Articles | Volume 18, issue 6
https://doi.org/10.5194/os-18-1703-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1703-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling floating riverine litter in the south-eastern Bay of Biscay: a regional distribution from a seasonal perspective
Irene Ruiz
CORRESPONDING AUTHOR
AZTI, Marine Research, Basque Research and Technology Alliance (BRTA),
Pasaia, 20110, Spain
Anna Rubio
AZTI, Marine Research, Basque Research and Technology Alliance (BRTA),
Pasaia, 20110, Spain
Ana J. Abascal
IHCantabria – Instituto de Hidráulica Ambiental de la Universidad
de Cantabria, Santander, 39011, Spain
Oihane C. Basurko
AZTI, Marine Research, Basque Research and Technology Alliance (BRTA),
Pasaia, 20110, Spain
Related authors
No articles found.
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Xabier Davila, Anna Rubio, Luis Felipe Artigas, Ingrid Puillat, Ivan Manso-Narvarte, Pascal Lazure, and Ainhoa Caballero
Ocean Sci., 17, 849–870, https://doi.org/10.5194/os-17-849-2021, https://doi.org/10.5194/os-17-849-2021, 2021
Short summary
Short summary
The ocean is a turbulent system, full of meandering currents and fronts of various scales. These processes can influence the distribution of microscopic algae or phytoplankton by upwelling deep, nutrient-rich waters to the sunlit surface or by actively gathering and accumulating them. Our results suggest that, at the surface, salinity is the main conditioning factor for phytoplankton distribution. However, at the subsurface, oceanic currents influence phytoplankton distribution the most.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Ivan Manso-Narvarte, Ainhoa Caballero, Anna Rubio, Claire Dufau, and Florence Birol
Ocean Sci., 14, 1265–1281, https://doi.org/10.5194/os-14-1265-2018, https://doi.org/10.5194/os-14-1265-2018, 2018
Short summary
Short summary
Our main aim is to compare two different measuring systems of the surface ocean currents: land-based, high-frequency radar and satellite altimetry. Results show that the surface currents detected by both systems agree up to a 70 %, mostly in areas of persistent currents. This work is a first step in the combination of both technologies for an improved monitoring of the coastal surface ocean dynamics.
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
Cited articles
Abascal, A., Castanedo, S., Gutierrez, A. D., Comerma, E., Medina, R., and
Losada, I. J.: Teseo, an operational system for simulating oil spills
trajectories and fate processes, Proc. Int. Offshore Polar Eng. Conf.,
1751–1758, ISBN 978-1-880653-68-5, 2007.
Abascal, A. J., Castanedo, S., Mendez, F. J., Medina, R., and Losada, I. J.:
Calibration of a Lagrangian Transport Model Using Drifting Buoys Deployed
during the Prestige Oil Spill, J. Coastal Res., 11, 80–90, 2009.
Abascal, A. J., Castanedo, S., Fernández, V., and Medina, R.:
Backtracking drifting objects using surface currents from high-frequency
(HF) radar technology, Ocean Dynam., 62, 1073–1089,
https://doi.org/10.1007/s10236-012-0546-4, 2012.
Abascal, A. J., Castanedo, S., Núñez, P., Mellor, A., Clements, A.,
Pérez, B., Cárdenas, M., Chiri, H., and Medina, R.: A
high-resolution operational forecast system for oil spill response in
Belfast Lough, Mar. Pollut. Bull., 114, 302–314,
https://doi.org/10.1016/j.marpolbul.2016.09.042, 2017a.
Abascal, A. J., Sanchez, J., Chiri, H., Ferrer, M. I., Cárdenas, M.,
Gallego, A., Castanedo, S., Medina, R., Alonso-Martirena, A., Berx, B.,
Turrell, W. R., and Hughes, S. L.: Operational oil spill trajectory
modelling using HF radar currents: A northwest European continental shelf
case study, Mar. Pollut. Bull., 119, 336–350,
https://doi.org/10.1016/j.marpolbul.2017.04.010, 2017b.
Aksamit, N. O., Sapsis, T., and Haller, G.: Machine-Learning Mesoscale and
Submesoscale Surface Dynamics from Lagrangian Ocean Drifter Trajectories, J.
Phys. Oceanogr., 50, 1179–1196, https://doi.org/10.1175/jpo-d-19-0238.1,
2020.
Al-Zawaidah, H., Ravazzolo, D., and Friedrich, H.: Macroplastics in rivers:
present knowledge, issues and challenges, Environ. Sci.-Proc. Imp.,
23, 535–552, https://doi.org/10.1039/d0em00517g, 2021.
Allshouse, M. R., Ivey, G. N., Lowe, R. J., Jones, N. L., Beegle-Krause, C.
J., Xu, J., and Peacock, T.: Impact of windage on ocean surface Lagrangian
coherent structures, Environ. Fluid Mech., 17, 473–483,
https://doi.org/10.1007/s10652-016-9499-3, 2017.
