Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1339-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1339-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrography, circulation, and response to atmospheric forcing in the vicinity of the central Getz Ice Shelf, Amundsen Sea, Antarctica
Vår Dundas
CORRESPONDING AUTHOR
Geophysical Institute, University of Bergen and the Bjerknes Centre for Climate Research, Bergen, Norway
Elin Darelius
Geophysical Institute, University of Bergen and the Bjerknes Centre for Climate Research, Bergen, Norway
Kjersti Daae
Geophysical Institute, University of Bergen and the Bjerknes Centre for Climate Research, Bergen, Norway
Nadine Steiger
Geophysical Institute, University of Bergen and the Bjerknes Centre for Climate Research, Bergen, Norway
Yoshihiro Nakayama
Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
Tae-Wan Kim
Korea Polar Research Institute, Incheon, South Korea
Related authors
Elin Darelius, Vår Dundas, Markus Janout, and Sandra Tippenhauer
Ocean Sci., 19, 671–683, https://doi.org/10.5194/os-19-671-2023, https://doi.org/10.5194/os-19-671-2023, 2023
Short summary
Short summary
Antarctica's ice shelves are melting from below as ocean currents bring warm water into the ice shelf cavities. The melt rates of the large Filchner–Ronne Ice Shelf in the southern Weddell Sea are currently low, as the water in the cavity is cold. Here, we present data from a scientific cruise to the region in 2021 and show that the warmest water at the upper part of the continental slope is now about 0.1°C warmer than in previous observations, while the surface water is fresher than before.
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513, https://doi.org/10.5194/egusphere-2024-3513, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean models are used to understand how the ocean interacts with the Antarctic Ice Sheet, but they are too coarse in resolution to capture the small-scale ocean processes driving melting and require a parameterisation to predict melt. Previous parameterisations ignore key processes occurring in some regions of Antarctica. We develop a parameterisation with the feedback of stratification on melting and test it in idealised and regional ocean models, finding changes to melt rate and circulation.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024, https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Short summary
Global- and basin-scale ocean reanalyses are becoming easily accessible. However, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluation. We conduct intercomparison analyses of Massachusetts Institute of Technology General Circulation Model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open-ocean temporal variability and Antarctic continental shelves require improvements.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
Ocean Sci., 20, 1585–1610, https://doi.org/10.5194/os-20-1585-2024, https://doi.org/10.5194/os-20-1585-2024, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Elin Darelius, Vår Dundas, Markus Janout, and Sandra Tippenhauer
Ocean Sci., 19, 671–683, https://doi.org/10.5194/os-19-671-2023, https://doi.org/10.5194/os-19-671-2023, 2023
Short summary
Short summary
Antarctica's ice shelves are melting from below as ocean currents bring warm water into the ice shelf cavities. The melt rates of the large Filchner–Ronne Ice Shelf in the southern Weddell Sea are currently low, as the water in the cavity is cold. Here, we present data from a scientific cruise to the region in 2021 and show that the warmest water at the upper part of the continental slope is now about 0.1°C warmer than in previous observations, while the surface water is fresher than before.
Yoshihiro Nakayama, Dimitris Menemenlis, Ou Wang, Hong Zhang, Ian Fenty, and An T. Nguyen
Geosci. Model Dev., 14, 4909–4924, https://doi.org/10.5194/gmd-14-4909-2021, https://doi.org/10.5194/gmd-14-4909-2021, 2021
Short summary
Short summary
High ice shelf melting in the Amundsen Sea has attracted many observational campaigns in the past decade. One method to combine observations with numerical models is the adjoint method. After 20 iterations, the cost function, defined as a sum of the weighted model–data difference, is reduced by 65 % by adjusting initial conditions, atmospheric forcing, and vertical diffusivity. This study demonstrates adjoint-method optimization with explicit representation of ice shelf cavity circulation.
