Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Plastics in the Indian Ocean – sources, transport, distribution, and impacts
Charitha Pattiaratchi
CORRESPONDING AUTHOR
Oceans Graduate School and the UWA Oceans Institute, the University of Western Australia, Perth, 6009, Australia
Mirjam van der Mheen
Oceans Graduate School and the UWA Oceans Institute, the University of Western Australia, Perth, 6009, Australia
Cathleen Schlundt
GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Bhavani E. Narayanaswamy
Scottish Association for Marine Science, Oban, Argyll, PA37 1QA,
Scotland, UK
Appalanaidu Sura
National Centre for Coastal Research, Ministry of Earth Sciences,
Chennai, 600100, India
Sara Hajbane
Oceans Graduate School and the UWA Oceans Institute, the University of Western Australia, Perth, 6009, Australia
Rachel White
School of Biological Sciences, the University of Western Australia,
Perth, 6009, Australia
Nimit Kumar
Ministry of Earth Sciences (MoES), Indian National Centre for Ocean
Information Services (INCOIS), Hyderabad, 500090, India
Michelle Fernandes
National Centre for Polar and Ocean Research, Ministry of Earth Sciences (MoES), Government of India, Headland Sada, Vasco da Gama 403 804, Goa, India
Sarath Wijeratne
Oceans Graduate School and the UWA Oceans Institute, the University of Western Australia, Perth, 6009, Australia
Related authors
Sharani Kodithuwakku, Charitha Pattiaratchi, Simone Cosoli, and Yasha Hetzel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2901, https://doi.org/10.5194/egusphere-2024-2901, 2024
Short summary
Short summary
Mesoscale eddies are rotating structures in the ocean. This study investigates the surface and subsurface characteristics of mesoscale eddies in the vicinity of Perth submarine canyon off the southwest coast of Western Australia using Ocean Gliders. Eight Seaglider missions that intersected eddies revealed nine distinct vertical structures, comprising four cyclonic and five anti-cyclonic eddies. There was upwelling in cyclonic eddies and downwelling in anti-cyclonic eddies.
This article is included in the Encyclopedia of Geosciences
Jessica Kolbusz, Jan Zika, Charitha Pattiaratchi, and Alan Jamieson
Ocean Sci., 20, 123–140, https://doi.org/10.5194/os-20-123-2024, https://doi.org/10.5194/os-20-123-2024, 2024
Short summary
Short summary
We collected observations of the ocean environment at depths over 6000 m in the Southern Ocean, Indian Ocean, and western Pacific using sensor-equipped landers. We found that trench locations impact the water characteristics over these depths. Moving northward, they generally warmed but differed due to their position along bottom water circulation paths. These insights stress the importance of further research in understanding the environment of these deep regions and their importance.
This article is included in the Encyclopedia of Geosciences
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022, https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Short summary
Western rock lobster larvae spend up to 11 months in offshore waters before ocean currents and their ability to swim transport them back to the coast. In 2008, there was a reduction in the number of puerulus (larvae) settling into the fishery. We use an oceanographic model to see how the environment may have contributed to the reduction. Our results show that a combination of effects from local currents and a widespread quiet period in the ocean off WA likely led to less puerulus settlement.
This article is included in the Encyclopedia of Geosciences
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
This article is included in the Encyclopedia of Geosciences
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Miaoju Chen, Charitha B. Pattiaratchi, Anas Ghadouani, and Christine Hanson
Ocean Sci., 15, 333–348, https://doi.org/10.5194/os-15-333-2019, https://doi.org/10.5194/os-15-333-2019, 2019
Julie A. Trotter, Charitha Pattiaratchi, Paolo Montagna, Marco Taviani, James Falter, Ron Thresher, Andrew Hosie, David Haig, Federica Foglini, Quan Hua, and Malcolm T. McCulloch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-319, https://doi.org/10.5194/bg-2018-319, 2018
Manuscript not accepted for further review
Short summary
Short summary
The first ROV exploration of the Perth Canyon offshore southwest Australia discovered diverse
This article is included in the Encyclopedia of Geosciences
hot spotsof deep-sea biota to depths of ~ 2000 m. Some corals were living below the carbonate saturation horizon. Extensive coral graveyards found at ~ 700 and ~ 1700 m are between ~ 18 000 and ~ 30 000 years old, indicating these corals flourished during the last ice age. Anthropogenic carbon detected within the upper ~ 800 m highlights the increasing threat of climate change to deep-sea ecosystems.
