Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1183-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1183-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Sensitivity of gyre-scale marine connectivity estimates to fine-scale circulation
Saeed Hariri
CORRESPONDING AUTHOR
LMD-IPSL, École normale supérieure, PSL, 24 rue Lhomond,
75005 Paris, CEDEX 05, France
Physical Oceanography and Instrumentation, Leibniz Institute for
Baltic Sea Research Warnemünde (IOW), Seestraße 15, 18119
Rostock, Germany
Sabrina Speich
LMD-IPSL, École normale supérieure, PSL, 24 rue Lhomond,
75005 Paris, CEDEX 05, France
Bruno Blanke
Univ Brest, Laboratoire d'Océanographie Physique et Spatiale, UMR6523 CNRS-Ifremer-IRDUBO, 29280 Plouzané, France
Marina Lévy
Sorbonne Université, LOCEAN-IPSL, CNRS/IRD/MNHN, Paris, CEDEX
05, France
Related authors
No articles found.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, and Marina Levy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2294, https://doi.org/10.5194/egusphere-2024-2294, 2024
Short summary
Short summary
Our study assesses the capability of CMIP6 models to reproduce satellite observations of sub-seasonal chlorophyll variability. Models struggle to reproduce the sub-seasonal variance and its contribution across timescales. Some models overestimate sub-seasonal variance and exaggerate its role in annual fluctuations, while others underestimate it. Underestimation is likely due to the coarse resolution of models, while overestimation may result from intrinsic oscillations in biogeochemical models.
Yan Barabinot, Sabrina Speich, and Xavier Carton
EGUsphere, https://doi.org/10.22541/essoar.169833426.64842571/v1, https://doi.org/10.22541/essoar.169833426.64842571/v1, 2024
Short summary
Short summary
Mesoscale eddies are ubiquitous rotating currents in the ocean. Some eddies called "Materially Coherent" are able to transport a different water mass from the surrounding water. By analyzing 3D eddies structures sampled during oceanographic cruises, we found that eddies can be nonmaterially coherent accounting only for their surface properties, but materially coherent considering their properties at depth. Future studies cannot rely solely on satellite data to evaluate heat and salt transport.
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1558, https://doi.org/10.5194/egusphere-2024-1558, 2024
Short summary
Short summary
The open ocean helps mitigate climate change by storing CO2 through the biological carbon pump (BCP). The BCP involves processes like phytoplankton capturing CO2 and sequestering it in the deep ocean via marine snow production. We found significant marine snow accumulation from the surface to 600 meters deep in frontal regions between eddies. We suggest that the coupling of hydrodynamics at eddy edges and biological activity (via planktonic organisms) may enhanced this process.
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1820, https://doi.org/10.5194/egusphere-2024-1820, 2024
Short summary
Short summary
Phytoplankton net primary production (NPP) is influenced by many processes, and their representation varies across Earth-system models. This leads to differing projections for NPP's future under climate change, especially in the North Atlantic. To address this, we identified and assessed the processes controlling NPP in each model. This assessment helped us select the most reliable models, significantly improving NPP projections in the region.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4, https://doi.org/10.5194/sp-1-osr7-4-2023, https://doi.org/10.5194/sp-1-osr7-4-2023, 2023
Short summary
Short summary
We use ocean reanalyses, in which ocean models are combined with observations, to infer past changes in ocean circulation and heat transport in the South Atlantic. Comparing these estimates with other observation-based estimates, we find differences in their trends, variability, and mean heat transport but closer agreement in their mean overturning strength. Ocean reanalyses can help us understand the cause of these differences, which could improve estimates of ocean transports in this region.
Inès Mangolte, Marina Lévy, Clément Haëck, and Mark D. Ohman
Biogeosciences, 20, 3273–3299, https://doi.org/10.5194/bg-20-3273-2023, https://doi.org/10.5194/bg-20-3273-2023, 2023
Short summary
Short summary
Ocean fronts are ecological hotspots, associated with higher diversity and biomass for many marine organisms, from bacteria to whales. Using in situ data from the California Current Ecosystem, we show that far from being limited to the production of diatom blooms, fronts are the scene of complex biophysical couplings between biotic interactions (growth, competition, and predation) and transport by currents that generate planktonic communities with an original taxonomic and spatial structure.