Yoshihiro Nakayama, Ralph Timmermann, and Hartmut H. Hellmer
The Cryosphere, 14, 2205–2216, https://doi.org/10.5194/tc-14-2205-2020, https://doi.org/10.5194/tc-14-2205-2020, 2020
Short summary
Short summary
Previous studies have shown accelerations of West Antarctic glaciers, implying that basal melt rates of these glaciers were small and increased in the middle of the 20th century. We conduct coupled sea ice–ice shelf–ocean simulations with different levels of ice shelf melting from West Antarctic glaciers. This study reveals how far and how quickly glacial meltwater from ice shelves in the Amundsen and Bellingshausen seas propagates downstream into the Ross Sea and along the East Antarctic coast.
Jinyoung Jung, Sang-Bum Hong, Meilian Chen, Jin Hur, Liping Jiao, Youngju Lee, Keyhong Park, Doshik Hahm, Jung-Ok Choi, Eun Jin Yang, Jisoo Park, Tae-Wan Kim, and SangHoon Lee
Atmos. Chem. Phys., 20, 5405–5424, https://doi.org/10.5194/acp-20-5405-2020, https://doi.org/10.5194/acp-20-5405-2020, 2020
Short summary
Short summary
Characteristics of atmospheric sulfur and organic carbon species in marine aerosols and the environmental factors influencing their distributions were investigated over the Southern Ocean and the Amundsen Sea, Antarctica, during austral summer. The simultaneous measurements of chemical species in aerosols as well as the chemical and biological properties of seawater in the Amundsen Sea allowed for a better understanding of the effect of the ocean ecosystem on marine aerosols.
Wei Wei, Donald D. Blankenship, Jamin S. Greenbaum, Noel Gourmelen, Christine F. Dow, Thomas G. Richter, Chad A. Greene, Duncan A. Young, SangHoon Lee, Tae-Wan Kim, Won Sang Lee, and Karen M. Assmann
The Cryosphere, 14, 1399–1408, https://doi.org/10.5194/tc-14-1399-2020, https://doi.org/10.5194/tc-14-1399-2020, 2020
Short summary
Short summary
Getz Ice Shelf is the largest meltwater source from Antarctica of the Southern Ocean. This study compares the relative importance of the meltwater production of Getz from both ocean and subglacial sources. We show that basal melt rates are elevated where bathymetric troughs provide pathways for warm Circumpolar Deep Water to enter the Getz Ice Shelf cavity. In particular, we find that subshelf melting is enhanced where subglacially discharged fresh water flows across the grounding line.
Minkyoung Kim, Eun Jin Yang, Hyung Jeek Kim, Dongseon Kim, Tae-Wan Kim, Hyoung Sul La, SangHoon Lee, and Jeomshik Hwang
Biogeosciences, 16, 2683–2691, https://doi.org/10.5194/bg-16-2683-2019, https://doi.org/10.5194/bg-16-2683-2019, 2019
Short summary
Short summary
Unexpectedly, in sediment traps deployed in the Antarctic Amundsen Sea to catch small sinking particles in the water, large benthic invertebrates such as long and slender worms, baby sea urchins, and small scallops were found. We suggest three hypotheses: lifting of these animals by anchor ice formation and subsequent transport by ice rafting, spending their juvenile period in a habitat underneath the sea ice and subsequent falling, or their active use of the current as a means of dispersal.
Bogi Hansen, Turið Poulsen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Svein Østerhus, Elin Darelius, Barbara Berx, Detlef Quadfasel, and Kerstin Jochumsen
Ocean Sci., 13, 873–888, https://doi.org/10.5194/os-13-873-2017, https://doi.org/10.5194/os-13-873-2017, 2017
Short summary
Short summary
On its way towards the Arctic, an important branch of warm Atlantic water passes through the Faroese Channels, but, in spite of more than a century of investigations, the detailed flow pattern through this channel system has not been resolved. This has strong implications for estimates of oceanic heat transport towards the Arctic. Here, we combine observations from various sources, which together paint a coherent picture of the Atlantic water flow and heat transport through this channel system.
