Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-89-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-89-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Refined estimates of water transport through the Åland Sea in the Baltic Sea
Finnish Meteorological Institute, Marine Research, Erik Palménin aukio 1, P.O. Box 503, 00101 Helsinki, Finland
Elina Miettunen
Finnish Environment Institute SYKE, Marine Research Centre, Latokartanonkaari 11, 00790 Helsinki, Finland
Laura Tuomi
Finnish Meteorological Institute, Marine Research, Erik Palménin aukio 1, P.O. Box 503, 00101 Helsinki, Finland
Pekka Alenius
Finnish Meteorological Institute, Marine Research, Erik Palménin aukio 1, P.O. Box 503, 00101 Helsinki, Finland
Related authors
Elina Miettunen, Laura Tuomi, Antti Westerlund, Hedi Kanarik, and Kai Myrberg
Ocean Sci., 20, 69–83, https://doi.org/10.5194/os-20-69-2024, https://doi.org/10.5194/os-20-69-2024, 2024
Short summary
Short summary
We studied circulation and transports in the Archipelago Sea (in the Baltic Sea) with a high-resolution hydrodynamic model. Transport dynamics show different variabilities in the north and south, so no single transect can represent transport through the whole area in all cases. The net transport in the surface layer is southward and follows the alignment of the deeper channels. In the lower layer, the net transport is southward in the northern part of the area and northward in the southern part.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Jan-Victor Björkqvist, Hedi Kanarik, Laura Tuomi, Lauri Niskanen, and Markus Kankainen
State Planet, 4-osr8, 10, https://doi.org/10.5194/sp-4-osr8-10-2024, https://doi.org/10.5194/sp-4-osr8-10-2024, 2024
Short summary
Short summary
Typical wave statistics do not provide information on how often certain wave heights are exceeded and the length of such events. Our study found a strong seasonal dependence for 2.5 and 4 m wave events in the Baltic Sea. Wave heights of over 7 m occurred less than once per year. The number of 1 m wave events can double within 20 km in nearshore areas. Our results are important for all operations at sea, including ship traffic and fish farming.
Taavi Liblik, Daniel Rak, Enriko Siht, Germo Väli, Johannes Karstensen, Laura Tuomi, Louise C. Biddle, Madis-Jaak Lilover, Māris Skudra, Michael Naumann, Urmas Lips, and Volker Mohrholz
EGUsphere, https://doi.org/10.5194/egusphere-2024-2272, https://doi.org/10.5194/egusphere-2024-2272, 2024
Short summary
Short summary
Eight current meters were deployed to the seafloor across the Baltic to enhance knowledge about circulation and currents. The experiment was complemented by autonomous vehicles. Stable circulation patterns were observed at the sea when weather was steady. Strong and quite persistent currents were observed at the key passage for the deep-water renewal of the Northern Baltic Sea. Deep water renewal mostly occurs during spring and summer periods in the northern Baltic Sea.
Elina Miettunen, Laura Tuomi, Antti Westerlund, Hedi Kanarik, and Kai Myrberg
Ocean Sci., 20, 69–83, https://doi.org/10.5194/os-20-69-2024, https://doi.org/10.5194/os-20-69-2024, 2024
Short summary
Short summary
We studied circulation and transports in the Archipelago Sea (in the Baltic Sea) with a high-resolution hydrodynamic model. Transport dynamics show different variabilities in the north and south, so no single transect can represent transport through the whole area in all cases. The net transport in the surface layer is southward and follows the alignment of the deeper channels. In the lower layer, the net transport is southward in the northern part of the area and northward in the southern part.
Verónica González-Gambau, Estrella Olmedo, Antonio Turiel, Cristina González-Haro, Aina García-Espriu, Justino Martínez, Pekka Alenius, Laura Tuomi, Rafael Catany, Manuel Arias, Carolina Gabarró, Nina Hoareau, Marta Umbert, Roberto Sabia, and Diego Fernández
Earth Syst. Sci. Data, 14, 2343–2368, https://doi.org/10.5194/essd-14-2343-2022, https://doi.org/10.5194/essd-14-2343-2022, 2022
Short summary
Short summary
We present the first Soil Moisture and Ocean Salinity Sea Surface Salinity (SSS) dedicated products over the Baltic Sea (ESA Baltic+ Salinity Dynamics). The Baltic+ L3 product covers 9 days in a 0.25° grid. The Baltic+ L4 is derived by merging L3 SSS with sea surface temperature information, giving a daily product in a 0.05° grid. The accuracy of L3 is 0.7–0.8 and 0.4 psu for the L4. Baltic+ products have shown to be useful, covering spatiotemporal data gaps and for validating numerical models.