ASCE: State-of-the-Art Review of Modeling Transport and Fate of Oil Spills,
J. Hydraul. Eng., 122, 594–609,
https://doi.org/10.1061/(ASCE)0733-9429(1996)122:11(594), 1996.
Blettler, M. C. M., Abrial, E., Khan, F. R., Sivri, N., and Espinola, L. A.:
Freshwater plastic pollution: Recognizing research biases and identifying
knowledge gaps, Water Res., 143, 416–424,
https://doi.org/10.1016/j.watres.2018.06.015, 2018.
Bourillet, J. F., Zaragosi, S., and Mulder, T.: The French Atlantic margin
and deep-sea submarine systems, Geo-Mar. Lett., 26, 311–315,
https://doi.org/10.1007/s00367-006-0042-2, 2006.
Brennan, E., Wilcox, C., and Hardesty, B. D.: Connecting flux, deposition
and resuspension in coastal debris surveys, Sci. Total Environ., 644,
1019–1026, https://doi.org/10.1016/J.SCITOTENV.2018.06.352, 2018.
Bruge, A., Barreau, C., Carlot, J., Collin, H., Moreno, C., and Maison, P.:
Monitoring Litter Inputs from the Adour River (Southwest France) to the
Marine Environment, Mar. Sci. Eng., 6, 24,
https://doi.org/10.3390/jmse6010024, 2018.
C3S: ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global
Climate, https://cds.climate.copernicus.eu/cdsapp#!/home, last access: 11 November 2019.
Callies, U., Groll, N., Horstmann, J., Kapitza, H., Klein, H., Maßmann, S., and Schwichtenberg, F.: Surface drifters in the German Bight: model validation considering windage and Stokes drift, Ocean Sci., 13, 799–827, https://doi.org/10.5194/os-13-799-2017, 2017.
Carlson, D. F., Pavalko, W. J., Petersen, D., Olsen, M., and Hass, A. E.:
Maker Buoy Variants for Water Level Monitoring and Tracking Drifting Objects
in Remote Areas of Greenland, 20, 1254, https://doi.org/10.3390/s20051254, 2020.
Carson, H. S., Lamson, M. R., Nakashima, D., Toloumu, D., Hafner, J.,
Maximenko, N., and McDermid, K. J.: Tracking the sources and sinks of local
marine debris in Hawai'i, Mar. Environ. Res., 84, 76–83, 2013.
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Hee Jang, J.,
Abu-Omar, M., Scott, S. L., and Suh, S.: Degradation Rates of Plastics in
the Environment, ACS Sustain. Chem. Eng, 8, 3511,
https://doi.org/10.1021/acssuschemeng.9b06635, 2020.
Charria, G., Lazure, P., Le Cann, B., Serpette, A., Reverdin, G., Louazel,
S., Batifoulier, F., Dumas, F., Pichon, A., and Morel, Y.: Surface layer
circulation derived from Lagrangian drifters in the Bay of Biscay, J. Marine
Syst., 109, S60–S76, https://doi.org/10.1016/j.jmarsys.2011.09.015, 2013.
Chiri, H., Abascal, A. J., Castanedo, S., and Medina, R.: Mid-long term oil
spill forecast based on logistic regression modelling of met-ocean forcings,
Mar. Pollut. Bull., 146, 962–976,
https://doi.org/10.1016/j.marpolbul.2019.07.053, 2019.
Chiri, H., Abascal, A. J., and Castanedo, S.: Deep oil spill hazard
assessment based on spatio-temporal met-ocean patterns, Mar. Pollut. Bull.,
154, 111123, https://doi.org/10.1016/J.MARPOLBUL.2020.111123, 2020.
Compa, M., Alomar, C., Morató, M., Álvarez, E., and Deudero, S.:
Spatial distribution of macro- and micro-litter items along rocky and sandy
beaches of a Marine Protected Area in the western Mediterranean Sea, Mar.
Pollut. Bull., 178, 113520, https://doi.org/10.1016/J.MARPOLBUL.2022.113520,
2022.
Critchell, K. and Lambrechts, J.: Modelling accumulation of marine plastics
in the coastal zone; what are the dominant physical processes?,
Estuar. Coast. Shelf S., 171, 111, https://doi.org/10.1016/j.ecss.2016.01.036, 2016.
D'Asaro, E. A., Carlson, D. F., Chamecki, M., Harcourt, R. R., Haus, B. K.,
Fox-Kemper, B., Molemaker, M. J., Poje, A. C., and Yang, D.: Advances in
Observing and Understanding Small-Scale Open Ocean Circulation During the
Gulf of Mexico Research Initiative Era, Front. Mar. Sci., 7, 349,
https://doi.org/10.3389/fmars.2020.00349, 2020.
Declerck, A., Delpey, M., Rubio, A., Ferrer, L., Basurko, O. C., Mader, J.,
and Louzao, M.: Transport of floating marine litter in the coastal area of
the south-eastern Bay of Biscay: A Lagrangian approach using modelling and
observations, J. Oper. Oceanogr., 12, S111–S125,
https://doi.org/10.1080/1755876x.2019.1611708, 2019.