Clément Haëck, Marina Lévy, Inès Mangolte, and Laurent Bopp
Biogeosciences, 20, 1741–1758, https://doi.org/10.5194/bg-20-1741-2023, https://doi.org/10.5194/bg-20-1741-2023, 2023
Short summary
Short summary
Phytoplankton vary in abundance in the ocean over large regions and with the seasons but also because of small-scale heterogeneities in surface temperature, called fronts. Here, using satellite imagery, we found that fronts enhance phytoplankton much more where it is already growing well, but despite large local increases the enhancement for the region is modest (5 %). We also found that blooms start 1 to 2 weeks earlier over fronts. These effects may have implications for ecosystems.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Adriana Bailey, Franziska Aemisegger, Leonie Villiger, Sebastian A. Los, Gilles Reverdin, Estefanía Quiñones Meléndez, Claudia Acquistapace, Dariusz B. Baranowski, Tobias Böck, Sandrine Bony, Tobias Bordsdorff, Derek Coffman, Simon P. de Szoeke, Christopher J. Diekmann, Marina Dütsch, Benjamin Ertl, Joseph Galewsky, Dean Henze, Przemyslaw Makuch, David Noone, Patricia K. Quinn, Michael Rösch, Andreas Schneider, Matthias Schneider, Sabrina Speich, Bjorn Stevens, and Elizabeth J. Thompson
Earth Syst. Sci. Data, 15, 465–495, https://doi.org/10.5194/essd-15-465-2023, https://doi.org/10.5194/essd-15-465-2023, 2023
Short summary
Short summary
One of the novel ways EUREC4A set out to investigate trade wind clouds and their coupling to the large-scale circulation was through an extensive network of isotopic measurements in water vapor, precipitation, and seawater. Samples were taken from the island of Barbados, from aboard two aircraft, and from aboard four ships. This paper describes the full collection of EUREC4A isotopic in situ data and guides readers to complementary remotely sensed water vapor isotope ratios.
Léa Olivier, Jacqueline Boutin, Gilles Reverdin, Nathalie Lefèvre, Peter Landschützer, Sabrina Speich, Johannes Karstensen, Matthieu Labaste, Christophe Noisel, Markus Ritschel, Tobias Steinhoff, and Rik Wanninkhof
Biogeosciences, 19, 2969–2988, https://doi.org/10.5194/bg-19-2969-2022, https://doi.org/10.5194/bg-19-2969-2022, 2022
Short summary
Short summary
We investigate the impact of the interactions between eddies and the Amazon River plume on the CO2 air–sea fluxes to better characterize the ocean carbon sink in winter 2020. The region is a strong CO2 sink, previously underestimated by a factor of 10 due to a lack of data and understanding of the processes responsible for the variability in ocean carbon parameters. The CO2 absorption is mainly driven by freshwater from the Amazon entrained by eddies and by the winter seasonal cooling.
Alain de Verneil, Zouhair Lachkar, Shafer Smith, and Marina Lévy
Biogeosciences, 19, 907–929, https://doi.org/10.5194/bg-19-907-2022, https://doi.org/10.5194/bg-19-907-2022, 2022
Short summary
Short summary
The Arabian Sea is a natural CO2 source to the atmosphere, but previous work highlights discrepancies between data and models in estimating air–sea CO2 flux. In this study, we use a regional ocean model, achieve a flux closer to available data, and break down the seasonal cycles that impact it, with one result being the great importance of monsoon winds. As demonstrated in a meta-analysis, differences from data still remain, highlighting the great need for further regional data collection.
Zouhair Lachkar, Michael Mehari, Muchamad Al Azhar, Marina Lévy, and Shafer Smith
Biogeosciences, 18, 5831–5849, https://doi.org/10.5194/bg-18-5831-2021, https://doi.org/10.5194/bg-18-5831-2021, 2021
Short summary
Short summary
This study documents and quantifies a significant recent oxygen decline in the upper layers of the Arabian Sea and explores its drivers. Using a modeling approach we show that the fast local warming of sea surface is the main factor causing this oxygen drop. Concomitant summer monsoon intensification contributes to this trend, although to a lesser extent. These changes exacerbate oxygen depletion in the subsurface, threatening marine habitats and altering the local biogeochemistry.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Damien Couespel, Marina Lévy, and Laurent Bopp
Biogeosciences, 18, 4321–4349, https://doi.org/10.5194/bg-18-4321-2021, https://doi.org/10.5194/bg-18-4321-2021, 2021
Short summary
Short summary
An alarming consequence of climate change is the oceanic primary production decline projected by Earth system models. These coarse-resolution models parameterize oceanic eddies. Here, idealized simulations of global warming with increasing resolution show that the decline in primary production in the eddy-resolved simulations is half as large as in the eddy-parameterized simulations. This stems from the high sensitivity of the subsurface nutrient transport to model resolution.