Stefanie Semper and Elin Darelius
Ocean Sci., 13, 77–93, https://doi.org/10.5194/os-13-77-2017, https://doi.org/10.5194/os-13-77-2017, 2017
Short summary
Short summary
Velocity measurements from moorings at the shelf break in the southern Weddell Sea reveal strong diurnal tidal currents, which are enhanced by ca. 50 % in austral summer compared to winter. A numerical code describing coastal trapped waves (CTWs) is used to explore the effect of changing stratification and circulation on wave properties. It is found that near-resonance between CTWs and diurnal tides during austral summer can explain the observed enhancement of diurnal tidal currents.
Jenny E. Ullgren, Elin Darelius, and Ilker Fer
Ocean Sci., 12, 451–470, https://doi.org/10.5194/os-12-451-2016, https://doi.org/10.5194/os-12-451-2016, 2016
Short summary
Short summary
One-year long moored measurements of currents and hydrographic properties in the overflow region of the Faroe Bank Channel have provided a more accurate observational-based estimate of the volume transport, entrainment, and eddy diffusivities associated with the overflow plume. The data set resolves the temporal variability and covers the entire lateral and vertical extent of the plume.
E. Darelius, I. Fer, T. Rasmussen, C. Guo, and K. M. H. Larsen
Ocean Sci., 11, 855–871, https://doi.org/10.5194/os-11-855-2015, https://doi.org/10.5194/os-11-855-2015, 2015
Short summary
Short summary
Quasi-regular eddies are known to be generated in the outflow of dense water through the Faroe Bank Channel. One year long mooring records from the plume region show that (1) the energy associated with the eddies varies by a factor of 10 throughout the year and (2) the frequency of the eddies shifts between 3 and 6 days and is related to the strength of the outflow. Similar variability is shown by a high-resolution regional model and the observations agree with theory on baroclinic instability.
Cited articles
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall,
C. W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange
over summer sea ice and the marginal ice zone, Q. J.
Roy. Meteor. Soc., 136, 927–943, https://doi.org/10.1002/qj.618, 2010. a, b
Arndt, J. E., Schenke, H. W., Jakobsson, M., Nitsche, F. O., Buys, G., Goleby,
B., Rebesco, M., Bohoyo, F., Hong, J., Black, J., Greku, R., Udintsev, G.,
Barrios, F., Reynoso-Peralta, W., Taisei, M., and Wigley, R.: The
International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0
– A new bathymetric compilation covering circum-Antarctic waters,
Geophys. Res. Lett., 40, 3111–3117, https://doi.org/10.1002/grl.50413, 2013. a, b
Arneborg, L., Wåhlin, A. K., Björk, G., Liljebladh, B., and Orsi,
A. H.: Persistent inflow of warm water onto the central Amundsen shelf,
Nat. Geosci., 5, 876–880, https://doi.org/10.1038/ngeo1644, 2012. a
Assmann, K. M., Jenkins, A., Shoosmith, D. R., Walker, D. P., Jacobs, S. S.,
and Nicholls, K. W.: Variability of Circumpolar Deep Water transport onto
the Amundsen Sea continental shelf through a shelf break trough, J.