Delpey, M., Declerck, A., Epelde, I., Voirand, T., Manso-Navarte, I., Mader, J., Rubio, A., and Caballero, A.: Tracking floating marine litter in the coastal area by combining operational ocean modelling and remote observation systems., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-11465, https://doi.org/10.5194/egusphere-egu21-11465, 2021.
Duhec, A. V., Jeanne, R. F., Maximenko, N., and Hafner, J.: Composition and
potential origin of marine debris stranded in the Western Indian Ocean on
remote Alphonse Island, Seychelles, Mar. Pollut. Bull., 96, 76–86,
https://doi.org/10.1016/j.marpolbul.2015.05.042, 2015.
European Commission (Joint Research Centre, Addamo, A., Laroche, P., Hanke, G.): Top marine beach litter items in
Europe, European Commission, Joint Research Centre, Publications Office of the European Union, https://doi.org/10.2760/496717, 2018.
Eurostat: Population density by NUTS 3 region, http://data.europa.eu/88u/dataset/gngfvpqmfu5n6akvxqkpw (last access: 21 February 2020), 2019.
Fazey, F. M. C. and Ryan, P. G.: Biofouling on buoyant marine plastics: An
experimental study into the effect of size on surface longevity, Environ.
Pollut., 210, 354–360, https://doi.org/10.1016/J.ENVPOL.2016.01.026, 2016.
Ferrer, L. and Pastor, A.: The Portuguese man-of-war: Gone with the wind,
Reg. Stud. Mar. Sci., 14, 53–62,
https://doi.org/10.1016/j.rsma.2017.05.004, 2017.
Gasperi, J., Dris, R., Bonin, T., Rocher, V., and Tassin, B.: Assessment of
floating plastic debris in surface water along the Seine River, Environ.
Pollut., 195, 163–166,
https://doi.org/10.1016/j.envpol.2014.09.001, 2014.
González, M., Valencia, V., Mader, J., Fontán, A., Uriarte, A., and
Caballero, A.: Operational Coastal Systems in the Basque Country Region:
Modelling and Observations, Seventeenth International Offshore and Polar Engineering Conference, Lisbon, Portugal, 1 July 2007, Proc. Int. Offshore Polar Eng. Conf., ISOPE-I-07-074, 2007.
González-Fernández, D. and Hanke, G.: Toward a Harmonized Approach
for Monitoring of Riverine Floating Macro Litter Inputs to the Marine
Environment, Front. Mar. Sci., 4, 86, https://doi.org/10.3389/fmars.2017.00086,
2017.
González-Fernández, D., Hanke, G., Kideys, A., Navarrao Ortega, A., Sanchez
Vidal, A., Bruge, A., Öztürk, B., Palma, C., Santelli, C.,
Duijsings, D., Barcelo, D., Dimitiriu, E., Rojo-Nieto, E., Ferreira, F.,
Bessa, F., Suaria, G., Siedlewicz, G., Castro Jimenez, J., Germano, J.,
Pereira De Brito, J., Rigueira, J., Pazdro, K., Cabrera, M., Pogojeva, M.,
Köck Schulmeyer, M., Constant, M., Canals Artigas, M., Paraboschi, M.,
Tourgeli, M., Machitadze, N., Ratola, N., Savenko, O., Kerherve, P.,
Sempere, R., Bakiu, R., Crosti, R., Schoeneich-Argent, R., Landry Levesque,
S., Agostinho, T., Segal, Y., and Galletti, Y.: Floating Macro Litter in
European Rivers – Top Items, EUR 29383 EN, Publications Office of the
European Union, Luxembourg, https://doi.org/10.2760/316058, 2018.
González-Fernández, D., Cózar, A., Hanke, G., Viejo, J.,
Morales-Caselles, C., Bakiu, R., Barceló, D., Bessa, F., Bruge, A.,
Cabrera, M., Castro-Jiménez, J., Constant, M., Crosti, R., Galletti, Y.,
Kideys, A. E., Machitadze, N., Pereira de Brito, J., Pogojeva, M., Ratola,
N., Rigueira, J., Rojo-Nieto, E., Savenko, O., Schöneich-Argent, R. I.,
Siedlewicz, G., Suaria, G., and Tourgeli, M.: Floating macrolitter leaked
from Europe into the ocean, Nat. Sustain., 4, 474–483,
https://doi.org/10.1038/s41893-021-00722-6, 2021.
Haza, A. C., Paldor, N., Özgökmen, T. M., Curcic, M., Chen, S. S.,
and Jacobs, G.: Wind-Based Estimations of Ocean Surface Currents From
Massive Clusters of Drifters in the Gulf of Mexico, J. Geophys. Res.-Oceans,
124, 5844–5869, https://doi.org/10.1029/2018JC014813, 2019.
Hernández-Carrasco, I., Solabarrieta, L., Rubio, A., Esnaola, G., Reyes, E., and Orfila, A.: Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics, Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, 2018.