Pierre Bosser, Olivier Bock, Cyrille Flamant, Sandrine Bony, and Sabrina Speich
Earth Syst. Sci. Data, 13, 1499–1517, https://doi.org/10.5194/essd-13-1499-2021, https://doi.org/10.5194/essd-13-1499-2021, 2021
Short summary
Short summary
In the framework of the EUREC4A campaign, water vapour measurements were retrieved over the tropical west Atlantic Ocean from GNSS data acquired from three research vessels (R/Vs Atalante, Maria S. Merian and Meteor). The retrievals from R/Vs Atalante and Meteor are shown to be of high quality unlike the results for the R/V Maria S. Merian. These ship-borne retrievals are intended to be used for the description and understanding of meteorological phenomena that occurred during the campaign.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 491–514, https://doi.org/10.5194/essd-13-491-2021, https://doi.org/10.5194/essd-13-491-2021, 2021
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 811 radiosondes, launched regularly (usually 4-hourly) from Barbados, and 4 ships measured wind, temperature, and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
Clément Bricaud, Julien Le Sommer, Gurvan Madec, Christophe Calone, Julie Deshayes, Christian Ethe, Jérôme Chanut, and Marina Levy
Geosci. Model Dev., 13, 5465–5483, https://doi.org/10.5194/gmd-13-5465-2020, https://doi.org/10.5194/gmd-13-5465-2020, 2020
Short summary
Short summary
In order to reduce the cost of ocean biogeochemical models, a multi-grid approach where ocean dynamics and tracer transport are computed with different spatial resolution has been developed in the NEMO v3.6 OGCM. Different experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened without significantly affecting the resolved passive tracer fields. This approach leads to a factor of 7 reduction of the overhead associated with running a full biogeochemical model.
Siren Rühs, Franziska U. Schwarzkopf, Sabrina Speich, and Arne Biastoch
Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, https://doi.org/10.5194/os-15-489-2019, 2019
Short summary
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
Marion Kersalé, Tarron Lamont, Sabrina Speich, Thierry Terre, Remi Laxenaire, Mike J. Roberts, Marcel A. van den Berg, and Isabelle J. Ansorge
Ocean Sci., 14, 923–945, https://doi.org/10.5194/os-14-923-2018, https://doi.org/10.5194/os-14-923-2018, 2018
Louise Rousselet, Alain de Verneil, Andrea M. Doglioli, Anne A. Petrenko, Solange Duhamel, Christophe Maes, and Bruno Blanke
Biogeosciences, 15, 2411–2431, https://doi.org/10.5194/bg-15-2411-2018, https://doi.org/10.5194/bg-15-2411-2018, 2018
Short summary
Short summary
The patterns of the large- and fine-scale surface circulation on biogeochemical and biological distributions are examined in the western tropical South Pacific (WTSP) in the context of the OUTPACE oceanographic cruise. The combined use of in situ and satellite data allows for the identification of water mass transport pathways and fine-scale structures, such as fronts, that drive surface distribution of tracers and microbial community structures.
Zouhair Lachkar, Marina Lévy, and Shafer Smith
Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, https://doi.org/10.5194/bg-15-159-2018, 2018
Short summary
Short summary
This study provides a new contribution to our understanding of the coupling between the oxygen minimum zones (OMZs) and climate. It explores how idealized changes in summer and winter Indian monsoon winds affect the productivity of the Arabian Sea and the size and intensity of its OMZ. We find that intensification of Indian monsoon winds can amplify climate warming on decadal to centennial timescales.
