Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-129-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characterization of the Atlantic Water and Levantine Intermediate Water in the Mediterranean Sea using 20 years of Argo data
National Institute of Oceanography and Applied Geophysics, OGS, 34010
Sgonico (TS), Italy
Elena Mauri
National Institute of Oceanography and Applied Geophysics, OGS, 34010
Sgonico (TS), Italy
Giulio Notarstefano
National Institute of Oceanography and Applied Geophysics, OGS, 34010
Sgonico (TS), Italy
Pierre Marie Poulain
National Institute of Oceanography and Applied Geophysics, OGS, 34010
Sgonico (TS), Italy
Related authors
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Annunziata Pirro, Riccardo Martellucci, Antonella Gallo, Elisabeth Kubin, Elena Mauri, Mélanie Juza, Giulio Notarstefano, Massimo Pacciaroni, Antonio Bussani, and Milena Menna
State Planet, 4-osr8, 18, https://doi.org/10.5194/sp-4-osr8-18-2024, https://doi.org/10.5194/sp-4-osr8-18-2024, 2024
Short summary
Short summary
This work analyses the propagation of the 2022 marine heatwave from the surface to 2000 m depth of the water column in the Mediterranean Sea. The results show that the temperature anomaly during the summer of 2022 varies between 0.88 and 2.92 °C. However, this heat stored in the surface layer is distributed in the water column during the following fall. This warming may enhance variations of the circulation of the surface and deep currents, which in turn may have an impact on the climate.
Riccardo Martellucci, Francesco Tiralongo, Sofia F. Darmaraki, Michela D'Alessandro, Giorgio Mancinelli, Emanuele Mancini, Roberto Simonini, Milena Menna, Annunziata Pirro, Diego Borme, Rocco Auriemma, Marco Graziano, and Elena Mauri
State Planet Discuss., https://doi.org/10.5194/sp-2024-16, https://doi.org/10.5194/sp-2024-16, 2024
Preprint under review for SP
Short summary
Short summary
In 2023, global mean air temperatures reached unprecedented highs and the Mediterranean was hit by the longest marine heatwave in four decades. These conditions favored the spread of invasive species affecting fisheries in the central Mediterranean. This study provides new insights into the cascading impacts of climate-driven extreme events on marine ecosystems and fisheries and suggests actionable strategies for dealing with invasive species in a changing climate.
Riccardo Martellucci, Michele Giani, Elena Mauri, Laurent Coppola, Melf Poulsen, Marine Fourrier, Sara Pensieri, Vanessa Cardin, Carlotta Dentico, Roberto Bozzano, Carolina Cantoni, Anna Lucchetta, and Ingunn Skjelvan
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-457, https://doi.org/10.5194/essd-2023-457, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
The ATL2MED experiment was a collaborative project involving European academic institutions and Saildrone Inc. These ASVs embarked on a nine-month mission that ranged from the tropical eastern North Atlantic to the Adriatic Sea, covering a region characterised by a transition zone between temperate and tropical climate belts. Nevertheless, challenges exist, with biofouling being one of the major problems affecting the measurement such as conductivity, dissolved oxygen and chlorophyll-a.
Valeria Di Biagio, Riccardo Martellucci, Milena Menna, Anna Teruzzi, Carolina Amadio, Elena Mauri, and Gianpiero Cossarini
State Planet, 1-osr7, 10, https://doi.org/10.5194/sp-1-osr7-10-2023, https://doi.org/10.5194/sp-1-osr7-10-2023, 2023
Short summary
Short summary
Oxygen is essential to all aerobic organisms, and its content in the marine environment is continuously under assessment. By integrating observations with a model, we describe the dissolved oxygen variability in a sensitive Mediterranean area in the period 1999–2021 and ascribe it to multiple acting physical and biological drivers. Moreover, the reduction recognized in 2021, apparently also due to other mechanisms, requires further monitoring in light of its possible impacts.