Hoenner, X., Barlian, E., Ernawati, T., Hardesty, B. D., Kembaren, D. D.,
Mous, P. J., Sadiyah, L., Satria, F., and Wilcox, C.: Using anti-theft
tracking devices to infer fishing vessel activity at sea, Fish. Res., 249,
106230, https://doi.org/10.1016/j.fishres.2022.106230, 2022.
Hunter, J. R., Craig, P. D., and Phillips, H. E.: On the use of random walk
models with spatially variable diffusivity, J. Comput. Phys., 106, 366–376,
https://doi.org/10.1016/S0021-9991(83)71114-9, 1993.
Joint Research Centre (Institute for Environment and Sustainability): Guidance on monitoring of marine litter in European seas, Publications Office, https://doi.org/10.2788/99816, 2014.
Kaplan, D. M. and Lekien, F.: Spatial interpolation and filtering of surface
current data based on open-boundary modal analysis, J. Geophys. Res.-Oceans,
112, C12007, https://doi.org/10.1029/2006JC003984, 2007.
Karagiorgos, J., Vervatis, V., and Sofianos, S.: The Impact of Tides on the
Bay of Biscay Dynamics, J. Mar. Sci. Eng., 8, 617, https://doi.org/10.3390/jmse8080617, 2020.
Ko, C.-Y., Hsin, Y.-C., and Jeng, M.-S.: Global distribution and cleanup
opportunities for macro ocean litter: a quarter century of accumulation
dynamics under windage effects, Environ. Res. Lett., 15, 104063,
https://doi.org/10.1088/1748-9326/abae29, 2020.
Kooi, M., Nes, E. H. van, Scheffer, M., and Koelmans, A. A.: Ups and Downs
in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics,
Environ. Sci. Technol., 51, 7963–7971,
https://doi.org/10.1021/acs.est.6b04702, 2017.
Lavin, A., Valdés, L., Sanchez, F., Abaunza, P., Forest, A., Boucher,
J., Lazure, P., and Jegou, A.-M.: The Bay of Biscay: the encountering of the
Ocean and the Shelf (18b, E), edited by: Robinson, A. and Brink, K., Combridge, MA, Harvard University Press, http://hdl.handle.net/10508/3128 (last access: 25 November 2022) 2006.
Le Boyer, A., Charria, G., Le Cann, B., Lazure, P., and Marié, L.:
Circulation on the shelf and the upper slope of the Bay of Biscay, Cont.
Shelf Res., 55, 97–107, 2013.
Lebreton, L. C. M., Greer, S. D., and Borrero, J. C.: Numerical modelling of floating debris in the world's oceans, Mar. Pollut. Bull., 64, 653–661, 2012.
Lebreton, L., Egger, M., and Slat, B.: A global mass budget for positively
buoyant macroplastic debris in the ocean, Sci. Rep.-UK, 9, 12922, https://doi.org/10.1038/s41598-019-49413-5, 2019.
Lebreton, L. C. M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady,
A., and Reisser, J.: River plastic emissions to the world's oceans, Nat.
Commun., 8, 15611, https://doi.org/10.1038/ncomms15611, 2017.
Lechner, A., Keckeis, H., Lumesberger-Loisl, F., Zens, B., Krusch, R.,
Tritthart, M., Glas, M., and Schludermann, E.: The Danube so colourful: A
potpourri of plastic litter outnumbers fish larvae in Europe's second
largest river, Environ. Pollut., 188, 177–181,
https://doi.org/10.1016/J.ENVPOL.2014.02.006, 2014.
Maclean, K., Weideman, E. A., Perold, V., and Ryan, P. G.: Buoyancy affects
stranding rate and dispersal distance of floating litter entering the sea
from river mouths, Mar. Pollut. Bull., 173, 113028,
https://doi.org/10.1016/j.marpolbul.2021.113028, 2021.
Mai, L., Sun, X., Xia, L.-L., Bao, L.-J., Liu, L.-Y., and Zeng, E. Y.:
Global Riverine Plastic Outflows, Environ. Sci. Technol., 54, 10049–10056, https://doi.org/10.1021/acs.est.0c02273, 2020.
Maier-Reimer, E. and Sündermann, J.: On tracer methods in computational
hydrodynamics, in: Engineering applications of computational hydraulics, edited by: Abbott, M. B.,
198–216, https://hdl.handle.net/21.11116/0000-0004-F582-4 (last access: 25 November 2022), 1982.
Manso-Narvarte, I., Caballero, A., Rubio, A., Dufau, C., and Birol, F.: Joint analysis of coastal altimetry and high-frequency (HF) radar data: observability of seasonal and mesoscale ocean dynamics in the Bay of Biscay, Ocean Sci., 14, 1265–1281, https://doi.org/10.5194/os-14-1265-2018, 2018.