Madhavan Girijakumari Keerthi, Matthieu Lengaigne, Marina Levy, Jerome Vialard, Vallivattathillam Parvathi, Clément de Boyer Montégut, Christian Ethé, Olivier Aumont, Iyyappan Suresh, Valiya Parambil Akhil, and Pillathu Moolayil Muraleedharan
Biogeosciences, 14, 3615–3632, https://doi.org/10.5194/bg-14-3615-2017, https://doi.org/10.5194/bg-14-3615-2017, 2017
Short summary
Short summary
The northern Arabian Sea hosts a winter chlorophyll bloom, which exhibits strong interannual variability. The processes responsible for this interannual variation of the bloom are investigated using observations and a model. The interannual fluctuations of the winter bloom are largely related to the interannual mixed-layer depth (MLD) anomalies, which are driven by net heat flux anomalies. MLD controls the bloom amplitude through a modulation of nutrient turbulent fluxes into the mixed layer.
Parvathi Vallivattathillam, Suresh Iyyappan, Matthieu Lengaigne, Christian Ethé, Jérôme Vialard, Marina Levy, Neetu Suresh, Olivier Aumont, Laure Resplandy, Hema Naik, and Wajih Naqvi
Biogeosciences, 14, 1541–1559, https://doi.org/10.5194/bg-14-1541-2017, https://doi.org/10.5194/bg-14-1541-2017, 2017
Short summary
Short summary
During late boreal summer and fall, the west coast of India (WCI) experiences hypoxia, which turns into anoxia during some years. We analyze a coupled physical–biogeochemical simulation over the 1960–2012 period to investigate the physical processes influencing oxycline interannual variability off the WCI. We show that fall WCI oxycline fluctuations are strongly related to Indian Ocean Dipole (IOD), with positive IODs preventing anoxia, while negative IODs do not necessarily result in anoxia.
Cited articles
Alberto, F., Raimondi, P. T., Reed, D. C., Watson, J. R., Siegel, D. A., Mitarai, S., Coelho, N.,
and Serrão, E. A.: Isolation by oceanographic distance explains genetic
structure for Macrocystis pyrifera in the Santa Barbara Channel, Mol Ecol.,
20, 2543–2554, https://doi.org/10.1111/j.1365-294X.2011.05117.x, 2011.
Berloff, P. S. and McWilliams, J. C.: Material transport in oceanic Gyres,
Part II: Hierarchy of stochastic models, J. Phys. Oceanogr.,
32, 797–830, https://doi.org/10.1175/1520-0485(2002)032<0797:mtiogp>2.0.co;2, 2002.
Bharti, D. K., Katell Guizien, M. T., and Aswathi-Das, P. N.: Vinayachandran,
Kartik Shanker, Connectivity networks and delineation of disconnected
coastal provinces along the Indian coastline using large-scale Lagrangian
transport simulations, Limnology and Oceanography, Assoc.
Sci. Limnol. Oceanogr., 67, 1416–1428,
https://doi.org/10.1002/lno.12092, 2022.
Blanke, B. and S. Raynaud.: Kinematics of the Pacific Equatorial
Undercurrent: An Eulerian and Lagrangian approach from GCM results, J. Phys. Oceanogr., 27, 1038–1053,
https://doi.org/10.1175/1520-0485(1997)027<1038:KOTPEU>2.0.CO;2,
1997.
Blanke, B., Speich, S., Madec, G., and Döös, K.: A global diagnostic
of interocean mass transfers, J. Phys. Oceanogr., 31,
1623–1642,
https://doi.org/10.1175/1520-0485(2001)031<1623:AGDOIM>2.0.CO;2,
2001.
Blanke, B., Bonhommeau, S., Grima, N., and Drillet, Y.: Sensitivity of
advective transfer times across the North Atlantic Ocean to the temporal and
spatial resolution of model velocity data: Implication for European eel
larval transport, Dynam. Atmos. Ocean., 55/56, 22–44,
https://doi.org/10.1016/j.dynatmoce.2012.04.003, 2012.
Cotroneo, Y., Celentano, P., Aulicino, G., Perilli, A., Olita, A., Falco,
P., Sorgente, R., Ribotti, A., Budillon, G., Fusco, G., and Pessini, F.:
Connectivity Analysis Applied to Mesoscale Eddies in the Western
Mediterranean Basin, Remote Sens., 13, 4228,
https://doi.org/10.3390/rs13214228, 2021.
Cowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S., and Werner, F. E.:
Population connectivity in marine systems An Overview, Oceanography, 20,
14–21, 2007.
Dever, E. P., Hendershott, M. C., and Winant, C. D.: Statistical aspects of
surface drifter observations of circulation in the Santa Barbara Channel, J.
Geophys. Res.-Ocean., 103, 24781–24797,
https://doi.org/10.1029/98JC02403, 1998.
Dijkstra, E. W.: A note on two problems in connexion with graphs, Numer.
Math., 1, 269–271, https://doi.org/10.1007/BF01386390, 1959.
Döös, K.: Interocean exchange of water masses, J. Geophys. Res.-Ocean., 100, 13499–13514, https://doi.org/10.1029/95JC00337, 1995.
Drouet, K., Jauzein, C., Herviot-Heath, D., Hariri, S., Laza-Martinez, A.,
Lecadet, C., Seoane, S., Sourisseau, M., Plus, M., Lemée, R., and Siano, R.:
Current distribution and potential expansion of the harmful benthic
dinoflagellate Ostreopsis cf. siamensis towards the warming waters of the
Bay of Biscay, North-East Atlantic, Environ. Microbiol., 23,
4956–4979, https://doi.org/10.1111/1462-2920.15406, 2021.
Fischer, H. B., List, J. E., Koh, R. C., Imberger, J., and Brooks, N. H.:
Mixing in Inland and Coastal Waters, Academic Press, New York,
https://doi.org/10.1016/C2009-0-22051-4, 1979.
Froyland, G. and Padberg, K.: Almost-invariant sets and invariant
manifolds Connecting probabilistic and geometric descriptions of coherent
structures in flows, Physica D, 238, 1507–1523,
https://doi.org/10.1016/j.physd.2009.03.002, 2009.
Froyland, G., Stuart, R. M., and van Sebille, E.: How well-connected
is the surface of the global ocean?, Chaos, 24, 033126, https://doi.org/10.1063/1.4892530, 2014.
Gaylord, B. and Gaines, S. D.: Temperature or transport? Range limits in marine
species mediated solely by flow, Am. Nat., 155, 769–789,
https://doi.org/10.1086/303357, 2000.
Grant, S. B., Kim, J. H., Jones, B. H., Jenkins, S. A., Wasyl, J., and
Cudaback, C.: Surf zone entrainment, along-shore transport, and human health
implications of pollution from tidal outlets, J. Geophys. Res., 110,
C10025, https://doi.org/10.1029/2004JC002401, 2005.
Griffa, A.: Applications of stochastic particle models to oceanographic
problems, in: Stochastic modelling in physical oceanography, edited by: Adler, R. J., Müller, P., and Rozovskii, B. L., 113–140, Birkhäuser
Boston, https://doi.org/10.1007/978-1-4612-2430-3_5, 1996.
Hariri, S.: Near-Surface Transport Properties and Lagrangian Statistics
during Two Contrasting Years in the Adriatic Sea, J. Mar. Sci.
Eng., 8, 681, https://doi.org/10.3390/jmse8090681, 2020.
Hariri, S.: Analysis of Mixing Structures in the Adriatic Sea Using
Finite-Size Lyapunov Exponents, Geophys. Astrophys. Fluid
Dynam., 116, 20–37, https://doi.org/10.1080/03091929.2021.1962851,
2022.
Hariri, S.: Ariane Lagrangian Simulation, Zenodo [code and data set], https://doi.org/10.5281/zenodo.8123776, 2023.
Hariri, S., Besio, G., and Stocchino, A.: Comparison of Finite Time Lyapunov
Exponent and Mean Flow Energy During Two Contrasting Years in the Adriatic
Sea, OCEANS'15 MTS/IEEE, Genoa, Italy, https://doi.org/10.1109/OCEANS-Genova.2015.7271418, 19-21 May 2015.
Hariri, S., Plus, M., Le Gac, M., Séchet, V., Revilla, M., and Sourisseau, M.:
Advection and Composition of Dinophysis spp. Populations Along the European
Atlantic Shelf, Front. Mar. Sci., 9, 914909, https://doi.org/10.3389/fmars.2022.914909,
2022.