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023, https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Short summary
Decadal climate predictions, obtained by constraining the initial condition of a dynamical model through a truthful estimate of the observed climate state, provide an accurate assessment of the near-term climate and are useful for informing decision-makers on future climate-related risks. The predictive skill for key variables is assessed from the operational decadal prediction system compared with non-initialized historical simulations so as to quantify the added value of initialization.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Roberta Sciascia, Maristella Berta, Daniel F. Carlson, Annalisa Griffa, Monica Panfili, Mario La Mesa, Lorenzo Corgnati, Carlo Mantovani, Elisa Domenella, Erick Fredj, Marcello G. Magaldi, Raffaele D'Adamo, Gianfranco Pazienza, Enrico Zambianchi, and Pierre-Marie Poulain
Ocean Sci., 14, 1461–1482, https://doi.org/10.5194/os-14-1461-2018, https://doi.org/10.5194/os-14-1461-2018, 2018
Short summary
Short summary
Understanding the role of ocean currents in the recruitment of commercially important fish is an important step toward developing sustainable resource management guidelines. Here, we attempt to elucidate the role of surface ocean transport in supplying recruits of European sardines to the Gulf of Manfredonia, a known recruitment area in the Adriatic Sea. We find that transport to the Gulf of Manfredonia from remote spawing areas in the Adriatic is more likely than local spawning and retention.
Reiner Onken, Heinz-Volker Fiekas, Laurent Beguery, Ines Borrione, Andreas Funk, Michael Hemming, Jaime Hernandez-Lasheras, Karen J. Heywood, Jan Kaiser, Michaela Knoll, Baptiste Mourre, Paolo Oddo, Pierre-Marie Poulain, Bastien Y. Queste, Aniello Russo, Kiminori Shitashima, Martin Siderius, and Elizabeth Thorp Küsel
Ocean Sci., 14, 321–335, https://doi.org/10.5194/os-14-321-2018, https://doi.org/10.5194/os-14-321-2018, 2018
Short summary
Short summary
In June 2014, high-resolution oceanographic data were collected in the
western Mediterranean Sea by two research vessels, 11 gliders, moored
instruments, drifters, and one profiling float. The objective
of this article is to provide an overview of the data set which
is utilised by various ongoing studies, focusing on (i) water masses and circulation, (ii) operational forecasting, (iii) data assimilation, (iv) variability of the ocean, and (v) new payloads
for gliders.
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
Maher Bouzaiene, Milena Menna, Pierre-Marie Poulain, and Dalila Elhmaidi
Ocean Sci. Discuss., https://doi.org/10.5194/os-2017-34, https://doi.org/10.5194/os-2017-34, 2017
Preprint withdrawn
Short summary
Short summary
The South Western Mediterranean, connected to the Atlantic Ocean through the Strait of Gibraltar, is a study area useful to describe the interaction between the light Atlantic Water and the denser Mediterranean Water. The spreading of fluid particles, estimated through the analysis of drifter data, is dominated by large mesoscale eddies at short times and small separation distances, and by small mesoscale structures for scale ranging between 3 and 11 km.
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
M. Gačić, G. Civitarese, V. Kovačević, L. Ursella, M. Bensi, M. Menna, V. Cardin, P.-M. Poulain, S. Cosoli, G. Notarstefano, and C. Pizzi
Ocean Sci., 10, 513–522, https://doi.org/10.5194/os-10-513-2014, https://doi.org/10.5194/os-10-513-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
M. Menna and P.-M. Poulain
Ocean Sci., 10, 155–165, https://doi.org/10.5194/os-10-155-2014, https://doi.org/10.5194/os-10-155-2014, 2014
P.-M. Poulain and S. Hariri
Ocean Sci., 9, 713–720, https://doi.org/10.5194/os-9-713-2013, https://doi.org/10.5194/os-9-713-2013, 2013
Cited articles
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo
GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2020.
Artale, V., Calmante, S., Malanotte-Rizzoli, P., Pisacane, G., Rupolo, V., and
Tsimplis, M.:
The Atlantic and Mediterranean Sea as connected systems, in: Mediterranean
Climate Variability Dev. Earth Environ. Sci., edited by: Lionello, P., Malanotte-Rizzoli, P., and Boscoli, R., Vol. 4, Elsevier, Amsterdam, 283–323, 2006.
Aulicino, G., Cotroneo, Y., Ruiz, S., Sánchez Román, A., Pascual, A.,
Fusco, G., Tintoré, J., and Budillon, G.: Monitoring the Algerian Basin
through glider observations, satellite altimetry and numerical simulations
along a SARAL/AltiKa track, J. Marine Syst., 179,
55–71, https://doi.org/10.1016/j.jmarsys.2017.11.006, 2018.