H. E. Markus Meier, Madline Kniebusch, Christian Dieterich, Matthias Gröger, Eduardo Zorita, Ragnar Elmgren, Kai Myrberg, Markus P. Ahola, Alena Bartosova, Erik Bonsdorff, Florian Börgel, Rene Capell, Ida Carlén, Thomas Carlund, Jacob Carstensen, Ole B. Christensen, Volker Dierschke, Claudia Frauen, Morten Frederiksen, Elie Gaget, Anders Galatius, Jari J. Haapala, Antti Halkka, Gustaf Hugelius, Birgit Hünicke, Jaak Jaagus, Mart Jüssi, Jukka Käyhkö, Nina Kirchner, Erik Kjellström, Karol Kulinski, Andreas Lehmann, Göran Lindström, Wilhelm May, Paul A. Miller, Volker Mohrholz, Bärbel Müller-Karulis, Diego Pavón-Jordán, Markus Quante, Marcus Reckermann, Anna Rutgersson, Oleg P. Savchuk, Martin Stendel, Laura Tuomi, Markku Viitasalo, Ralf Weisse, and Wenyan Zhang
Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022, https://doi.org/10.5194/esd-13-457-2022, 2022
Short summary
Short summary
Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge about the effects of global warming on past and future changes in the climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Jan-Victor Björkqvist, Siim Pärt, Victor Alari, Sander Rikka, Elisa Lindgren, and Laura Tuomi
Ocean Sci., 17, 1815–1829, https://doi.org/10.5194/os-17-1815-2021, https://doi.org/10.5194/os-17-1815-2021, 2021
Short summary
Short summary
Waves that travel faster than the wind are called swell. Our study presents wave model statistics of swell waves in the Baltic Sea, since such statistics have not yet been reliably compiled. Our results confirm that long, high, and persistent swell is absent in the Baltic Sea. We found that the dependency between swell and wind waves differs in the open sea compared to nearshore areas. These distinctions are important for studies on how waves interact with the atmosphere and the sea floor.
Tuomas Kärnä, Patrik Ljungemyr, Saeed Falahat, Ida Ringgaard, Lars Axell, Vasily Korabel, Jens Murawski, Ilja Maljutenko, Anja Lindenthal, Simon Jandt-Scheelke, Svetlana Verjovkina, Ina Lorkowski, Priidik Lagemaa, Jun She, Laura Tuomi, Adam Nord, and Vibeke Huess
Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, https://doi.org/10.5194/gmd-14-5731-2021, 2021
Short summary
Short summary
We present Nemo-Nordic 2.0, a novel operational marine model for the Baltic Sea. The model covers the Baltic Sea and the North Sea with approximately 1 nmi resolution. We validate the model's performance against sea level, water temperature, and salinity observations, as well as sea ice charts. The skill analysis demonstrates that Nemo-Nordic 2.0 can reproduce the hydrographic features of the Baltic Sea.
Jan-Victor Björkqvist, Sander Rikka, Victor Alari, Aarne Männik, Laura Tuomi, and Heidi Pettersson
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, https://doi.org/10.5194/nhess-20-3593-2020, https://doi.org/10.5194/nhess-20-3593-2020, 2020
Short summary
Short summary
Wave observations have a fundamental uncertainty due to the randomness of the sea state. Such scatter is absent in model data, and we tried two methods to best account for this difference when combining measured and modelled wave heights. The results were used to estimate how rare a 2019 storm in the Bothnian Sea was. Both methods were found to have strengths and weaknesses, but our best estimate was that, in the current climate, such a storm might on average repeat about once a century.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Lauri Laakso, Santtu Mikkonen, Achim Drebs, Anu Karjalainen, Pentti Pirinen, and Pekka Alenius
Ocean Sci., 14, 617–632, https://doi.org/10.5194/os-14-617-2018, https://doi.org/10.5194/os-14-617-2018, 2018
Short summary
Short summary
Meteorological observations at Utö Atmospheric and Marine Research Station, the Baltic Sea, started in 1881 and seawater temperature and salinity observations in 1900. Based on the dataset of more than 100 years of observations, we see an increase in atmospheric temperature after the 1980s, in line with reduced sea ice cover. We also found an increase in seawater temperatures, modulated by changes in salinities. The results indicate that the climate at Utö may have shifted into a new phase.