Manso-Narvarte, I., Rubio, A., Jordà, G., Carpenter, J., Merckelbach,
L., and Caballero, A.: Three-Dimensional Characterization of a Coastal
Mode-Water Eddy from Multiplatform Observations and a Data Reconstruction
Method, Remote Sens., 13, 674, https://doi.org/10.3390/rs13040674, 2021.
Mantovani, C., Corgnati, L., Horstmann, J., Rubio, A., Reyes, E., Quentin,
C., Cosoli, S., Asensio, J. L., Hermes, J., Mader, J., and Griffa, A.: Best
Practices on High Frequency Radar Deployment and Operation for Ocean Current
Measurement, Front. Mar. Sci., 7, 210, https://doi.org/10.3389/fmars.2020.00210, 2020.
Margenat, H., Ruiz-Orejón, L. F., Cornejo, D., Martí, E., Vila, A.,
Le Roux, G., Hansson, S., and Guasch, H.: Guidelines of field-tested
procedures and methods for monitoring plastic litter in Mountain riverine
systems, European Commission, https://doi.org/10.20350/digitalCSIC/13880, 2021.
Marta-Almeida, M., Ruiz-Villarreal, M., Pereira, J., Otero, P., Cirano, M.,
Zhang, X., and Hetland, R. D.: Efficient tools for marine operational
forecast and oil spill tracking, Mar. Pollut. Bull., 71, 139–151,
https://doi.org/10.1016/J.MARPOLBUL.2013.03.022, 2013.
Martínez Fernández, A., Redondo Caride, W., Alonso Pérez, F.,
Piedracoba Varela, S., Lorente Jiménez, P., Montero Vilar, P., Torres
López, S., Fernández Baladrón, A., Varela Benvenuto, R. A., and
Velo Lanchas, A.: SPOT and GPRS drifting buoys for HF Radar calibration,
Instrum. Viewp., Universidad Politécnica de Cataluña, 48–49, http://hdl.handle.net/10261/259925 (last access: 25 November 2022), 2021.
Maximenko, N., Hafner, J., Kamachi, M., and MacFadyen, A.: Numerical
simulations of debris drift from the Great Japan Tsunami of 2011 and their
verification with observational reports, Mar. Pollut. Bull., 132, 5–25, https://doi.org/10.1016/j.marpolbul.2018.03.056, 2018.
Mazarrasa, I., Puente, A., Núñez, P., García, A., Abascal, A.
J., and Juanes, J. A.: Assessing the risk of marine litter accumulation in
estuarine habitats, Mar. Pollut. Bull., 144, 117–128,
https://doi.org/10.1016/j.marpolbul.2019.04.060, 2019.
Meijer, L. J. J., van Emmerik, T., van der Ent, R., Schmidt, C., and
Lebreton, L.: More than 1000 rivers account for 80 % of global riverine
plastic emissions into the ocean, Sci. Adv., 7, eaaz5803,
https://doi.org/10.1126/sciadv.aaz5803, 2021.
Melvin, J., Bury, M., Ammendolia, J., Charles, M., and Liboiron, M.:
Critical Gaps in Shoreline Plastics Pollution Research, Front. Mar. Sci., 8, 689108,
https://doi.org/10.3389/fmars.2021.689108, 2021.
Meyerjürgens, J., Badewien, T. H., Garaba, S. P., Wolff, J.-O., and Zielinski, O.: A State-of-the-Art Compact Surface Drifter Reveals Pathways of Floating Marine Litter in the German Bight, Front. Mar. Sci., 6, 58, https://doi.org/10.3389/fmars.2019.00058, 2019.
Min, K., Cuiffi, J. D., and Mathers, R. T.: Ranking environmental
degradation trends of plastic marine debris based on physical properties and
molecular structure, Nat. Commun., 11, 727,
https://doi.org/10.1038/s41467-020-14538-z, 2020.
Neumann, D., Callies, U., and Matthies, M.: Marine litter ensemble transport
simulations in the southern North Sea, Mar. Pollut. Bull., 86, 219–228,
https://doi.org/10.1016/j.marpolbul.2014.07.016, 2014.
Novelli, G., Guigand, C. M., Cousin, C., Ryan, E. H., Laxague, N. J. M.,
Dai, H., Haus, B. K., and Özgökmen, T. M.: A Biodegradable Surface
Drifter for Ocean Sampling on a Massive Scale, J. Atmos. Ocean. Tech.,
34, 2509–2532, https://doi.org/10.1175/jtech-d-17-0055.1, 2017.
Novelli, G., Guigand, C. M., and Özgökmen, T. M.: Technological
Advances in Drifters for Oil Transport Studies, Mar. Technol. Soc. J., 52,
53–61, https://doi.org/10.4031/mtsj.52.6.9, 2018.
Núñez, P., García, A., Mazarrasa, I., Juanes, J. A., Abascal,
A. J., Méndez, F., Castanedo, S., and Medina, R.: A methodology to
assess the probability of marine litter accumulation in estuaries, Mar.
Pollut. Bull., 144, 309–324,
https://doi.org/10.1016/j.marpolbul.2019.04.077, 2019.