Aulicino, G., Cotroneo, Y., Olmedo, E., Cesarano, C., Fusco, G., and Budillon,
G.: In Situ and Satellite Sea Surface Salinity in the Algerian Basin
Observed through ABACUS Glider Measurements and BEC SMOS Regional Products,
Remote Sens.-Basel, 11, 1361, https://doi.org/10.3390/rs11111361, 2019.
Azzaro, M., La Ferla, R., Maimone, G., Monticelli, L. S., Zaccone, R., and
Civitarese, G.: Prokaryotic dynamics and heterotrophic metabolism in a deep
convection site of Eastern Mediterranean Sea (the Southern Adriatic Pit),
Cont. Shelf Res., 44, 106–118,
https://doi.org/10.1016/j.csr.2011.07.011, 2012.
Bensi, M., Cardin, V., Rubino, A., Notarstefano, G., and Poulain, P. M.: Effects
of winter convection on the deep layer of the Southern Adriatic Sea in
2012, J. Geophys. Res.-Oceans, 118, 6064–6075, https://doi.org/10.1002/2013JC009432, 2013.
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the
Mediterranean Sea: A historical review of experimental investigations,
Advances in Oceanography and Limnology, 1, 11–28,
https://doi.org/10.1080/19475721.2010.491656, 2010.
Borghini, M., Bryden, H., Schroeder, K., Sparnocchia, S., and Vetrano, A.: The Mediterranean is becoming saltier, Ocean Sci., 10, 693–700, https://doi.org/10.5194/os-10-693-2014, 2014.
Bosse, A., Testor, P., Mortier, L., Prieur, L., Taillandier, V., d'Ortenzio, F.,
and Coppola, L.: Spreading of Levantine Intermediate Waters by submesoscale
coherent vortices in the northwestern Mediterranean Sea as observed with
gliders, J. Geophys. Res.-Oceans, 120, 1599–1622, https://doi.org/10.1002/2014JC010263, 2015.
Bethoux, J. P., Gentili, B., Raunet, J., and Taillez, D.: Warming trend in the
Western Mediterranean deep water, Nature, 347, 660–662,
https://doi.org/10.1038/347660a0, 1990.
Bethoux, J. P., Gentili, B., Morin, P., Nicolas, E., Pierre, C., and Ruiz-Pino,
D.: The Mediterranean Sea: A miniature ocean for climatic and environmental
studies and a key for the climatic functioning of the North Atlantic, Prog. Oceanogr., 44, 131–146,
https://doi.org/10.1016/S0079-6611(99)00023-3, 1999.
Cabanes, C., Thierry, V., and Lagadec, C.: Improvement of bias detection in
Argo float conductivity sensors and its application in the North Atlantic,
Deep-Sea Res. Pt. I, 114, 128–136,
https://doi.org/10.1016/j.dsr.2016.05.007, 2016.
Cotroneo, Y., Aulicino, G., Ruiz, S., Pascual, A., Budillon, G., Fusco, G., and
Tintoré, J.: Glider and satellite high resolution monitoring of a
mesoscale eddy in the algerian basin: Effects on the mixed layer depth and
biochemistry, J. Marine Syst., 162, 73–88, https://doi.org/10.1016/j.jmarsys.2015.12.004, 2016.
Cotroneo, Y., Aulicino, G., Ruiz, S., Sánchez Román, A., Torner Tomàs, M., Pascual, A., Fusco, G., Heslop, E., Tintoré, J., and Budillon, G.: Glider data collected during the Algerian Basin Circulation Unmanned Survey, Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, 2019.
Demirov, E. K. and Pinardi, N.: On the relationship between the water mass
pathways and eddy variability in the Western Mediterranean Sea, J. Geophys. Res., 112,
C02024, https://doi.org/10.1029/2005JC003174, 2007.
Dickson, B., Yashayaev, I., Meincke, J., Turrell, B., Dye, S., and Holfort, J.:
Rapid freshening of the deep North Atlantic Ocean over the past four
decades, Nature, 416, 832–837, https://doi.org/10.1038/416832a, 2002.
Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L., Bashmachnikov,
I. L., Chassignet, E. P., Lee, C. M., and Tedstone, A. J.: Role of Greenland
freshwater anomaly in the recent freshening of the subpolar North
Atlantic, J. Geophys. Res.-Oceans, 124, 3333–3360, https://doi.org/10.1029/2018JC014686, 2019.
Escudier, R., Mourre, B., Juza, M., and Tintoré, J.: Subsurface circulation
and mesoscale variability in the Algerian subbasin from altimeter-derived
eddy trajectories, J. Geophys. Res.-Oceans, 121, 6310–6322, https://doi.org/10.1002/2016JC011760, 2016.
Font, J., Millot, C., Pérez, J. D. J. S., Julià, A., and Chic, O.: The drift of
Modified Atlantic Water from the Alboran Sea to the eastern Mediterranean,
Sci. Mar., 62, 211–216, https://doi.org/10.3989/scimar.1998.62n3211, 1998.
Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33,
L08707, https://doi.org/10.1029/2006GL025734, 2006.
Hayes, D. R., Schroeder, K., Poulain, P. M., Testor, P., Mortier, L., Bosse, A., and
Du Madron, X.: Review of the Circulation and Characteristics of Intermediate
Water Masses of the Mediterranean: Implications for Cold-Water Coral
Habitats, in: Mediterranean Cold-Water
Corals: Past, Present and Future, edited by: Orejas, C. and Jiménez, C., Coral Reefs of the World, Vol. 9, Springer,
Cham, https://doi.org/10.1007/978-3-319-91608-8_18, 2019.
Hernández-Molina, F., Stow, D., Zarikian, C., Acton, G., Bahr, A., Balestra,
B., Ducassou, E., Flood, R., Flores, J. A., Furota, S., Grunert, P., Hodell, D.,
Jiménez-Espejo, F., Kim, J. K., Krissek, L., Kuroda, J., Li, B., Llave, E.,
Lofi, J., and Xuan, C.: Onset of Mediterranean outflow into the North
Atlantic, Science, 344, 1244–1250, https://doi.org/10.1126/science.1251306, 2014.
Juza, M., Escudier, R., Vargas-Yáñez, M., Mourre, B., Heslop, E., Allen,
J., and Tintoré, J.: Characterization of changes in Western Intermediate
water properties enabled by an innovative geometry-based detection
approach, J. Marine Syst., 191, 1–12, https://doi.org/10.1016/j.jmarsys.2018.11.003, 2019.
Kassis, D. and Korres, G.: Hydrography of the Eastern Mediterranean basin
derived from argo floats profile data, Deep-Sea Res. Pt. II, 171, 104712,
https://doi.org/10.1016/j.dsr2.2019.104712, 2020.
Kokkini, Z., Mauri, M., Gerin, R., Poulain, P. M., Simoncelli, S., and
Notarstefano, G.: On the salinity structure in the South Adriatic as derived
from float and glider observations in 2013–2016, Deep-Sea Res. Pt. II, 171, 104625,
https://doi.org/10.1016/j.dsr2.2019.07.013, 2019.
Kubin, E., Poulain, P.-M., Mauri, E., Menna, M., and Notarstefano, G.: Levantine Intermediate and
Levantine Deep Water Formation: An Argo Float Study from 2001 to 2017, Water, 11, 1781, https://doi.org/10.3390/w11091781, 2019.
Lamer, P. A., Mauri, E., Notarstefano, G., and Poulain, P. M.: The Levantine
Intermediate Water in the eastern Mediterranean Sea, available at:
http://maos.inogs.it/pub/REPORT_LAMER_final_last.pdf (last access: December 2021), 2019.
Lascaratos, A., Williams, R. G., and Tragou, E.: A mixed-layer study of the
formation of Levantine intermediate water, J. Geophys. Res.,
98, 14739–14749, https://doi.org/10.1029/93JC00912, 1993.
Lipizer, M., Partescano, E., Rabitti, A., Giorgetti, A., and Crise, A.: Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea, Ocean Sci., 10, 771–797, https://doi.org/10.5194/os-10-771-2014, 2014.