James, M. K., Armsworth, P. R., Mason, L. B., and Bode, L.: The Structure
of Reef Fish Metapopulations: Modelling Larval Dispersal and Retention
Patterns, Proceedings: Biological Sciences, 269, 2079–2086,
2002.
Jönsson, B. and Watson, J.: The timescales of global surface-ocean
connectivity, Nat. Commun., 7, 11239, https://doi.org/10.1038/ncomms1123,
2016.
Klocker, A., Ferrari, R., and LaCasce, J. H.: Estimating suppression of
eddy mixing by mean flows, J. Phys. Oceanogr., 42,
1566–1576, https://doi.org/10.1175/JPO-D-11-0205.1, 2012a.
Klocker, A., Ferrari, R., Lacasce, J. H., and Merrifield, S. T.:
Reconciling float-based and tracer-based estimates of lateral diffusivities,
J. Mar. Res., 70, 569–602,
https://doi.org/10.1357/002224012805262743, 2012b.
Kot, C. Y., Åkesson, S., Alfaro-Shigueto, J., Amorocho Llanos, D. F., Antonopoulou, M., Balazs, G. H., Baverstock, W. R., Blumenthal, J. M., Broderick, A. C., Bruno, I., Canbolat, A. F., Casale, P., Cejudo, D., Coyne, M. S., Curtice, C., DeLand, S., DiMatteo, A., Dodge, K., Dunn, D. C., and
Halpin, P. N.: Network analysis of sea turtle movements and connectivity: A tool for conservation prioritization, Divers. Distrib., 28, 810–829, https://doi.org/10.1111/ddi.13485, 2022.
LaCasce, J. H.: Statistics from Lagrangian observations, Prog. Oceanogr.,
77, 1–29, https://doi.org/10.1016/j.pocean.2008.02.002, 2008.
Le Sommer, J., d'Ovidio, F., and Madec, G.: Parameterization of subgrid
stirring in eddy resolving ocean models, Part 1: Theory and diagnostics,
Ocean Model., 39, 154–169,
https://doi.org/10.1016/j.ocemod.2011.03.007, 2011.
Levin, S. A.: The problem of pattern and scale in ecology: The Robert H.
MacArthur Award Lecture, Ecology, 73, 1943–1967,
https://doi.org/10.2307/1941447, 1992.
Lévy, M., Iovino, D., Resplandy, L., Klein, P., Madec, G., Tréguier, A.-M.,
Masson, S., and Takahashi, K.: Large-scale impacts of submesoscale dynamics on
phytoplankton: Local and remote effects, Ocean Model., 43/44,
77–93, https://doi.org/10.1016/j.ocemod.2011.12.003, 2012a.
Lévy, M., Resplandy, L., Klein, P., Capet, X., Iovino, D., and Ethé, C.: Grid
degradation of submesoscale resolving ocean models: Benefits for offline
passive tracer transport, Ocean Model., 48, 1–9,
https://doi.org/10.1016/j.ocemod.2012.02.004, 2012b.
Madec, G., Delecluse, P., Imbard, M., and Lévy, C.: OPA 8.1 Ocean General
Circulation Model Reference Manual, Note du Pole de Modelisation, Institut Pierre-Simon Laplace, 91 pp., 1998.
Mitarai, S., Siegel, D. A., Watson, J. R., Dong, C., and McWilliams, J. C.:
Quantifying connectivity in the coastal ocean with application to the
Southern California Bight, J. Geophys. Res., 114, C10026,
https://doi.org/10.1029/2008JC005166, 2009.
Mora, C., Treml, E. A., Roberts, J., Crosby, K., Roy, D., and Tittensor, D. P.:
High connectivity among habitats precludes the relationship between
dispersal and range size in tropical reef fishes, Ecography, 35, 89–96,
https://doi.org/10.1111/j.1600-0587.2011.06874.x, 2012.
Novi, L., Bracco, A., and Falasca, F.: Uncovering marine connectivity through
sea surface temperature, Sci. Rep., 11, 8839,
https://doi.org/10.1038/s41598-021-87711-z, 2021.
Palumbi, S. R.: Population genetics, demographic connectivity, the design of
marine reserves, Ecol. Appl., 13, 146–158,
https://doi.org/10.1890/1051-0761(2003)013[0146:PGDCAT]2.0.CO;2, 2003.