Ocio, D., Stocker, C., Eraso, A., and Cowpertwait, P.: Regionalized extreme
flows by means of stochastic storm generation coupled with a distributed
hydrological model. The case of the Basque Country, Proc. 36th IAHR World
Congr., 28 June–3 July 2015, 1–13,
https://doi.org/10.13140/RG.2.1.3924.4889, 2015.
Pereiro, D., Souto, C., and Gago, J.: Calibration of a marine floating
litter transport model, J. Oper. Oceanogr., 11, 125–133,
https://doi.org/10.1080/1755876x.2018.1470892, 2018.
Pereiro, D., Souto, C., and Gago, J.: Dynamics of floating marine debris in
the northern Iberian waters: A model approach, J. Sea Res., 144, 57–66,
https://doi.org/10.1016/j.seares.2018.11.007, 2019.
Porter, M., Inall, M. E., Green, J. A. M., Simpson, J. H., Dale, A. C., and
Miller, P. I.: Drifter observations in the summer time Bay of Biscay slope
current, J. Marine Syst., 157, 65–74, 2016.
Puillat, I., Lazure, P., Anne-marie, J., Lampert, L., and Miller, P.:
Mesoscale hydrological variability induced by northwesterly wind on the
French continental shelf of the Bay of Biscay, Sci. Mar., 70, 15–26,
2006.
Putman, N. F., Lumpkin, R., Olascoaga, M. J., Trinanes, J., and Goni, G. J.:
Improving transport predictions of pelagic Sargassum, J. Exp. Mar. Biol.
Ecol., 529, 151398,
https://doi.org/10.1016/j.jembe.2020.151398, 2020.
Reed, M., Turner, C., and Odulo, A.: The role of wind and emulsification in
modelling oil spill and surface drifter trajectories, Spill Sci. Technol.
B., 1, 143–157, https://doi.org/10.1016/1353-2561(94)90022-1, 1994.
Révelard, A., Reyes, E., Mourre, B., Hernández-Carrasco, I., Rubio,
A., Lorente, P., Fernández, C. D. L., Mader, J., Álvarez-Fanjul, E.,
and Tintoré, J.: Sensitivity of Skill Score Metric to Validate
Lagrangian Simulations in Coastal Areas: Recommendations for Search and
Rescue Applications, Front. Mar. Sci., 8, 630388,
https://doi.org/10.3389/fmars.2021.630388, 2021.
Rizal, A., Gautama, B. G., Pranowo, W. S., Farhan, A. R., Siong, K.,
Harjono, M. R., Voisin, J. B., Maes, C., Dobler, D., Berlianty, D., Priyono,
B., Dufau, C., Lucas, M., Fauny, O., and Rahmania, R.: Tracking the Stranded
Area of Marine Debris in Indonesian coasts by using Floating Drifter, IOP
Conf. Ser.-Earth Environ. Sci., 925, 12034,
https://doi.org/10.1088/1755-1315/925/1/012034, 2021.
Robbe, E., Woelfel, J., Balčiūnas, A., and Schernewski,
G.: An Impact Assessment of Beach Wrack and Litter on Beach Ecosystem
Services to Support Coastal Management at the Baltic Sea, Environ. Manage.,
68, 835–859, https://doi.org/10.1007/s00267-021-01533-3, 2021.
Rodríguez, J. G., Garmendia, J. M., Muxika, I., Gómez-Ballesteros,
M., Quincoces, I., Díez, I., Arrese, B., Sánchez, F., and
Galparsoro, I.: Macrofaunal variability in the continental shelf and canyons
in the southeastern Bay of Biscay, Reg. Stud. Mar. Sci., 48, 102012,
https://doi.org/10.1016/j.rsma.2021.102012, 2021.
Rodríguez-Díaz, L., Gómez-Gesteira, J. L., Costoya, X.,
Gómez-Gesteira, M., and Gago, J.: The Bay of Biscay as a trapping zone
for exogenous plastics of different sizes, J. Sea Res., 163, 101929,
https://doi.org/10.1016/j.seares.2020.101929, 2020.
Rubio, A., Reverdin, G., Fontán, A., González, M., and Mader, J.:
Mapping near-inertial variability in the SE Bay of Biscay from HF radar data
and two offshore moored buoys, Geophys. Res. Lett., 38, 1–6,
https://doi.org/10.1029/2011GL048783, 2011.
Rubio, A., Solabarrieta, L., Gonzalez, M., Mader, J., Castanedo, S., Medina,
R., Charria, G., and Aranda, J. A.: Surface circulation and Lagrangian
transport in the SE Bay of Biscay from HF radar data, Ocean. 2013 MTS/IEEE
Bergen Challenges North. Dimens.,
https://doi.org/10.1109/OCEANS-Bergen.2013.6608039, 2013.