Margirier, F., Testor, P., Heslop, E., Mallil, K., Bosse, A., Houpert, L., Mortier,
L., Bouin, M.-N., Coppola, L., D'Ortenzio, F., de Madron, X. D., Mourre,
B., Prieur, L., Raimbault, P., and Taillandier, V.: Abrupt warming and
salinification of intermediate waters interplays with decline of deep
convection in the Northwestern Mediterranean Sea, Sci. Rep.-UK, 10, 20923,
https://doi.org/10.1038/s41598-020-77859-5, 2020.
Mauri, E., Sitz, L., Gerin, R., Poulain, P. M., Hayes, D., and Gildor, H.: On the
Variability of the Circulation and Water Mass Properties in the Eastern
Levantine Sea between September 2016–August 2017, Water, 11, 1741, https://doi.org/10.3390/w11091741, 2019.
Mauri, E., Menna, M., Notarstefano, G., Gerin, R., Martellucci, R., and Poulain, P.-M.: Recent changes of the salinity distribution in the South Adriatic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9874, https://doi.org/10.5194/egusphere-egu2020-9874, 2020.
MEDAR Group: MEDATLAS/2002 database,
Mediterranean and Black Sea database of temperature salinity and bio-chemical parameters, Climatological
Atlas, Institut Français de Recherche pour L'Exploitation de la Mer, (IFREMER) Edition & Instituto Nazionale di
Oceanografia e di Geofisica Sperimentale (OGS), 2002.
Mihanović, H., Vilibić, I., Šepić, J., Matić, F.,
Ljubešić, Z., Mauri, E., Gerin, R., Notarstefano, G., and Poulain,
P.-M.: Observation, preconditioning and recurrence of exceptionally high
salinities in the Adriatic Sea, Front. Mar. Sci., 8, 672210, https://doi.org/10.3389/fmars.2021.672210, 2021.
Millot, C.: Interannual salinification of the Mediterranean inflow, Geophys.
Res. Lett., 34, L21609, https://doi.org/10.1029/2007GL031179, 2007.
Millot, C.: Levantine Intermediate Water characteristics: An astounding
general misunderstanding, Sci. Mar., 78, https://doi.org/10.3989/scimar.04045.30H, 2013.
Millot, C.: Levantine intermediate water characteristics: an astounding
general misunderstanding! (addendum), Sci. Mar., 78, 165–171, https://doi.org/10.3989/scimar.04045.30H, 2014.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in: The Mediterranean Sea. Handbook of Environmental Chemistry, edited by: Saliot, A., Vol. 5K, Springer, Berlin, Heidelberg, https://doi.org/10.1007/b107143, 2005.
Millot, C., Candela, J., Fuda, J. L., and Tber, Y.: Large warming and
salinification of the Mediterranean outflow due to changes in its
composition, Deep-Sea Res., 53, 656–665, https://doi.org/10.1016/j.dsr.2005.12.017, 2006.
Nof, D.: On man-induced variations in the circulation of the Mediterranean
Sea, Tellus, 31, 558–564, 1979.
Notarstefano, G. and Poulain, P. M.: Delayed mode quality control of Argo
floats salinity data in the Tyrrhenian Sea, Technical Report OGS 2008/125
OGA 43 SIRE, available at: http://nettuno.ogs.trieste.it/sire/DMQC/dmqc_1900593_54073_V1.pdf (last access: December 2021), 2008.
Notarstefano, G. and Poulain, P. M.: Thermohaline variability in the
Mediterranean and Black Seas as observed by Argo floats in 2000–2009, OGS
Tech. Rep. OGS 2009/121 OGA 26 SIRE, 72–171,
https://doi.org/10.3989/scimar.04045.30H, 2009.
Notarstefano, G. and Poulain, P. M.: Delayed mode quality control of Argo
salinity data in the Mediterranean Sea: A regional approach, Technical
Report OGS 2013/103 Sez. OCE 40 MAOS, available at: http://nettuno.ogs.trieste.it/sire/DMQC/dmqc_1900604_63659_V1.pdf (last access: 17 January 2022), 2013.
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.: Interannual
thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the
Levantine surface and intermediate water masses, SE Mediterranean Sea,
Global Planet. Change, 151, 60–67,
https://doi.org/10.1016/j.gloplacha.2016.04.001, 2017.