Geophys. Res.-Oceans, 118, 6603–6620, https://doi.org/10.1002/2013JC008871,
2013. a, b, c, d, e, f
Brenner, S., Rainville, L., Thomson, J., Cole, S., and Lee, C.: Comparing
Observations and Parameterizations of Ice-Ocean Drag Through an Annual Cycle
Across the Beaufort Sea, J. Geophys. Res.-Oceans, 126, e2020JC016977,
https://doi.org/10.1029/2020JC016977, 2021. a
Chavanne, C. P., Heywood, K. J., Nicholls, K. W., and Fer, I.: Observations of
the Antarctic Slope undercurrent in the Southeastern Weddell Sea,
Geophys. Res. Lett., 37, 3–7, https://doi.org/10.1029/2010GL043603, 2010. a, b
Daae, K., Hattermann, T., Darelius, E., and Fer, I.: On the effect of
topography and wind on warm water inflow—An idealized study of the southern
Weddell Sea continental shelf system, J. Geophys. Res.-Oceans, 122, 2622–2641, https://doi.org/10.1002/2013JC009262, 2017. a, b
Darelius, E., Fer, I., and Nicholls, K. W.: Observed vulnerability of
Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water, Nat. Commun., 7, 12300, https://doi.org/10.1038/ncomms12300, 2016. a
Darelius, E., Fer, I., Assmann, K., and Kim, T. W.: Physical oceanography from Mooring UiB1 and UiB4 in the Amundsen Sea, NMDC [data set], https://doi.org/10.21335/NMDC-1721053841, 2018. a
Darelius, E., Fer, I., Assmann, K., Kim, T. W., and Dundas, V.: Physical oceanography from mooring UIB3 in the Amundsen Sea, NMDC [data set], https://doi.org/10.21335/NMDC-518522938, 2022. a
Davis, P. E., Jenkins, A., Nicholls, K. W., Brennan, P. V., Abrahamsen, E. P.,
Heywood, K. J., Dutrieux, P., Cho, K. H., and Kim, T. W.: Variability in
Basal Melting Beneath Pine Island Ice Shelf on Weekly to Monthly Timescales,
J. Geophys. Res.-Oceans, 123, 8655–8669,
https://doi.org/10.1029/2018JC014464, 2018. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler,
M., Matricardi, M., Mcnally, A. P., Monge-Sanz, B. M., Morcrette, J. J.,
Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N.,
and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
a
Dotto, T. S., Naveira Garabato, A., Bacon, S., Tsamados, M., Holland, P. R.,
Hooley, J., Frajka-Williams, E., Ridout, A., and Meredith, M. P.:
Variability of the Ross Gyre, Southern Ocean: Drivers and Responses Revealed
by Satellite Altimetry, Geophys. Res. Lett., 45, 6195–6204,
https://doi.org/10.1029/2018GL078607, 2018. a, b, c, d, e
Dotto, T. S., Naveira Garabato, A. C., Bacon, S., Holland, P. R., Kimura, S.,
Firing, Y. L., Tsamados, M., Wåhlin, A. K., and Jenkins, A.: Wind-driven
processes controlling oceanic heat delivery to the Amundsen Sea, Antarctica,
J. Phys. Oceanogr., 49, 2829–2849, https://doi.org/10.1175/jpo-d-19-0064.1, 2019. a, b, c, d
Dotto, T. S., Naveira Garabato, A. C., Wåhlin, A. K., Bacon, S., Holland,
P. R., Kimura, S., Tsamados, M., Herraiz-Borreguero, L., Kalén, O., and
Jenkins, A.: Control of the Oceanic Heat Content of the Getz-Dotson Trough,
Antarctica, by the Amundsen Sea Low, J. Geophys. Res.-Oceans, 125, e2020JC016113, https://doi.org/10.1029/2020JC016113, 2020. a
Dundas, V., Darelius, E., Daae, K., Steiger, N., Nakayama, Y., and Kim, T. W.: Hydrography and circulation in the vicinity of the central Getz Ice Shelf: two years of mooring observations, Supplementary Video S1, TIB [video], https://doi.org/10.5446/56380, 2022. a
Dupont, T. K. and Alley, R. B.: Assessment of the importance of ice-shelf
buttressing to ice-sheet flow, Geophys. Res. Lett., 32, 1–4,
https://doi.org/10.1029/2004GL022024, 2005. a
Dutrieux, P., De Rydt, J., Jenkins, A., Holland, P. R., Ha, H. K., Lee, S. H.,