Rubio, A., Mader, J., Corgnati, L., Mantovani, C., Griffa, A., Novellino,
A., Quentin, C., Wyatt, L., Schulz-Stellenfleth, J., Horstmann, J., Lorente,
P., Zambianchi, E., Hartnett, M., Fernandes, C., Zervakis, V., Gorringe, P.,
Melet, A., and Puillat, I.: HF Radar Activity in European Coastal Seas: Next
Steps toward a Pan-European HF Radar Network, Front. Mar. Sci., 4, 8,
https://doi.org/10.3389/fmars.2017.00008, 2017.
Rubio, A., Caballero, A., Orfila, A., Hernández-Carrasco, I., Ferrer,
L., González, M., Solabarrieta, L., and Mader, J.: Eddy-induced
cross-shelf export of high Chl-a coastal waters in the SE Bay of Biscay,
Remote Sens. Environ., 205, 290–304,
https://doi.org/10.1016/j.rse.2017.10.037, 2018.
Rubio, A., Hernández-Carrasco, I., Orfila, A., González, M., Reyes,
E., Corgnati, L., Berta, M., Griffa, A., and Mader, J.: A Lagrangian
approach to monitor local particle retention conditions in coastal areas, J.
Oper. Oceanogr., 13, S1–S172, https://doi.org/10.1080/1755876X.2020.1785097,
2020.
Ruiz, I., Basurko, O. C., Rubio, A., Delpey, M., Granado, I., Declerck, A.,
Mader, J., and Cózar, A.: Litter Windrows in the South-East Coast of the
Bay of Biscay: An Ocean Process Enabling Effective Active Fishing for
Litter, Front. Mar. Sci., 7, 308, https://doi.org/10.3389/fmars.2020.00308, 2020.
Ruiz, I., Abascal, A. J., Basurko, O. C., and Rubio, A.: Modelling the
distribution of fishing-related floating marine litter within the Bay of
Biscay and its marine protected areas, Environ. Pollut., 292, 118216,
https://doi.org/10.1016/j.envpol.2021.118216, 2022a.
Ruiz, I., Rubio, A., Abascal, A. J., and Basurko, O. C.: Supplemental videos of the paper “Modelling floating riverine litter in the south-eastern Bay of Biscay: a regional distribution from a seasonal perspective”, TIB [video], https://doi.org/10.5446/s_1355, 2022b.
Russell, K.: Spain's Coastal Authority Uses Spot Trace for Search and Rescue
Training,
https://www.satellitetoday.com/telecom/2017/06/20/spains-coastal-authority-uses-spot-trace-search-rescue-training/ (last access: 21 December 2019),
2017.
Ryan, P. G.: Does size and buoyancy affect the long-distance transport of
floatingdebris?, Environ. Res. Lett., 10, 1, https://doi.org/10.1088/1748-9326/10/8/084019, 2015.
Schmidt, C., Krauth, T., and Wagner, S.: Export of Plastic Debris by Rivers
into the Sea, Environ. Sci. Technol., 51, 12246–12253,
https://doi.org/10.1021/acs.est.7b02368, 2017.
Schuyler, Q., Wilcox, C., Lawson, T. J., Ranatunga, R. R. M. K. P., Hu, C.-S., Global Plastics Project Partners, and Hardestey, B. D.: Human Population
Density is a Poor Predictor of Debris in the Environment, Front. Environ.
Sci., 9, 583454, https://doi.org/10.3389/fenvs.2021.583454, 2021.
Sheppard, C.: World Seas: An Environmental Evaluation: Volume I: Europe, The
Americas and West Africa, edited by: Sheppard, C., Academic press, Elsevier, https://doi.org/10.1016/C2015-0-04330-1, 2018.
Solabarrieta, L., Rubio, A., Castanedo, S., Medina, R., Charria, G., and
Hernández, C.: Surface water circulation patterns in the southeastern
Bay of Biscay: New evidences from HF radar data, Cont. Shelf Res., 74,
60–76, https://doi.org/10.1016/j.csr.2013.11.022, 2014.
Solabarrieta, L., Rubio, A., Cárdenas, M., Castanedo, S., Esnaola, G.,
Méndez, F. J., Medina, R., and Ferrer, L.: Probabilistic relationships
between wind and surface water circulation patterns in the SE Bay of Biscay,
Ocean Dynam., 65, 1289–1303, https://doi.org/10.1007/s10236-015-0871-5, 2015.
Solabarrieta, L., Frolov, S., Cook, M., Paduan, J., Rubio, A., González,
M., Mader, J., and Charria, G.: Skill Assessment of HF Radar–Derived
Products for Lagrangian Simulations in the Bay of Biscay, J. Atmos. Ocean.
Tech., 33, 2585–2597, https://doi.org/10.1175/jtech-d-16-0045.1, 2016.
Solabarrieta, L., Hernández-Carrasco, I., Rubio, A., Campbell, M., Esnaola, G., Mader, J., Jones, B. H., and Orfila, A.: A new Lagrangian-based short-term prediction methodology for high-frequency (HF) radar currents, Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, 2021.