Painter, S. C. and Tsimplis, M. N.: Temperature and salinity trends in the
upper waters of the Mediterranean Sea as determined from the MEDATLAS
dataset, Cont. Shelf Res., 23,
1507–1522, https://doi.org/10.1016/j.csr.2003.08.008, 2003.
Pearson, K.: Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous
Material, Philos. T. R. Soc. A, 186, 343–414, https://doi.org/10.1098/rsta.1895.0010, 1895.
Poulain, P.-M., Barbanti, R., Font, J., Cruzado, A., Millot, C., Gertman, I., Griffa, A., Molcard, A., Rupolo, V., Le Bras, S., and Petit de la Villeon, L.: MedArgo: a drifting profiler program in the Mediterranean Sea, Ocean Sci., 3, 379–395, https://doi.org/10.5194/os-3-379-2007, 2007.
Poulain, P. M., Solari, M., Notarstefano, G., and Rupolo, V.: Assessment of the
Argo sampling in the Mediterranean and Black Seas (part II), available at:
http://maos.inogs.it/pub/2009_report_task4.4_partII.pdf (last access: December 2021), 2009.
Rahmstorf, S.: Influence of Mediterranean Outflow on climate, EOS T. Am. Geophys. Un., 79, 281–282,
https://doi.org/10.1029/98EO00208, 1998.
Rahmstorf, S.: Thermohaline Ocean Circulation, in: Encyclopedia of
Quaternary Sciences, edited by: Elias, S. A., Elsevier, Amsterdam, available at: http://www.pik-potsdam.de/~stefan/Publications/Book_chapters/rahmstorf_eqs_2006.pdf (last access: December 2021), 2006.
Rohling, E. J. and Bryden, H. L.: Man induced salinity and temperature increase
in the Western Mediterranean Deep Water, J. Geophys. Res., 97,
11191–11198, https://doi.org/10.1029/92JC00767, 1992.
Rubino, A., Gačić, M., Bensi, M., Vedrana, K., Vlado, M., Milena, M.,
Negretti, M. E., Sommeria, J., Zanchettin, D., Barreto, R. V., Ursella, L., Cardin,
V., Civitarese, G., Orlić, M., Petelin, B., and Siena, G.: Experimental
evidence of long-term oceanic circulation reversals without wind influence
in the North Ionian Sea, Sci. Rep.-UK, 10, 1905, https://doi.org/10.1038/s41598-020-57862-6, 2020.
Schroeder, K.: Current Systems in the Mediterranean Sea, in: Encyclopedia of Ocean
Sciences, edited by:
Cochran, J. K., Bokuniewicz, H. J., and Yager, P. L., 3rd Edn., Academic Press, 219–227, https://doi.org/10.1016/B978-0-12-409548-9.11296-5, 2019.
Schroeder, K., Chiggiato, J., Josey, S., Borghini, M., Aracri, S., and
Sparnocchia, S.: Rapid response to climate change in a marginal sea,
Sci. Rep.-UK, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5, 2017.
Shaltout, M. and Omstedt, A.: Recent sea surface temperature trends and
future scenarios for the Mediterranean Sea, Oceanologia, 56,
411–443, https://doi.org/10.5697/oc.56-3.411,
2014.
MathWorks: MATLAB programming, PHI Learning Pvt. Ltd., available at: https://ch.mathworks.com/products/matlab.html (last access: December 2021), 2007.
Skliris, N.: Past, Present and Future Patterns of the Thermohaline
Circulation and Characteristic Water Masses of the Mediterranean Sea, in:
The Mediterranean Sea, edited by: Goffredo, S. and Dubinsky, Z., Springer, Dordrecht, https://doi.org/10.1007/978-94-007-6704-1_3, 2014.
Skliris, N., Zika, J. D., Herold, L., Josey, S. A., and Marsh, R.: Mediterranean
sea water budget long-term trend inferred from salinity observations, Clim. Dynam., 51,
2857–2876, https://doi.org/10.1007/s00382-017-4053-7,
2018.
Tsimplis, M., Zervakis, V., Josey, S. A., Peneva, E., Struglia, M. V., Stanev, E.,
Lionello, P., Malanotte-Rizzoli, P., Artale, V., Theocharis, A., Tragou, E., and
Oguz, T.: Changes in the oceanography of the Mediterranean Sea and their link
to climate variability, in: Mediterranean climate variability, edited by: Lionello, P., Malanotte-Rizzoli, P., and
Boscolo, R., Elsevier, Amsterdam, the
Netherlands, 227–282, Developments in Earth and
Environmental Sciences, Vol. 4, 438 pp., https://doi.org/10.1016/S1571-9197(06)80007-8, 2006.