Jan-Victor Björkqvist, Laura Tuomi, Niko Tollman, Antti Kangas, Heidi Pettersson, Riikka Marjamaa, Hannu Jokinen, and Carl Fortelius
Nat. Hazards Earth Syst. Sci., 17, 1653–1658, https://doi.org/10.5194/nhess-17-1653-2017, https://doi.org/10.5194/nhess-17-1653-2017, 2017
Short summary
Short summary
We studied the highest wave events in the Baltic Sea using wave measurements available since 1996. Going beyond classifying them based solely on the maximum wave height, we found that they can be divided into two groups based on, for example, the length of the storm. Two of the severest storms show different behaviour, with the most recent (in 2017) being the longest on record. We hope this more in-depth description of the storms will aid in the issuing of warnings for extreme wave conditions.
Cited articles
Ahlgren, J., Grimvall, A., Omstedt, A., Rolff, C., and Wikner, J.: Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea, J. Marine Syst., 170, 22–30, https://doi.org/10.1016/j.jmarsys.2016.12.010, 2017. a
CMEMS: Baltic Sea Physics Reanalysis, CMEMS [data set],
https://doi.org/10.48670/moi-00013, 2022. a
FMI: The Finnish Meteorological Institute's open data, FMI, available at:
https://en.ilmatieteenlaitos.fi/open-data, last access: 4 January 2022. a
Fringer, O. B., Dawson, C. N., He, R., Ralston, D. K., and Zhang, Y. J.: The future of coastal and estuarine modeling: Findings from a workshop, Ocean Model., 143, 101458, https://doi.org/10.1016/j.ocemod.2019.101458, 2019. a
Granqvist, G.:
Baltianmeren lämpötila ja suolaisuus Suomen rannikolla,
Merentutkimuslaitoksen julkaisuja, 1–64, 1938. a
Hela, I.: The Åland Sea, its surface topography and stationary currents, Geophysica, 13, 17–41, 1973. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1979 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018. a, b
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös, K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J.: Nemo-Nordic 1.0: a NEMO-based ocean model for the Baltic and North seas – research and operational applications, Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, 2019. a, b
Huttunen, I., Huttunen, M., Piirainen, V., Korppoo, M., Lepistö, A., Räike, A., Tattari, S., and Vehviläinen, B.: A National-Scale Nutrient Loading Model for Finnish Watersheds—VEMALA, Environ. Model. Assess., 21, 83–109, https://doi.org/10.1007/s10666-015-9470-6, 2016. a
Jakobsson, M., Stranne, C., O'Regan, M., Greenwood, S. L., Gustafsson, B., Humborg, C., and Weidner, E.: Bathymetric properties of the Baltic Sea, Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, 2019. a
Kärnä, T., Ljungemyr, P., Falahat, S., Ringgaard, I., Axell, L., Korabel, V., Murawski, J., Maljutenko, I., Lindenthal, A., Jandt-Scheelke, S., Verjovkina, S., Lorkowski, I., Lagemaa, P., She, J., Tuomi, L., Nord, A., and Huess, V.: Nemo-Nordic 2.0: operational marine forecast model for the Baltic Sea, Geosci. Model Dev., 14, 5731–5749, https://doi.org/10.5194/gmd-14-5731-2021, 2021. a
Klingbeil, K., Lemarié, F., Debreu, L., and Burchard, H.: The numerics of hydrostatic structured-grid coastal ocean models: State of the art and future perspectives, Ocean Model., 125, 80–105, https://doi.org/10.1016/j.ocemod.2018.01.007, 2018. a, b
Knudsen, M.: Ein
hydrographischer Lehrsatz, Annalen der Hydrographie und Maritimen
Meteorologie, 28, 316–320, 1900 (in German). a
Kuosa, H., Fleming-Lehtinen, V., Lehtinen, S., Lehtiniemi, M., Nygård, H., Raateoja, M., Raitaniemi, J., Tuimala, J., Uusitalo, L., and Suikkanen, S.: A retrospective view of the development of the Gulf of Bothnia ecosystem, J. Marine Syst., 167, 78–92, https://doi.org/10.1016/j.jmarsys.2016.11.020, 2017. a
Leppäranta, M. and Myrberg, K.: Physical oceanography of the Baltic Sea, Springer Verlag, Berlin, Heidelberg, New York, 2009. a
Lignell, R., Miettunen, E., Tuomi, L., Ropponen, J., Kuosa, H., Attila, J., Puttonen, I., Lukkari, K., Peltonen, H., Lehtoranta, J., Huttunen, M., Korppoo, M., Tikka, K., Mäyrä, J., Heiskanen, A.-S., Gustafsson, B., Gustafsson, E., Hänninen, J., Thingstad, F., Kaurila, K., Vanhatalo, J.,