Piterbarg, L. I.: The top Lyapunov exponent for a stochastic flow modeling
the upper ocean turbulence, SIAM J. Appl. Mathemat., 62,
777–800, https://doi.org/10.1137/S0036139999366401, 2002.
Poulain, P.-M. and Niiler, P.: Statistical-analysis of the surface
circulation in the California Current System using satellite-tracked
drifters, J. Phys. Oceanogr., 19, 1588–1603,
https://doi.org/10.1175/1520-0485(1989)019<1588:SAOTSC>2.0.CO;2,
1989.
Poulain, P.-M. and Hariri, S.: Transit and residence times in the Adriatic
Sea surface as derived from drifter data and Lagrangian numerical
simulations, Ocean Sci., 9, 713–720, https://doi.org/10.5194/os-9-713-2013, 2013.
Pope, S.: Lagrangian PDF methods for turbulent flows, Annu. Rev. Fluid
Mech., 26, 23–63,
https://doi.org/10.1146/annurev.fl.26.010194.000323, 1994.
Reijnders, D., Deleersnijder, E., and van Sebille, E.: Simulating
Lagrangian subgrid-scale dispersion on neutral surfaces in the ocean,
J. Adv. Model. Earth Syst., 14, e2021MS002850,
https://doi.org/10.1029/2021MS002850, 2022.
Reynolds, A.: On Lagrangian stochastic modelling of material transport in
oceanic gyres, Physica D, 172, 124–138,
https://doi.org/10.1016/S0167-2789(02)00660-7, 2002.
Richter, D. J., Watteaux, R., Vannier, T., Leconte, J., Frémont, P.,
Reygondeau, G., Maillet, N., Henry, N., Benoit, G., Da Silva, O., Delmont, T. O., Fernàndez-Guerra, A., Suweis, S., Narci, R., Berney, C., Eveillard, D., Gavory, F., Guidi, L., Labadie, K., Mahieu, E., Poulain, J., Romac, S.,
Roux, S., Dimier, C., Kandels, S., Picheral, M., Searson, S., Tara Oceans Coordinators,
Pesant, S., Aury, J.-M., Brum, J. R., Lemaitre, C., Pelletier, E., Bork, P.,
Sunagawa, S., Lombard, F., Karp-Boss, L., Bowler, C., Sullivan, M. B.,
Karsenti, E., Mariadassou, M., Probert, I., Peterlongo, P., Wincker, P., de
Vargas, C., Ribera d'Alcalà, M., Iudicone, D., and Jaillon, O.: Genomic evidence for global ocean plankton biogeography
shaped by large-scale current systems, eLife, 11, e78129,
https://doi.org/10.7554/eLife.78129, 2022.
Rodean, H. C.: Stochastic Lagrangian models of turbulent diffusion,
American Meteorological Society
Boston, MA, 84 pp., https://doi.org/10.1007/978-1-935704-11-9,
1996.
Rossi, V., Ser-Giacomi, E., López, C., and Hernández-García,
E.: Hydrodynamic provinces and oceanic connectivity from a transport network
help designing marine reserves, Geophys. Res. Lett., 41,
2883–2891, https://doi.org/10.1002/2014GL059540, 2014.
Roughgarden, J., Gaines, S., and Possingham, H.: Recruitment dynamics in
complex life-cycles, Science, 241, 1460–1466,
https://doi.org/10.1126/science.11538249, 1988.
Sawford, B. L.: Reynolds number effects in Lagrangian stochastic models of
turbulent dispersion, Phys. Fluid. A, 3, 1577–1586,
https://doi.org/10.1063/1.857937, 1991.
Ser-Giacomi, E., Baudena, A., Rossi, V., Follows, M., Clayton, S., Vasile, R., López, C., and
Hernández-García, E.: Lagrangian betweenness as a
measure of bottlenecks in dynamical systems with oceanographic examples, Nat.
Commun., 12, 4935, https://doi.org/10.1038/s41467-021-25155-9, 2021a.
Ser-Giacomi, E., Legrand, T., Hernandez-Carrasco, I.,
and Rossi, V.: Explicit and implicit network connectivity: Analytical formulation
and application to transport processes, Phys. Rev. E, 103,
042309, https://doi.org/10.1103/physreve.103.042309, 2021b.