Steig, E. J., Ding, Q., Abrahamsen, E. P., and Schröder, M.: Strong
sensitivity of pine Island ice-shelf melting to climatic variability,
Science, 343, 174–178, https://doi.org/10.1126/science.1244341, 2014. a
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.: Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
a
Heywood, K. J., Biddle, L., Boehme, L., Dutrieux, P., Fedak, M., Jenkins, A.,
Jones, R., Kaiser, J., Mallett, H., Naveira Garabato, A., Renfrew, I.,
Stevens, D., and Webber, B.: Between the Devil and the Deep Blue Sea: The
Role of the Amundsen Sea Continental Shelf in Exchanges Between Ocean and Ice
Shelves, Oceanography, 29, 118–129, https://doi.org/10.5670/oceanog.2016.104, 2016. a, b
Holland, D., Nicholls, K. W., and Basinski, A.: The Southern Ocean and its
interaction with the Antarctic Ice Sheet, Science, 367, 1326–1330, 2020. a
IOC, SCOR, and IAPSO: The international thermodynamic equation of
seawater – 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO
(English), 196 pp., http://www.teos-10.org/ (last access: November 2019), 2010. a
Jacobs, S. S.: On the nature and significance of the Antarctic Slope Front,
Mar. Chem., 35, 9–24, https://doi.org/10.1016/S0304-4203(09)90005-6, 1991. a
Jacobs, S. S., Jenkins, A., Hellmer, H. H., Giulivi, C. F., Nitsche, F. O.,
Huber, B., and Guerrero, R.: The Amundsen Sea and the Antarctic Ice Sheet,
Ocenaography, 25, 154–163, https://doi.org/10.5670/oceanog.2012.90, 2012. a, b, c, d
Jacobs, S. S., Smethie Jr., W. M., Schlosser, P., and Loose, B.: Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the NATHANIEL B. PALMER in the South Pacific Ocean from 1994-02-14 to 1994-04-05 (NCEI Accession 0116067), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.clivar_ross_sea_320619940214, 2014a. a
Jacobs, S. S., Smethie Jr., W. M., Schlosser, P., and Loose, B.: Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the NATHANIEL B. PALMER in the South Pacific Ocean from 2000-02-15 to 2000-03-24 (NCEI Accession 0116066), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.clivar_ross_sea_320620000215, 2014b. a
Jacobs, S. S., Giulivi, C. F., and Smethie Jr., W. M.: Temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean and Southern Oceans from 2007-02-03 to 2007-03-26 (NCEI Accession 0157442), NOAA National Centers for Environmental Information [data set], https://doi.org/10.3334/cdiac/otg.320620070203, 2016. a
Jourdain, N. C., Mathiot, P., Merino, N., Le Sommer, J., Durand, G., Spence,
P., Dutrieux, P., and Madec, G.: Journal of geophysical research, J. Geophys. Res.-Oceans, 122, 2550–2573, https://doi.org/10.1038/175238c0,
2017. a, b
Kalén, O., Assmann, K. M., Wåhlin, A. K., Ha, H. K., Kim, T. W., and
Lee, S. H.: Is the oceanic heat flux on the central Amundsen sea shelf
caused by barotropic or baroclinic currents?, Deep-Sea Res. Pt. II, 123, 7–15,
https://doi.org/10.1016/j.dsr2.2015.07.014, 2016. a, b
Kim, T. W.: CTD data to observe Circumpolar Deep Water (CDW) in the Amundsen Sea in 2015/2016, KOPRI-KPDC-00000634 [data set], https://doi.org/10.22663/KOPRI-KPDC-00000634.2, 2016. a
Kim, T. W.: CTD data to observe Circumpolar Deep Water (CDW) in the Amundsen Sea in 2017/2018, KOPRI-KPDC-00000634 [data set], https://doi.org/10.22663/KOPRI-KPDC-00000907.1, 2018. a
Kim, C. S., Kim, T. W., Cho, K. H., Ha, H. K., Lee, S. H., Kim, H. C., and Lee,
J. H.: Variability of the Antarctic Coastal Current in the Amundsen Sea,
Estuar. Coast. Shelf S., 181, 123–133,
https://doi.org/10.1016/j.ecss.2016.08.004, 2016. a
