Articles | Volume 18, issue 4
https://doi.org/10.5194/os-18-937-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-937-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Levantine Intermediate Water in the western Mediterranean and its interactions with the Algerian Gyres: insights from 60 years of observation
Katia Mallil
CORRESPONDING AUTHOR
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN, UMR 7159): CNRS/SU/MNHN/IRD, 75005, Paris, France
Ecole Nationale Supérieure des Sciences de la Mer et de l'Aménagement du Littoral (ENSSMAL), Laboratoire des Ecosystèmes Marins et Littoraux (EcosysMarL), 16320, Alger, Algeria
Pierre Testor
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN, UMR 7159): CNRS/SU/MNHN/IRD, 75005, Paris, France
Anthony Bosse
Aix-Marseille Université, Université de Toulon, CNRS, IRD, MIO UM110, 13288, Marseille, France
Félix Margirier
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
Loic Houpert
OSE Engineering, 78470, Saint-Rémy-lès-Chevreuse, France
Hervé Le Goff
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN, UMR 7159): CNRS/SU/MNHN/IRD, 75005, Paris, France
Laurent Mortier
Laboratoire d'Océanographie et du Climat: Expérimentations et Approches Numériques (LOCEAN, UMR 7159): CNRS/SU/MNHN/IRD, 75005, Paris, France
Ferial Louanchi
Ecole Nationale Supérieure des Sciences de la Mer et de l'Aménagement du Littoral (ENSSMAL), Laboratoire des Ecosystèmes Marins et Littoraux (EcosysMarL), 16320, Alger, Algeria
Related authors
No articles found.
Georges Baaklini, Julien Brajard, Leila Issa, Gina Fifani, Laurent Mortier, and Roy El Hourany
EGUsphere, https://doi.org/10.5194/egusphere-2024-1168, https://doi.org/10.5194/egusphere-2024-1168, 2024
Short summary
Short summary
Understanding the flow of the Levantine Sea surface current is not straightforward. We propose a study based on learning techniques to follow interactions between water near the shore and further out at sea. Our results show changes in the coastal currents past 33.8° E, with frequent instances of water breaking away along the Lebanese coast. These events happen quickly and sometimes lead to long-lasting eddies. This study underscores the need for direct observations to improve our knowledge.
Nicolas Metzl, Jonathan Fin, Claire Lo Monaco, Claude Mignon, Samir Alliouane, David Antoine, Guillaume Bourdin, Jacqueline Boutin, Yann Bozec, Pascal Conan, Laurent Coppola, Frédéric Diaz, Eric Douville, Xavier Durrieu de Madron, Jean-Pierre Gattuso, Frédéric Gazeau, Melek Golbol, Bruno Lansard, Dominique Lefèvre, Nathalie Lefèvre, Fabien Lombard, Férial Louanchi, Liliane Merlivat, Léa Olivier, Anne Petrenko, Sébastien Petton, Mireille Pujo-Pay, Christophe Rabouille, Gilles Reverdin, Céline Ridame, Aline Tribollet, Vincenzo Vellucci, Thibaut Wagener, and Cathy Wimart-Rousseau
Earth Syst. Sci. Data, 16, 89–120, https://doi.org/10.5194/essd-16-89-2024, https://doi.org/10.5194/essd-16-89-2024, 2024
Short summary
Short summary
This work presents a synthesis of 44 000 total alkalinity and dissolved inorganic carbon observations obtained between 1993 and 2022 in the Global Ocean and the Mediterranean Sea at the surface and in the water column. Seawater samples were measured using the same method and calibrated with international Certified Reference Material. We describe the data assemblage, quality control and some potential uses of this dataset.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Stéphanie Barrillon, Robin Fuchs, Anne A. Petrenko, Caroline Comby, Anthony Bosse, Christophe Yohia, Jean-Luc Fuda, Nagib Bhairy, Frédéric Cyr, Andrea M. Doglioli, Gérald Grégori, Roxane Tzortzis, Francesco d'Ovidio, and Melilotus Thyssen
Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, https://doi.org/10.5194/bg-20-141-2023, 2023
Short summary
Short summary
Extreme weather events can have a major impact on ocean physics and biogeochemistry, but their study is challenging. In May 2019, an intense storm occurred in the north-western Mediterranean Sea, during which in situ multi-platform measurements were performed. The results show a strong impact on the surface phytoplankton, highlighting the need for high-resolution measurements coupling physics and biology during these violent events that may become more common in the context of global change.