Ser-Giacomi, E., Vasile, R., Hernández-García, E., and
López, C.: Most probable paths in temporal weighted networks:
An application to ocean transport, Phys. Rev. E, 92, 012818,
https://doi.org/10.1103/PhysRevE.92.012818, 2015.
Spivakovskaya, D., Heemink, A. W., and Deleersnijder, E.: Lagrangian
modelling of multi-dimensional advection-diffusion with space-varying
diffusivities: Theory and idealized test cases, Ocean Dynam., 57,
189–203, https://doi.org/10.1007/s10236-007-0102-9, 2007.
Swenson, M. and Niiler, P.: Statistical analysis of the surface circulation
of the California Current, J. Geophys. Res., 101, 22631–22645,
https://doi.org/10.1029/96JC02008, 1996.
Treml, E. A., Halpin, P. N., Urban, D. L., and Pratson, L. F.: Modeling population
connectivity by ocean currents, a graph-theoretic approach for marine
conservation, Landscape Ecol., 23, 19–36,
https://doi.org/10.1007/s10980-007-9138-y, 2008.
Trakhtenbrot, A., Nathan, R., Perry, G., and Richardson. D. M.: The importance of
long-distance dispersal in biodiversity conservation, Divers Distrib.,
11, 173–181, https://doi.org/10.1111/j.1366-9516.2005.00156.x, 2005.
Van Sebille, E., England, E. H., and Froyland, G.: Origin, dynamics and
evolution of ocean garbage patches from observed surface drifters, Environ.
Res. Lett., 7, 044040, https://doi.org/10.1088/1748-9326/7/4/044040,
2012.
Van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J., Deleersnijder, E.,
Döös, K., Drake, H. F., Drijfhout, S., Gary, S. F., Heemink, A. W.,
Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C., MacGilchrist, G. A.,
Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli, F., Paris, C. B.,
Piggott, M. D., Polton, J. A., Rühs, S., Shah, S. H. A. M., Thomas, M. D.,
Wang, J., Wolfram, P. J., Zanna, L., and Zika, J. D.: Lagrangian ocean analysis: fundamentals and practices,
Ocean Model., 121, 49–75, https://doi.org/10.1016/j.ocemod.2017.11.008,
2018.
Veneziani, M., Griffa, A., Reynolds, A. M., and Mariano, A. J.: Oceanic
turbulence and stochastic models from subsurface Lagrangian data for the
Northwest Atlantic ocean, J. Phys. Oceanogr., 34, 1884–1906,
https://doi.org/10.1175/1520-0485(2004)034<1884:otasmf>2.0.co;2, 2004.
Warner, R. R.: Evolutionary ecology: how to reconcile pelagic dispersal with
local adaptation, Coral Reefs, 16, S115–S120, 1997.
Wang, Y., Raitsos, D. E., Krokos, G., Gittings, J. A., Zhan, P., and Hoteit, I.: Physical connectivity simulations
reveal dynamic linkages between coral reefs in the southern Red Sea and the
Indian Ocean, Sci. Rep., 9, 16598, https://doi.org/10.1038/s41598-019-53126-0,
2019.
Ward, B. A., Cael, B. B., and Robert, Y. C.: Selective constraints on global
plankton dispersal, P. Natl. Acad. Sci. USA, 118, e2007388118, https://doi.org/10.1073/pnas.2007388118, 2021.
Watson, J. R., Hays, C. G., Raimondi, P. T., Mitarai, S., Dong, C.,
McWilliams, J. C., Blanchette, C. A., Caselle, J. E., and Siegel, D. A.:
Currents connecting communities: nearshore community similarity and ocean
circulation, Ecology, 92, 1193–1200, 2011.
Short summary
This work presents a series of studies conducted by the authors on the application of the Lagrangian approach for the connectivity analysis between different ocean locations in an idealized open-ocean model. We assess how the connectivity properties of typical oceanic flows are affected by the fine-scale circulation and discuss the challenges facing ocean connectivity estimates related to the spatial resolution. Our results are important to improve the understanding of marine ecosystems.
This work presents a series of studies conducted by the authors on the application of the...