Lefebvre, W. and Goosse, H.: Influence of the Southern Annular Mode on the sea ice-ocean system: the role of the thermal and mechanical forcing, Ocean Sci., 1, 145–157, https://doi.org/10.5194/os-1-145-2005, 2005. a, b
McLandress, C., Shepherd, T. G., Scinocca, J. F., Plummer, D. A., Sigmond, M.,
Jonsson, A. I., and Reader, M. C.: Separating the dynamical effects of
climate change and ozone depletion. Part II: Southern Hemisphere
troposphere, J. Climate, 24, 1850–1868,
https://doi.org/10.1175/2010JCLI3958.1, 2011. a
Nakayama, Y., Timmermann, R., Rodehacke, C. B., Schröder, M., and
Hellmer, H. H.: Modeling the spreading of glacial meltwater from the
Amundsen and Bellingshausen Seas, Geophys. Res. Lett., 41,
7942–7949, https://doi.org/10.1002/2014GL061600, 2014a. a, b, c
Nakayama, Y., Timmermann, R., Schröder, M., and Hellmer, H. H.: On the
difficulty of modeling Circumpolar Deep Water intrusions onto the Amundsen
Sea continental shelf, Ocean Model., 84, 26–34,
https://doi.org/10.1016/j.ocemod.2014.09.007, 2014b. a
Nakayama, Y., Menemenlis, D., Zhang, H., Schodlok, M., and Rignot, E.: Origin
of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea
continental shelves, Nat. Commun., 9, 1–9,
https://doi.org/10.1038/s41467-018-05813-1, 2018 (data available at: https://ecco.jpl.nasa.gov/drive/files/ECCO2/LLC1080_REG_ AMS/run260/, last access: February 2020). a, b, c, d, e
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein,
P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.: Pathways of
ocean heat towards Pine Island and Thwaites grounding lines, Sci.
Rep.-UK, 9, 1–9, https://doi.org/10.1038/s41598-019-53190-6, 2019 (data available at: https://ecco.jpl.nasa.gov/drive/files/ECCO2/LLC1080_REG_ 10 AMS/1080_run260_2016_2018_daily, last access: May 2020). a, b, c, d
Nakayama, Y., Timmermann, R., and H. Hellmer, H.: Impact of West Antarctic ice shelf melting on Southern Ocean hydrography, The Cryosphere, 14, 2205–2216, https://doi.org/10.5194/tc-14-2205-2020, 2020. a
Núñez-Riboni, I. and Fahrbach, E.: Seasonal variability of the
Antarctic Coastal Current and its driving mechanisms in the Weddell Sea,
Deep-Sea Res. Pt. I, 56, 1927–1941,
https://doi.org/10.1016/j.dsr.2009.06.005, 2009. a
Paolo, F. S., Fricker, H. A., and Padman, L.: Volume loss from Antarctic ice
shelves is accelerating, Science, 348, 327–331,
https://doi.org/10.1126/science.aaa0940, 2015. a, b
Pauthenet, E., Sallée, J.-B., Schmidtko, S., and Nerini, D.: Seasonal
variation of the Antarctic Slope Front occurence and position estimated from
an interpolated hydrographic climatology, J. Phys. Oceanogr., 51, 1539–1557,
https://doi.org/10.1175/jpo-d-20-0186.1, 2021. a
Perry, S. J., McGregor, S., Sen Gupta, A., England, M. H., and Maher, N.:
Projected late 21st century changes to the regional impacts of the El
Niño-Southern Oscillation, Clim. Dynam., 54, 395–412,
https://doi.org/10.1007/s00382-019-05006-6, 2020. a
Rignot, E., Mouginot, J., Scheuchl, B., Van Den Broeke, M., Van Wessem, M. J.,
and Morlighem, M.: Four decades of Antarctic ice sheet mass balance from
1979–2017, P. Natl. Acad. Sci. USA, 116, 1095–1103, https://doi.org/10.1073/pnas.1812883116, 2019. a
Roquet F., Wunsch C., Forget G., Heimbach P., Guinet C., Reverdin G., Charrassin J.-B., Bailleul F., Costa D. P., Huckstadt L. A., Goetz K. T., Kovacs K. M., Lydersen C., Biuw M., Nøst O. A., Bornemann H., Ploetz, J., Bester M. N., Mcintyre T., Muelbert M. C., Hindell M. A., McMahon C. R., Williams G., Harcourt R., Field I. C., Chafik L., Nicholls K. W., Boehme L., and Fedak M. A., Estimates of the Southern Ocean General Circulation Improved by Animal-Borne Instruments, Geophys. Res. Lett., 40, 1–5, https://doi.org/10.1002/2013GL058304, 2013. a, b