Sarik Salim, Charitha Pattiaratchi, Rafael Tinoco, Giovanni Coco, Yasha Hetzel, Sarath Wijeratne, and Ravindra Jayaratne
Earth Surf. Dynam., 5, 399–415, https://doi.org/10.5194/esurf-5-399-2017, https://doi.org/10.5194/esurf-5-399-2017, 2017
Short summary
Short summary
The aim of this paper was to verify the existence of a mean critical velocity concept in terms of turbulent bursting phenomena. Laboratory experiments were undertaken in a unidirectional current flume where an acoustic Doppler velocimeter was used. Results in the laboratory conditions both above and below the measured mean critical velocity highlighted the need to re-evaluate the accuracy of a single time-averaged critical velocity for the initiation of sediment entrainment.
This article is included in the Encyclopedia of Geosciences
Peter R. Oke, Roger Proctor, Uwe Rosebrock, Richard Brinkman, Madeleine L. Cahill, Ian Coghlan, Prasanth Divakaran, Justin Freeman, Charitha Pattiaratchi, Moninya Roughan, Paul A. Sandery, Amandine Schaeffer, and Sarath Wijeratne
Geosci. Model Dev., 9, 3297–3307, https://doi.org/10.5194/gmd-9-3297-2016, https://doi.org/10.5194/gmd-9-3297-2016, 2016
Short summary
Short summary
The Marine Virtual Laboratory (MARVL) is designed to help ocean modellers hit the ground running. Usually, setting up an ocean model involves a handful of technical steps that time and effort. MARVL provides a user-friendly interface that allows users to choose what options they want for their model, including the region, time period, and input data sets. The user then hits "go", and MARVL does the rest – delivering a "take-away bundle" that contains all the files needed to run the model.
This article is included in the Encyclopedia of Geosciences
J. Reisser, B. Slat, K. Noble, K. du Plessis, M. Epp, M. Proietti, J. de Sonneville, T. Becker, and C. Pattiaratchi
Biogeosciences, 12, 1249–1256, https://doi.org/10.5194/bg-12-1249-2015, https://doi.org/10.5194/bg-12-1249-2015, 2015
Short summary
Short summary
Subsurface observations of ocean plastics are very scarce but essential for adequate estimates of marine plastic pollution levels. We sampled plastics from the sea surface to a depth of 5m, at 0.5m intervals. Vertical mixing was dependent on sea state and affected the abundance, mass, and sizes of plastic debris floating at the sea surface. This has important implications for studies assessing at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.
This article is included in the Encyclopedia of Geosciences
A. de Vos, C. B. Pattiaratchi, and E. M. S. Wijeratne
Biogeosciences, 11, 5909–5930, https://doi.org/10.5194/bg-11-5909-2014, https://doi.org/10.5194/bg-11-5909-2014, 2014
S. R. Kularatne, J. Doucette, and C. B. Pattiaratchi
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurfd-2-215-2014, https://doi.org/10.5194/esurfd-2-215-2014, 2014
Revised manuscript has not been submitted
Sharani Kodithuwakku, Charitha Pattiaratchi, Simone Cosoli, and Yasha Hetzel
EGUsphere, https://doi.org/10.5194/egusphere-2024-2901, https://doi.org/10.5194/egusphere-2024-2901, 2024
Short summary
Short summary
Mesoscale eddies are rotating structures in the ocean. This study investigates the surface and subsurface characteristics of mesoscale eddies in the vicinity of Perth submarine canyon off the southwest coast of Western Australia using Ocean Gliders. Eight Seaglider missions that intersected eddies revealed nine distinct vertical structures, comprising four cyclonic and five anti-cyclonic eddies. There was upwelling in cyclonic eddies and downwelling in anti-cyclonic eddies.