Vargas-Yáñez, M., Moya, F., Tel, E., García-Martínez,
M. C., Guerber, E., and Bourgeon, M.: Warming and salting of the Western
Mediterranean during the second half of the XX century: inconsistencies,
unknowns and the effect of data processing, Sci. Mar., 73, 7–28,
https://doi.org/10.3989/scimar.2009.73n1007, 2009.
Vargas-Yáñez, M., Moya, F., García-Martínez, M. C., Tel,
E., Zunino, P., Plaza, F., Salat, J., Pascual, J., López-Jurado, J. L., and
Serra, M.: Climate change in the Western Mediterranean Sea 1900–2008,
J. Marine Syst., 82, 171–176, https://doi.org/10.1016/j.jmarsys.2010.04.013, 2010.
Vargas-Yáñez, M., Juza, M., Balbín, R., Velez-Belchí, P.,
García-Martínez, M. C., Moya, F., and Hernández-Guerra, A.:
Climatological Hydrographic Properties and Water Mass Transports in the
Balearic Channels From Repeated Observations Over 1996–2019, Front.
Mar. Sci., 7, 568602, https://doi.org/10.3389/fmars.2020.568602, 2020.
Vilibić, I., Matijević, S., Šepić, J., and Kušpilić, G.: Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean Transient, Biogeosciences, 9, 2085–2097, https://doi.org/10.5194/bg-9-2085-2012, 2012.
Vilibić, I., Šepić, J., and Proust, N.: Weakening of
thermohaline circulation in the Adriatic Sea, Clim. Res., 55,
217–225, 2013.
Vilibić, I., Zemunik, P., Dunić, N., and Mihanović, H.: Local
and remote drivers of the observed thermohaline variability on the northern
Adriatic shelf (Mediterranean Sea), Cont. Shelf Res., 199, 104110, https://doi.org/10.1016/j.csr.2020.104110, 2020.
Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D.,
Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U.,
Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., Poffa, N.,
Yashayaev, I., Barker, P. M., Guinehut, S., Belbéoch, M., Ignaszewski, M., O'Neil Baringer, M., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire,
M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D.,
Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouët, R., Coatanoan, C., Dobbler, D.,
Juan Andrea, G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès, B., Claustre,
H., D'Ortenzio, F., Le Reste, S., Le Traon, P.-Y., Rannou, J. P., Saout-Grit, C.,
Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano,
G, Poulain, P.-M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska, N, Kobayashi,
T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y.,
Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., Van Wijk, E. M., Carse, F., Donnelly,
M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama, R.
E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W.,
Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo,
H., Kim, S.-D., and Park, H.-M.: Argo Data 1999–2019: Two Million Temperature-Salinity
Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats, Front. Mar.
Sci., 7, 700, https://doi.org/10.3389/fmars.2020.00700, 2020 (data available at: https://archimer.ifremer.fr/doc/00652/76377/, last access: 17 January 2022).
Wong, A., Keeley, R., Carval, T., and Argo Data Management Team: Argo Quality
Control Manual for CTD and Trajectory Data, Argo, report, https://doi.org/10.13155/33951,
2021.
Zu, Z., Poulain, P. M., and Notarstefano, G.: Changes in hydrological properties
of the Mediterranean Sea over the last 40 years with focus on the Levantine
Intermediate Water and the Atlantic Water, available at:
http://maos.inogs.it/pub/Hydro_trend_LIW_SAW_core_report_v10.pdf (last access: December 2021), 2014.
Short summary
Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play a crucial role in the internal variability of the Mediterranean thermohaline circulation. This work aims to characterize the inter-basin and inter-annual variability of AW and LIW in the Mediterranean Sea, taking advantage of the large observational dataset provided by Argo floats from 2001 to 2019. A clear salinification and warming trend characterizes AW and LIW over the last 2 decades.
Atlantic Water (AW) and Levantine Intermediate Water (LIW) are important water masses that play...