Westerlund, A., and Siiriä, S.-M.: Rannikon kokonaiskuormitusmalli: ravinnepäästöjen vaikutus veden tilaan – Kehityshankkeen loppuraportti (XI 2015 – VI 2018), available at:
https://www.ym.fi/download/noname/%7BD5C68F2D-D52B-4C73-9E0B-FE53C5FFD207%7D/142893
(last access: 4 January 2022), 2018. a
Lisitzin, E.: A brief report on the scientific results of the hydrological expedition to the Archipelago and Åland Sea in the year 1922, Fennia 73, 4, Societas geographica Fenniae, Helsinki, 1951. a
Luyten, P.: COHERENS – A Coupled Hydrodynamical-Ecological Model for Regional and Shelf Seas: User Documentation, Version 2.5.1, RBINS-MUMM Report, Royal Belgian Institute of Natural Sciences, Brussels, Belgium, 2013. a
Madec, G. and NEMO System Team: NEMO ocean engine, Zenodo [code], https://doi.org/10.5281/zenodo.1464816, 2019. a, b
McWilliams, J. C.: A survey of submesoscale currents, Geosci. Lett., 6, 3, https://doi.org/10.1186/s40562-019-0133-3, 2019. a
Miettunen, E., Tuomi, L., and Myrberg, K.: Water exchange between the inner and outer archipelago areas of the Finnish Archipelago Sea in the Baltic Sea, Ocean Dynam., 70, 1421–1437, https://doi.org/10.1007/s10236-020-01407-y, 2020. a, b, c
Rutgersson, A., Bumke, K., Clemens, M., Foltescu, V., Lindau, R., Michelson, D., and Omstedt, A.: Precipitation Estimates over the Baltic Sea: Present State of the Art, Hydrol. Res., 32, 285–314, https://doi.org/10.2166/nh.2001.0017, 2001. a
Smagorinsky, J.: General Circulation Experiments with the Primitive Equations. The Basic Experiment, Mon. Weather Rev., 91, 99–164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
SYKE: Open information, SYKE, available at: https://www.syke.fi/en-US/Open_information, last access: 4 January 2022. a
Vankevich, R. E., Sofina, E. V., Eremina, T. E., Ryabchenko, V. A., Molchanov, M. S., and Isaev, A. V.: Effects of lateral processes on the seasonal water stratification of the Gulf of Finland: 3-D NEMO-based model study, Ocean Sci., 12, 987–1001, https://doi.org/10.5194/os-12-987-2016, 2016. a
Westerlund, A. and Miettunen, E.: nemo-archs, FMI [code],
https://github.com/fmidev/nemo-archs (last access: 4 January 2022), 2021. a
Westerlund, A. and Tuomi, L.: Vertical temperature dynamics in the Northern Baltic Sea based on 3D modelling and data from shallow-water Argo floats, J. Marine Syst., 158, 34–44, https://doi.org/10.1016/j.jmarsys.2016.01.006, 2016.
a, b
Westerlund, A., Tuomi, L., Alenius, P., Miettunen, E., and Vankevich, R. E.: Attributing mean circulation patterns to physical phenomena in the Gulf of Finland, Oceanologia, 60, 16–31, https://doi.org/10.1016/j.oceano.2017.05.003, 2018. a, b, c
Westerlund, A., Tuomi, L., Alenius, P., Myrberg, K., Miettunen, E., Vankevich, R. E., and Hordoir, R.: Circulation patterns in the Gulf of Finland from daily to seasonal timescales, Tellus A, 71, 1627149, https://doi.org/10.1080/16000870.2019.1627149, 2019. a, b
Witting, R.: Untersuchungen
zur Kenntnis der Wasserbewegugen und der Wasserumsetzung in
den Finland umgebenden Meeren, Finländische
Hydr.-Biol. Untersuchungen, 1908 (in German). a
Zhurbas, V. M., Laanemets, J., Kuzmina, N. P., Muraviev, S. S., and Elken, J.: Direct estimates of the lateral eddy diffusivity in the Gulf of Finland of the Baltic Sea (based on the results of numerical experiments with an eddy resolving model), Oceanology, 48, 175–181, https://doi.org/10.1134/S0001437008020033, 2008. a
Short summary
Water exchange through the Åland Sea (in the Baltic Sea) affects the conditions in the neighbouring Gulf of Bothnia. Pathways and variability of flows were studied with a high-resolution hydrodynamic model. Our analysis showed a northward transport in the deep layer and net transport towards the south in the surface layer. While on the southern edge of the Åland Sea the primary route of deep-water exchange is through Lågskär Deep, some deep water still bypasses it to the Åland Sea.
Water exchange through the Åland Sea (in the Baltic Sea) affects the conditions in the...