Roquet, F., Williams, G., Hindell, M. A., Harcourt, R., McMahon, C. R., Guinet, C., Charrassin, J.-B., Reverdin, G., Boehme, L., Lovell, P., and Fedak, M. A.: A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals, Nature Scientific Data, 1, 140028, https://doi.org/10.1038/sdata.2014.28, 2014. a, b
Sciremammano, F.: Suggestion for the presentation of correlations and their significance levels, J. Phys. Oceanogr., 9, 1273–1276, https://doi.org/10.1175/1520-0485(1979)009<1273:ASftpO>2.0.CO;2, 1979. a
Shepherd, A., Fricker, H. A., and Farrell, S. L.: Trends and connections
across the Antarctic cryosphere, Nature, 558, 223–232,
https://doi.org/10.1038/s41586-018-0171-6, 2018. a, b, c
Smedsrud, L. H., Jenkins, A., Holland, D., and Nøst, O. A.: Modeling ocean
processes below Fimbulisen , Antarctica, J. Geophys. Res.,
111, 1–13, https://doi.org/10.1029/2005JC002915, 2006. a
Spence, P., Griffies, S. M., England, M., McC. Hogg, A., Saenko, O. A., and
Jourdain, N. C.: Rapid subsurface warming and circulation changes of
Antarctic coastal waters by poleward shifting winds, Geophys. Res.
Lett., 41, 4601–4610, https://doi.org/10.1002/2014GL060613, 2014. a
St-Laurent, P., Klinck, J. M., and Dinniman, M. S.: On the role of coastal
troughs in the circulation of warm circumpolar deep water on Antarctic
shelves, J. Phys. Oceanogr., 43, 51–64,
https://doi.org/10.1175/JPO-D-11-0237.1, 2013. a
St-Laurent, P., Klinck, J. M., and Dinniman M. S.: Impact of local winter cooling on the melt of Pine Island Glacier, Antarctica, J. Geophys. Res.-Oceans, 120, 6718–6732, https://doi.org/10.1002/2015JC010709, 2015.
a
Swart, N. C. and Fyfe, J. C.: Observed and simulated changes in the Southern
Hemisphere surface westerly wind-stress, Geophys. Res. Lett., 39,
6–11, https://doi.org/10.1029/2012GL052810, 2012. a
Thoma, M., Jenkins, A., Holland, D., and Jacobs, S.: Modelling Circumpolar
Deep Water intrusions on the Amundsen Sea continental shelf, Antarctica,
Geophys. Res. Lett., 35, L18602, https://doi.org/10.1029/2008GL034939, 2008. a
Thompson, A. F., Stewart, A. L., Spence, P., and Heywood, K. J.: The Antarctic
Slope Current in a Changing Climate, Rev. Geophys., 56, 741–770,
https://doi.org/10.1029/2018RG000624, 2018. a, b, c
Thompson, D. W. and Solomon, S.: Interpretation of recent Southern Hemisphere
climate change, Science, 296, 895–899, https://doi.org/10.1126/science.1069270, 2002. a
Treasure, A. M., Roquet, F., Ansorge, I. J., Bester, M. N., Boehme, L., Bornemann, H., Charrassin, J. B., Chevallier, D., Costa, D. P., Fedak, M. A., Guinet, C., Hammill, M. O., Harcourt, R. G., Hindell, M. A., Kovacs, K. M., Lea, M. A., Lovell, P., Lowther, A. D., Lydersen, C., McIntyre, T., McMahon, C. R., Muelbert, M. M. C., Nicholls, K., Picard, B., Reverdin, G., Trites, A. W., Williams, G. D., and de Bruyn, P. J. N.: Marine Mammals Exploring the Oceans Pole to Pole: A review of the MEOP consortium, Oceanography, 30, 132–138, https://doi.org/10.5670/oceanog.2017.234, 2017. a, b
Tschudi, M. A., Meier, W. N., and Stewart, J. S.: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC), The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, 2020. a
Wåhlin, A. K., Yuan, X., Bjork, G., and Nohr, C.: Inflow of Warm
Circumpolar Deep Water in the Central Amundsen Shelf, J. Phys.