Georges Baaklini, Roy El Hourany, Milad Fakhri, Julien Brajard, Leila Issa, Gina Fifani, and Laurent Mortier
Ocean Sci., 18, 1491–1505, https://doi.org/10.5194/os-18-1491-2022, https://doi.org/10.5194/os-18-1491-2022, 2022
Short summary
Short summary
We use machine learning to analyze the long-term variation of the surface currents in the Levantine Sea, located in the eastern Mediterranean Sea. We decompose the circulation into groups based on their physical characteristics and analyze their spatial and temporal variability. We show that most structures of the Levantine Sea are becoming more energetic over time, despite those of the western area remaining the most dominant due to their complex bathymetry and strong currents.
Ilker Fer, Anthony Bosse, and Johannes Dugstad
Ocean Sci., 16, 685–701, https://doi.org/10.5194/os-16-685-2020, https://doi.org/10.5194/os-16-685-2020, 2020
Short summary
Short summary
We analyzed 14-month-long observations from moored instruments to describe the average features and the variability of the Norwegian Atlantic Slope Current at the Lofoten Escarpment (13°E, 69°N). The slope current varies strongly with depth and in time. Pulses of strong current occur, lasting for 1 to 2 weeks, and extend as deep as 600 m. The average volume transport is 2 x 106 m3 s-1.
Alice Carret, Florence Birol, Claude Estournel, Bruno Zakardjian, and Pierre Testor
Ocean Sci., 15, 269–290, https://doi.org/10.5194/os-15-269-2019, https://doi.org/10.5194/os-15-269-2019, 2019
Short summary
Short summary
This study uses different in situ and satellite measurements to investigate ocean circulation in the NW Mediterranean Sea. We analyze how the different instruments (satellite altimetry, HF radars, gliders, ADCPs) capture current variability and how they complement each other. We demonstrate the ability of satellite altimetry to capture the fluctuations of the narrow coastal Northern Current at different timescales. This study provides an integrated approach to a coastal dynamics study.
Cited articles
Barceló-Llull, B., Pascual, A., Ruiz, S., Escudier, R., Torner, M., and Tintoré, J.:
Temporal and Spatial Hydrodynamic Variability in the Mallorca Channel (Western Mediterranean Sea) From 8 Years of Underwater Glider Data, J. Geophys. Res.-Oceans, 124, 2769–2786, https://doi.org/10.1029/2018JC014636, 2019. a
Benzohra, M. and Millot, C.:
Characteristics and circulation of the surface and intermediate water masses off Algeria, Deep-Sea Res. Pt. I, 42, 1803–1830, https://doi.org/10.1016/0967-0637(95)00043-6, 1995. a
Béthoux, J. P.:
Budgets of the Mediterranean Sea. Their dependance on the local climate and on the characteristics of the Atlantic waters, Oceanol. Acta, 2, 157–163, 1979. a
Béthoux, J. P. and Gentili, B.:
The Mediterranean Sea, coastal and deep-sea signatures of climatic and environmental changes, J. Marine Syst., 7, 383–394, https://doi.org/10.1016/0924-7963(95)00008-9, 1996. a, b, c
Béthoux, J. P. and Gentili, B.:
Functioning of the Mediterranean sea: past and present changes related to freshwater input and climate changes, J. Marine Syst., 20, 33–47, https://doi.org/10.1016/S0924-7963(98)00069-4, 1999. a, b
Béthoux, J. P., Gentili, B., Raunet, J., and Tailliez, D.:
Warming trend in the western Mediterranean Deep Water, Nature, 347, 660–662, https://doi.org/10.1038/347660a0, 1990. a, b
Boehme, L. and Send, U.:
Objective analyses of hydrographic data for referencing profiling float salinities in highly variable environments, Deep-Sea Res. Pt. II, 52, 651–664, https://doi.org/10.1016/j.dsr2.2004.12.014, 2005. a
Borghini, M., Durante, S., Ribotti, A., Schroeder, K., and Sparnocchia, S.:
Thermohaline Staircases in the Tyrrhenian Sea. Experimental data-set (2003–2016), SEANOE, https://doi.org/10.17882/58697, 2019. a, b, c
Bosse, A., Testor, P., Mortier, L., Prieur, L., Taillandier, V., d'Ortenzio, F., and Coppola, L.:
Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders, J. Geophys. Res.-Oceans, 120, 1599–1622, https://doi.org/10.1002/2014JC010263, 2015. a, b
Brankart, J.-M. and Pinardi, N.:
Abrupt Cooling of the Mediterranean Levantine Intermediate Water at the Beginning of the 1980s: Observational Evidence and Model Simulation, J. Phys. Oceanogr., 31, 2307–2320, https://doi.org/10.1175/1520-0485(2001)031<2307:acotml>2.0.co;2, 2001. a
Bryden, H. and Kinder, T. H.:
Steady two-layer exchange through the Strait of Gibraltar, Deep-Sea Res., 38, S445– S463, https://doi.org/10.1016/s0198-0149(12)80020-3, 1991. a
Bryden, H., Candela, J., and Kinder, T. H.:
Exchange through the Strait of Gibraltar, Prog. Oceanogr., 33, 201–248, https://doi.org/10.1016/0079-6611(94)90028-0, 1994. a
Conkright, M. E., Antonov, J. I., Baranova, O., Boyer, T. P., Garcia, H. E., Gelfeld, R., Johnson, D., Locarnini, R. A., Murphy, P. P., O'Brien, T. D., Smolyar, I., and Stephens, C.:
World Ocean Database 2001. Volume 1: Introduction, in: NOAA Atlas NESDIS 42, edited by: Levitus, S., U. S. Gov. Printing Office, Washington, DC, 167 pp, 2002. a
Coppola, L., Raimbault, P., Mortier, L., and Testor, P.:
Monitoring the Environment in the Northwestern Mediterranean Sea, EOS T. Am. Geophys. Un., 100, https://doi.org/10.1029/2019EO125951, 2019. a
Durante, S., Schroeder, K., Mazzei, L., Pierini, S., Borghini, M., and Sparnocchia, S.:
Permanent Thermohaline Staircases in the Tyrrhenian Sea, Geophys. Res. Lett., 46, 1562–1570, https://doi.org/10.1029/2018GL081747, 2019. a
Escudier, R., Mourre, B., Juza, M., and Tintore, J.:
Subsurface circulation and mesoscale variability in the Algerian subbasin from altimeter-derived eddy trajectories, J. Geophys. Res.-Oceans, 121, 6310–6322, https://doi.org/10.1002/2016JC011760, 2016a. a, b, c, d
Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., and Beuvier, J.:
Eddy properties in the Western Mediterranean Sea from satellite altimetry and a numerical simulation, J. Geophys. Res.-Oceans, 121, 3990–4006, https://doi.org/10.1002/2015JC011371, 2016b. a, b
Fichaut, M., Garcia, M.-J., Giorgetti, A., Iona, A., Kuznetsov, A., Rixen, M., and MEDAR, G.:
MEDAR/MEDATLAS 2002: A Mediterranean and Black Sea database for operational oceanography, Elsev. Oceanogr. Serie., 69, 645–648, https://doi.org/10.1016/s0422-9894(03)80107-1, 2003. a
Gascard, J.-C. and Richez, C.:
Water masses and circulation in the western Alboran Sea and in the strait of Gibraltar, Prog. Oceanogr., 15, 157–216, https://doi.org/10.1016/0079-6611(85)90031-X, 1985. a
Houpert, L., Testor, P., Durrieu de Madron, X., Somot, S., D'Ortenzio, F., Estournel, C., and Lavigne, H.:
Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations, Prog. Oceanogr., 132, 333–352, https://doi.org/10.1016/j.pocean.2014.11.004, 2015. a
Houpert, L., Madron, X. D. D., Testor, P., Bosse, A., Bouin, F. D. M. N., Goff, D. D. H. L., Kunesch, S., Labaste, M., Mortier, L. C. L., and Raimbault, P.:
Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007–2013 Period, J. Geophys. Res.-Oceans, 121, 8139–8171, https://doi.org/10.1002/2016JC011857, 2016. a
Isern-Fontanet, J., Garcia-Ladona, E., and Font, J.:
Vortices of the Mediterranean Sea: An Altimetric Perspective, J. Phys. Oceanogr., 36, 87–103, https://doi.org/10.1175/JPO2826.1, 2006. a, b
Iudicone, D., Louanchi, F., Mallil, K., Testor, P., and Mortier, L.:
somba deployment (EGO glider: theque) (Mediterranean Sea – Western basin), SEANOE, https://doi.org/10.17882/51460, 2014. a
Johnson, R. G.:
Climate control requires a Dam at the strait of Gibraltar, EOS T. Am. Geophys. Un., 78, 277–281, https://doi.org/10.1029/97EO00180, 1997. a
Krahmann, G. and Schott, F.: Longterm increases in Western and Mediterranean salinities and temperatures: anthropogenic and climatic sources, Geophys. Res. Lett., 25, 4209–4212, https://doi.org/10.1029/1998gl900143, 1998. a, b
Lacoue-Labarthe, T., Nunes, P. A., Ziveri, P., Cinar, M., Gazeau, F., Hall-Spencer, J. M., Hilmi, N., Moschella, P., Safa, A., Sauzade, D., and Turley, C.:
Impacts of ocean acidification in a warming Mediterranean Sea: An overview, Regional Studies in Marine Science, 5, 1–11, https://doi.org/10.1016/j.rsma.2015.12.005, 2016. a
Lozier, M. and Stewart, N. M.:
NOTES AND CORRESPONDANCE On The Temporally Varying Northward Penetration of Mediterranean Overflow Water and Eastward Penetration on Labrador Sea Water, J. Phys. Oceanogr., 38, 2097–2103, https://doi.org/10.1175/2008JPO3908.1, 2008. a
Mallil, K.: LIW-detection, GitHub [code], https://github.com/KatiaMallil/LIW-detection, last access: 4 July 2022. a
Mallil, K., Bosse, A., Testor, P., and Margirier, F.: Levantine Intermediate Water in the Western Mediterranean Sea, SEANOE [data set], https://doi.org/10.17882/89189, 2018. a
Manca, B., Burca, M., Giorgetti, A., Coatanoan, C., Garcia, M.-J., and Iona, A.:
Physical and biochemical averaged vertical profiles in the Mediterranean regions: an important tool to trace the climatology of water masses and to validate incoming data from operational oceanography, J. Marine Syst., 48, 83–116, https://doi.org/10.1016/j.jmarsys.2003.11.025, 2004. a
Margirier, F., Testor, P., Heslop, E., Mallil, K., Bosse, A., Houpert, L., Mortier, L., Bouin, M.-N., Coppola, L., D'Ortenzio, F., de Madron, X. D., Mourre, B., Prieur, L., Raimbault, P., and Taillandier, V.:
Abrupt warming and salinification of intermediate waters interplays with decline of deep convection in the Northwestern Mediterranean Sea, Sci. Rep.-UK, 10, 20923, https://doi.org/10.1038/s41598-020-77859-5, 2020. a, b
MEDOC GROUP:
Observation of Formation of Deep Water in the Mediterranean Sea, 1969, Nature, 227, 1037–1040, https://doi.org/10.1038/2271037a0, 1970. a, b
Millot, C.:
Circulation in the Western Mediterranean Sea, J. Marine Syst., 20, 423–442, https://doi.org/10.1016/s0924-7963(98)00078-5, 1999. a, b, c
Millot, C. and Taupier-Letage, I.:
Additional evidence of LIW entrainment across the Algerian subbasin by mesoscale eddies and not by a permanent westward flow, Prog. Oceanogr., 66, 231–250, https://doi.org/10.1016/j.pocean.2004.03.002, 2005a. a
Millot, C. and Taupier-Letage, I.:
chap. Circulation in the Mediterranean Sea, in: The Mediterranean Sea, vol. 5K of Handbook of Environmental Chemistry, edited by: Saliot, A., Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/b107143, 29–66, 2005b. a, b
Millot, C., Taupier-Letage, I., and Benzohra, M.:
The Algerian eddies, Earth-Sci. Rev., 27, 203–219, https://doi.org/10.1016/0012-8252(90)90003-E, 1990. a
Mortier, L., Ameur, N. A., and Taillandier, V.:
SOMBA GE 2014 CRUISE, RV Téthys II, https://doi.org/10.17600/14007500, 2014. a, b, c, d
Parras-Berrocal, I. M., Vázquez, R., Cabos, W., Sein, D. V., Álvarez, O., Bruno, M., and Izquierdo, A.:
Surface and Intermediate Water Changes Triggering the Future Collapse of Deep Water Formation in the North Western Mediterranean, Geophys. Res. Lett., 49, e2021GL095404, https://doi.org/10.1029/2021GL095404, 2022. a
Pessini, F., Olita, A., Cotroneo, Y., and Perilli, A.:
Mesoscale eddies in the Algerian Basin: do they differ as a function of their formation site?, Ocean Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, 2018. a, b
Provenzale, A.:
Transport by coherent barotropic vortices, Annu. Rev. Fluid Mech., 31, 55–93, https://doi.org/10.1146/annurev.fluid.31.1.55, 1999. a
Puillat, I., I.Taupier-Letage, and Millot, C.:
Algerian Eddies lifetime can near 3 years, J. Marine Syst., 31, 245–259, https://doi.org/10.1016/S0924-7963(01)00056-2, 2002. a, b
Ribotti, A., Sorgente, R., Perilli, A., Cucco, A., Magni, P., and Borghini, M.: CTD profiles in the western and central Mediterranean between 2007 and 2020 from Italian cruises, SEANOE [data set], https://doi.org/10.17882/87567, 2022. a, b, c
Rixen, M., Beckers, J.-M., Levitus, S., Antonov, J., Boyer, T., Maillard, C., Fichaut, M., Balopoulos, E., Iona, S., Dooley, H., Garcia, M.-J., Manca, B., Giorgetti, A., Manzella, G., Mikhailov, N., Pinardi, N., and Zavatarelli., M.:
The Western Mediterranean Deep Water: A proxy for climate change, Geophys. Res. Lett., 32, L12608, https://doi.org/10.1029/2005gl022702, 2005. a, b, c
Robinson, A., Wayne, G., Theocharis, A., and Lescaratos, A.:
chap. Mediterranean Sea Circulation, Ocean Currents, in: Encyclopedia of Ocean Sciences, edited by: Steele, J. H., https://doi.org/10.1006/rwos.2001.0376, 1689–1705, 2001. a, b
Rohling, E. and Bryden, H.:
Man-Induced Salinity and Temperature Increases in Western Mediterranean Deep Water, J. Geophys. Res., 97, 11191–11198, https://doi.org/10.1029/92JC00767, 1992. a
Schroeder, K., Ribotti, A., Borghini, M., Sorgente, R., Perilli, A., and Gasparini, G. P.:
An extensive Western Mediterranean Deep Water renewal between 2004 and 2006, Geophys. Res. Lett., 35, L18605, https://doi.org/10.1029/2008GL035146, 2008. a
Schroeder, K., Chiggiato, J., Bryden, H., Borghini, M., and Ismail, S. B.:
Abrupt climate shift in the Western Mediterranean Sea, Sci. Rep.-UK, 6, 23009, https://doi.org/10.1038/srep23009, 2016. a
Schroeder, K., Chiggiato, J., Josey, S. A., Borghini, M., Aracri, S., and Sparnocchia, S.:
Rapid response to climate change in a marginal sea, Sci. Rep.-UK, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5, 2017. a, b
Sparnocchia, S., Manzella, G., and Violette, P. L.:
The interanual and seasonal variability of MAW and LIW core properties in the Western Mediterranean sea, in: Seasonal and interanual variability of the Western Mediterranean sea, Coastal and Estuarine Studies, edited by: La Violette, P. E., 177–194, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/CE046p0117 (last access: 4 July 2022), 1994. a
Taupier-Letage, I., Puillat, I., and Millot, C.:
Biological response to mesoscale eddies in the Algerian Basin, J. Geophys. Res., 108, 3245, https://doi.org/10.1029/1999JC000117, 2003. a
Tchernia, P.:
L'eau intermédiaire dans le bassin Algéro-Provençal, Bull. Inf. COEC, 10, 19–22, 1958. a
Testor, P. and Gascard, J.-C.:
Large scale flow separation and mesoscale eddy formation in the Algerian Basin, Prog. Oceanogr., 66, 211–230, https://doi.org/10.1016/j.pocean.2004.07.018, 2005. a, b, c
Testor, P., Send, U., Gascard, J., Millot, C., Taupier-Letage, I., and Béranger, K.: The mean circulation of the southwestern Mediterranean Sea: Algerian Gyres, J. Geophys. Res., 110, C11017, https://doi.org/10.1029/2004jc002861, 2005a. a, b, c, d
Testor, P., Béranger, K., and Mortier, L.:
Modeling the deep eddy field in the southwestern Mediterranean: The life cycle of Sardinian eddies, Geophys. Res. Lett., 32, L13602, https://doi.org/10.1029/2004GL022283, 2005b. a, b, c
Testor, P., Goff, H. L., Labaste, M., Coppola, L., Mortier, L., Taillandier, V., Dausse, D., Kunesch, S., Diamond-Riquier, E., Garcia, N., de Madron, X. D., and Raimbault, P.:
MOOSE GE, SEANOE, https://doi.org/10.18142/235, 2010. a
Testor, P., Mortier, L., Coppola, L., Claustre, H., D'ortenzio, F., Bourrin, F., de Madron, X. D., and Raimbault, P.:
Glider MOOSE sections, SEANOE, https://doi.org/10.17882/52027, 2017. a
Testor, P., Bosse, A., Houpert, L., Margirier, F., Mortier, L., Legoff, H., Dausse, D., Labaste, M., Karstensen, J., Hayes, D., Olita, A., Ribotti, A., Schroeder, K., Chiggiato, J., Onken, R., Heslop, E., Mourre, B., D'ortenzio, F., Mayot, N., Lavigne, H., de Fommervault, O., Coppola, L., Prieur, L., Taillandier, V., de Madron, X. D., Bourrin, F., Many, G., Damien, P., Estournel, C., Marsaleix, P., Taupier-Letage, I., Raimbault, P., Waldman, R., Bouin, M.-N., Giordani, H., Caniaux, G., Somot, S., Ducrocq, V., and Conan, P.:
Multiscale Observations of Deep Convection in the Northwestern Mediterranean Sea During Winter 2012–2013 Using Multiple Platforms, J. Geophys. Res.-Oceans, 123, 1745–1776, https://doi.org/10.1002/2016JC012671, 2018. a, b
The MerMex Group: Durrieu de Madron, X., Guieu, C., Sempéré, R., Conan, P., Cossa, D., D'ortenzion, F., Estournel, C., Gaseau, F., Rabouille, C., Stemmann, L., Bonnet, S., Diaz, F., Koubbi, P., Radakovitch, O., Babin, M., Baklouti, M., Bancon-Montigny, C., Belviso, S., Bensoussan, N., Bonsang, B., Bouloubassi, I., Brunet, C., Cadiou, J.-F., Carlotti, F., Chami, M., Charmasson, S., Charrière, B., Dachs, J., Doxaran, D., Dutay, J.-C., Elbaz-Poulichet, F., Eléaume, M., Eyrolles, F., Fernandez, C., Fowler, S., Francour, P., Gaertner, J. C., Galzin, R., Gasparini, S., Ghiglione, J.