Stanev, E. V., Badewien, T. H., Freund, H., Grayek, S., Hahner, F.,
Meyerjürgens, J., Ricker, M., Schöneich-Argent, R. I., Wolff, J. O.,
and Zielinski, O.: Extreme westward surface drift in the North Sea: Public
reports of stranded drifters and Lagrangian tracking, Cont. Shelf Res., 177,
24–32, https://doi.org/10.1016/j.csr.2019.03.003, 2019.
Teles-Machado, A., Peliz, Á., McWilliams, J. C., Dubert, J., and Cann,
B. Le: Circulation on the Northwestern Iberian Margin: Swoddies, Prog.
Oceanogr., 140, 116–133, https://doi.org/10.1016/J.POCEAN.2015.09.011,
2016.
Tong, X., Jong, M.-C., Zhang, J., You, L., and Gin, K. Y.-H.: Modelling the
spatial and seasonal distribution, fate and transport of floating plastics
in tropical coastal waters, J. Hazard. Mater., 414, 125502,
https://doi.org/10.1016/j.jhazmat.2021.125502, 2021.
Van Der Mheen, M., Pattiaratchi, C., and Van Sebille, E.: Role of Indian
Ocean Dynamics on Accumulation of Buoyant Debris, J. Geophys. Res.-Oceans,
124, 2571–2590, https://doi.org/10.1029/2018JC014806, 2019.
van der Wal, M., van der Meulen, M., Tweehuijsen, G., Peterlin, M.,
Palatinus, A., Kovač Viršek, M., Coscia, L., and Kržan, A.:
Identification and Assessment of Riverine Input of (Marine) Litter, Final
Rep. Eur. Comm. DG Environ. under Framew. Contract No. ENV.D.2/FRA/2012/0025,
1–208, 2015.
van Emmerik, T. and Schwarz, A.: Plastic debris in rivers, WIREs Water, 7, e1398,
https://doi.org/10.1002/wat2.1398, 2020.
van Sebille, E., England, M. H., and Froyland, G.: Origin, dynamics and evolution of ocean garbage patches from observed surface drifters, Environ. Res. Lett., 7, 044040, https://doi.org/10.1088/1748-9326/7/4/044040, 2012.
Van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M.,
Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., and Cózar, A.:
The physical oceanography of the transport of floating marine debris,
Environ. Res. Lett., 15, 23003, https://doi.org/10.1088/1748-9326/ab6d7d, 2020.
van Sebille, E., Zettler, E., Wienders, N., Amaral-Zettler, L., Elipot, S.,
and Lumpkin, R.: Dispersion of Surface Drifters in the Tropical Atlantic,
Front. Mar. Sci., 7, 607426, https://doi.org/10.3389/fmars.2020.607426, 2021.
van Utenhove, E.: Modelling the transport and fate of buoyant macroplastics
in coastal waters, Master thesis, http://resolver.tudelft.nl/uuid:be6a41d2-6071-47b9-926d-f22c23edadba (last access: 25 November 2022), 2019.
Weideman, E. A., Perold, V., Omardien, A., Smyth, L. K., and Ryan, P. G.:
Quantifying temporal trends in anthropogenic litter in a rocky intertidal
habitat, Mar. Pollut. Bull., 160, 111543,
https://doi.org/10.1016/J.MARPOLBUL.2020.111543, 2020.
Wendt-Potthoff, K., Avellán, T., van Emmerik, T., Hamester, M.,
Kirschke, S., Kitover, D., and Schmidt, C.: Monitoring Plastics in Rivers
and Lakes: Guidelines for the Harmonization of Methodologies, edited by: Smith, J., United Nations Environment Programme, ISBN 9789280738193, 2020.
Widyatmoko, A. C., Hardesty, B. D., and Wilcox, C.: Detecting anchored fish
aggregating devices (AFADs) and estimating use patterns from vessel tracking
data in small-scale fisheries, Sci. Rep.-UK, 11, 17909,
https://doi.org/10.1038/s41598-021-97227-1, 2021.
Woods, J. S., Verones, F., Jolliet, O., Vázquez-Rowe, I., and Boulay,
A.-M.: A framework for the assessment of marine litter impacts in life cycle
impact assessment, Ecol. Indic., 129, 107918,
https://doi.org/10.1016/j.ecolind.2021.107918, 2021.
Yoon, J.-H., Kawano, S., and Igawa, S.: Modeling of marine litter drift and
beaching in the Japan Sea, Mar. Pollut. Bull., 60, 448, https://doi.org/10.1016/j.marpolbul.2009.09.033, 2010.
Short summary
The south-eastern Bay of Biscay is an accumulation zone for marine litter. Yet, the behaviour of the riverine litter fraction reaching the sea is poorly understood. We resolve this by studying litter buoyancy and transport, based on high-frequency radar observations and Lagrangian simulations. We show large seasonal and regional differences between items' behaviour, particularly in summer when highly buoyant litter beaches faster and Gipuzkoa and Pyrénées-Atlantiques regions are mostly affected.
The south-eastern Bay of Biscay is an accumulation zone for marine litter. Yet, the behaviour of...