Oceanogr., 40, 1427–1434, https://doi.org/10.1175/2010JPO4431.1, 2010. a, b, c, d
Wåhlin, A. K., Kalén, O., Arneborg, L., Bjork, G., Carvajal, G. K.,
Ha, H. K., Kim, T. W., Lee, S. H., Lee, J. H., and Stranne, C.: Variability
of Warm Deep Water Inflow in a Submarine Trough on the Amundsen Sea Shelf,
J. Phys. Oceanogr., 43, 2054–2070,
https://doi.org/10.1175/JPO-D-12-0157.1, 2013. a, b, c, d, e, f, g, h, i, j, k, l, m
Wåhlin, A. K., Rolandsson, J., and Assmann, K.: Water temperature, salinity, oxygen, and other oceanographic data collected by CTD from a mooring deployed and recovered by the research vessel ice breaker Araon in the Amundsen Sea from 2016-01-28 to 2018-01-18 (NCEI Accession 0206672), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/6pwp-1791, 2019. a
Wåhlin, A. K., Steiger, N., Darelius, E., Assmann, K. M., Glessmer, M. S.,
Ha, H. K., Herraiz-Borreguero, L., Heuzé, C., Jenkins, A., Kim, T. W.,
Mazur, A. K., Sommeria, J., and Viboud, S.: Ice front blocking of ocean heat
transport to an Antarctic ice shelf, Nature, 578, 568–571,
https://doi.org/10.1038/s41586-020-2014-5, 2020a.
a
Wåhlin, A. K., Arneborg, L., Assman, K., Kalén, O., Melin, M., Rolandsson, J., and Stranne, C.: Water temperature, salinity, and current velocity collected at mooring S1 in the Amundsen Sea from 2010-02-15 to 2016-01-17 (NCEI Accession 0211128), NOAA National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/archive/accession/0211128, last access: July 2020b. a
Walker, D. P., Jenkins, A., Assmann, K. M., Shoosmith, D. R., and Brandon,
M. A.: Oceanographic observations at the shelf break of the Amundsen Sea,
Antarctica, J. Geophys. Res.-Oceans, 118, 2906–2918,
https://doi.org/10.1002/jgrc.20212, 2013.
a, b
Yager, P. L., Sherrell, R. M., Stammerjohn, S. E., Alderkamp, A. C., Schofield,
O., Abrahamsen, E. P., Arrigo, K. R., Bertilsson, S., Garay, D. L., Guerrero,
R., Lowry, K. E., Moksnes, P. O., Ndungu, K., Post, A. F., Randall-Goodwin,
E., Riemann, L., Severmann, S., Thatje, S., van Dijken, G. L., and Wilson,
S.: ASPIRE: The Amundsen sea Polynya international research expedition,
Oceanography, 25, 40–53, https://doi.org/10.5670/oceanog.2012.73, 2012. a
Co-editor-in-chief
The Antarctic is by far the largest body of water (mostly ice in this case) that is not in the sea and therefore potentially important for changing sea level. The large size of the Getz ice shelf and its as yet uncertain potential for melting by oceanic waters below make this an important study for understanding and predicting impacts of a warmer climate.
The Antarctic is by far the largest body of water (mostly ice in this case) that is not in the...
Short summary
Ice shelves in the Amundsen Sea are thinning rapidly as ocean currents bring warm water into cavities beneath the floating ice. We use 2-year-long mooring records and 16-year-long model simulations to describe the hydrography and circulation near the ice front between Siple and Carney Islands. We find that temperatures here are lower than at neighboring ice fronts and that the transport of heat toward the cavity is governed by wind stress over the Amundsen Sea continental shelf.
Ice shelves in the Amundsen Sea are thinning rapidly as ocean currents bring warm water into...