. D.: A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline, Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021, 2021.
Worthington, L. V.: The Norwegian Sea as a mediterranean basin, Deep-Sea
Res. Pt. I, 17, 77–84, https://doi.org/10.1016/0011-7471(70)90088-4, 1970.
Short summary
Based on in situ observations combined with sea level anomaly (SLA) data from satellite altimetry, volume as well as heat (relative to 0 °C) transport of the Iceland–Faroe warm-water inflow towards the Arctic (IF inflow) increased from 1993 to 2021. The reprocessed SLA data released in December 2021 represent observed variations accurately. The IF inflow crosses the Iceland–Faroe Ridge in two branches, with retroflection in between. The associated coupling to overflow reduces predictability.
Based on in situ observations combined with sea level anomaly (SLA) data from satellite...