This article is included in the Encyclopedia of Geosciences
Jessica Kolbusz, Jan Zika, Charitha Pattiaratchi, and Alan Jamieson
Ocean Sci., 20, 123–140, https://doi.org/10.5194/os-20-123-2024, https://doi.org/10.5194/os-20-123-2024, 2024
Short summary
Short summary
We collected observations of the ocean environment at depths over 6000 m in the Southern Ocean, Indian Ocean, and western Pacific using sensor-equipped landers. We found that trench locations impact the water characteristics over these depths. Moving northward, they generally warmed but differed due to their position along bottom water circulation paths. These insights stress the importance of further research in understanding the environment of these deep regions and their importance.
This article is included in the Encyclopedia of Geosciences
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
This article is included in the Encyclopedia of Geosciences
Jessica Kolbusz, Tim Langlois, Charitha Pattiaratchi, and Simon de Lestang
Biogeosciences, 19, 517–539, https://doi.org/10.5194/bg-19-517-2022, https://doi.org/10.5194/bg-19-517-2022, 2022
Short summary
Short summary
Western rock lobster larvae spend up to 11 months in offshore waters before ocean currents and their ability to swim transport them back to the coast. In 2008, there was a reduction in the number of puerulus (larvae) settling into the fishery. We use an oceanographic model to see how the environment may have contributed to the reduction. Our results show that a combination of effects from local currents and a widespread quiet period in the ocean off WA likely led to less puerulus settlement.
This article is included in the Encyclopedia of Geosciences
Matthew C. Pace, David M. Bailey, David W. Donnan, Bhavani E. Narayanaswamy, Hazel J. Smith, Douglas C. Speirs, William R. Turrell, and Michael R. Heath
Earth Syst. Sci. Data, 13, 5847–5866, https://doi.org/10.5194/essd-13-5847-2021, https://doi.org/10.5194/essd-13-5847-2021, 2021
Short summary
Short summary
We present synthetic maps of continuous properties of seabed sediments in the Firth of Clyde, SW Scotland. The data include proportions of mud, sand, and gravel fractions; whole-sediment median grain size; permeability; porosity; organic carbon and nitrogen content; and rates of natural disturbance by tidal currents. We show that the firth stores 3.42 and 0.33 million tonnes of organic carbon and nitrogen, respectively, in the upper 10 cm of sediment.
This article is included in the Encyclopedia of Geosciences
Kumar Nimit
Biogeosciences, 18, 3631–3635, https://doi.org/10.5194/bg-18-3631-2021, https://doi.org/10.5194/bg-18-3631-2021, 2021
Short summary
Short summary
The Indian Ocean Rim hosts many of the underdeveloped and emerging economies that depend on ocean resources for the livelihood of millions. Operational ocean information services cater to the requirements of resource managers and end-users to efficiently harness resources, mitigate threats and ensure safety. This paper outlines existing tools and explores the ongoing research that has the potential to convert the findings into operational services in the near- to midterm.
This article is included in the Encyclopedia of Geosciences
Yanan Zhao, Cathleen Schlundt, Dennis Booge, and Hermann W. Bange
Biogeosciences, 18, 2161–2179, https://doi.org/10.5194/bg-18-2161-2021, https://doi.org/10.5194/bg-18-2161-2021, 2021
Short summary
Short summary
We present a unique and comprehensive time-series study of biogenic sulfur compounds in the southwestern Baltic Sea, from 2009 to 2018. Dimethyl sulfide is one of the key players regulating global climate change, as well as dimethylsulfoniopropionate and dimethyl sulfoxide. Their decadal trends did not follow increasing temperature but followed some algae group abundances at the Boknis Eck Time Series Station.
This article is included in the Encyclopedia of Geosciences
Mirjam van der Mheen, Erik van Sebille, and Charitha Pattiaratchi
Ocean Sci., 16, 1317–1336, https://doi.org/10.5194/os-16-1317-2020, https://doi.org/10.5194/os-16-1317-2020, 2020
Short summary
Short summary
A large percentage of global ocean plastic enters the Indian Ocean through rivers, but the fate of these plastics is generally unknown. In this paper, we use computer simulations to show that floating plastics
This article is included in the Encyclopedia of Geosciences
beachand end up on coastlines throughout the Indian Ocean. Coastlines where a lot of plastic enters the ocean are heavily affected by beaching plastic, but plastics can also beach far from the source on remote islands and countries that contribute little plastic pollution of their own.