-F., Gonzalez, J. L., Goyet, C., Guidi, L., Guizien, K., Heimbürger, L. E., Jacquet, S. H. M., Jeffrey, W. H., Joux, F., Le Hir, P., Leblanc, K., Lefèvre, D., Lejeusne, C., Lemé, R., Loÿe-Pilot, M. D., Mallet, M., Méjanelle, L., Mélin, F., Mellon, C., Mérigot, B., Merle, P. L., Migon, C., Miller, W. L., Mortier, L., Mostajir, B., Mousseau, L., Moutin, T., Para, J., Pérez, T., Petrenko, A. A., Poggiale, J. C., Prieur, L., Pujol, M. I., Pulido-Villena, Raimbault, P., Rees, A. P., Ridame, C., Rontani, J. F., Ruiz Pino, D., Sicre, M. A., Taillandier, V., Tamburini, C., Tanaka, T., Taupier-Letage, I., Tedetti, M., Testor, P., Thébault, H., Thouvenin, B., Touratier, F., Tronczynski, J., Ulses, C., Van Wambeke, F., Vantrepotte, V., Vaz, S., and Verney, R.:
Marine ecosystems' response to climatic and anthropogenic forcings in the Mediterranean, Prog. Oceanogr., 91, 97–166, https://doi.org/10.1016/j.pocean.2011.02.003, 2011. a
Thurnherr, A.:
A Practical Assessment of the Errors Associated with Full-Depth LADCP Profiles Obtained Using Teledyne RDI Workhorse Acoustic Doppler Current Profilers, J. Atmos. Ocean. Tech., 27, 1215–1227, https://doi.org/10.1175/2010JTECHO708.1, 2010. a
Vargas-Yáñez, M., Moya, F., García-Martínez, M., Tel, E., P.Zunino, Plaza, F., Salat, J., J.Pascual, López-Jurado, J., and M.Serra: Climate change in the western Mediterranean Sea 1900-2008, J. Marine Syst., 82, 171–176, https://doi.org/10.1016/j.jmarsys.2010.04.013, 2010a. a
Vargas-Yáñez, M., Zunino, P., Benali, A., Delpy, M., Moya, F. P. F., del Carmen García-Martínez, M., and Tel, E.:
How much is the western Mediterranean really warming and salting, J. Geophys. Res., 115, C04001, https://doi.org/10.1029/2009JC005816, 2010b. a
Vargas-Yáñez, M., García-Martínez, M., Moya, F., Balbín, R., López-Jurado, J., Serra, M., Zunino, P., Pascual, J., and Salat, J.:
Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project, Prog. Oceanogr., 157, 27–46, https://doi.org/10.1016/j.pocean.2017.09.004, 2017. a
Visbeck, M.:
Deep Velocity Profiling Using Lowered Acoustic Doppler Current Profilers: Bottom Track and Inverse Solutions, J. Atmos. Ocean. Tech., 19, 794–807, https://doi.org/10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2, 2002. a
Wüst, G.:
On the vertical circulation of the Mediterranean sea, J. Geophys. Res., 66, 3261–3271, https://doi.org/10.1029/JZ066i010p03261, 1961. a, b
Zunino, P., Schroeder, K., Vargas-Yáñez, M., Gasparini, G., Coppola, L., García-Martínez, M., and Moya-Ruiz, F.:
Effects of the Western Mediterranean Transition on the resident water masses: Pure warming, pure freshening and pure heaving, J. Marine Syst., 96–97, 15–23, https://doi.org/10.1016/j.jmarsys.2012.01.011, 2012. a
Short summary
Our study documents the circulation in the Algerian Basin of the western Mediterranean Sea using in situ data. It shows that the Algerian Gyres have an impact on the distribution at intermediate depth of Levantine Intermediate Water. They allow a westward transport from the south of Sardinia toward the interior of the Algerian Basin. Temperature and salinity trends of this water mass are also investigated, confirming a recent acceleration of the warming and salinification during the last decade.
Our study documents the circulation in the Algerian Basin of the western Mediterranean Sea using...