Miaoju Chen, Charitha B. Pattiaratchi, Anas Ghadouani, and Christine Hanson
Ocean Sci., 15, 333–348, https://doi.org/10.5194/os-15-333-2019, https://doi.org/10.5194/os-15-333-2019, 2019
Julie A. Trotter, Charitha Pattiaratchi, Paolo Montagna, Marco Taviani, James Falter, Ron Thresher, Andrew Hosie, David Haig, Federica Foglini, Quan Hua, and Malcolm T. McCulloch
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-319, https://doi.org/10.5194/bg-2018-319, 2018
Manuscript not accepted for further review
Short summary
Short summary
The first ROV exploration of the Perth Canyon offshore southwest Australia discovered diverse
This article is included in the Encyclopedia of Geosciences
hot spotsof deep-sea biota to depths of ~ 2000 m. Some corals were living below the carbonate saturation horizon. Extensive coral graveyards found at ~ 700 and ~ 1700 m are between ~ 18 000 and ~ 30 000 years old, indicating these corals flourished during the last ice age. Anthropogenic carbon detected within the upper ~ 800 m highlights the increasing threat of climate change to deep-sea ecosystems.
Dennis Booge, Cathleen Schlundt, Astrid Bracher, Sonja Endres, Birthe Zäncker, and Christa A. Marandino
Biogeosciences, 15, 649–667, https://doi.org/10.5194/bg-15-649-2018, https://doi.org/10.5194/bg-15-649-2018, 2018
Short summary
Short summary
Our isoprene data from field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean show that the ability of different phytoplankton functional types to produce isoprene seems to be mainly influenced by light, ocean temperature, salinity, and nutrients. By calculating in-field isoprene production rates, we demonstrate that an additional loss is needed to explain the measured isoprene concentration, which is potentially due to degradation or consumption by bacteria.
This article is included in the Encyclopedia of Geosciences
Cathleen Schlundt, Susann Tegtmeier, Sinikka T. Lennartz, Astrid Bracher, Wee Cheah, Kirstin Krüger, Birgit Quack, and Christa A. Marandino
Atmos. Chem. Phys., 17, 10837–10854, https://doi.org/10.5194/acp-17-10837-2017, https://doi.org/10.5194/acp-17-10837-2017, 2017
Short summary
Short summary
For the first time, oxygenated volatile organic carbon (OVOC) in the ocean and overlaying atmosphere in the western Pacific Ocean has been measured. OVOCs are important for atmospheric chemistry. They are involved in ozone production in the upper troposphere (UT), and they have a climate cooling effect. We showed that phytoplankton was an important source for OVOCs in the surface ocean, and when OVOCs are emitted into the atmosphere, they could reach the UT and might influence ozone formation.
This article is included in the Encyclopedia of Geosciences
Sarik Salim, Charitha Pattiaratchi, Rafael Tinoco, Giovanni Coco, Yasha Hetzel, Sarath Wijeratne, and Ravindra Jayaratne
Earth Surf. Dynam., 5, 399–415, https://doi.org/10.5194/esurf-5-399-2017, https://doi.org/10.5194/esurf-5-399-2017, 2017
Short summary
Short summary
The aim of this paper was to verify the existence of a mean critical velocity concept in terms of turbulent bursting phenomena. Laboratory experiments were undertaken in a unidirectional current flume where an acoustic Doppler velocimeter was used. Results in the laboratory conditions both above and below the measured mean critical velocity highlighted the need to re-evaluate the accuracy of a single time-averaged critical velocity for the initiation of sediment entrainment.
This article is included in the Encyclopedia of Geosciences
Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Paul I. Palmer, Michael Schlundt, Elliot L. Atlas, Astrid Bracher, Eric S. Saltzman, and Douglas W. R. Wallace
Atmos. Chem. Phys., 16, 11807–11821, https://doi.org/10.5194/acp-16-11807-2016, https://doi.org/10.5194/acp-16-11807-2016, 2016
Short summary
Short summary
Isoprene, a biogenic trace gas, is an important precursor of secondary organic aerosol/cloud condensation nuclei. Here, we use isoprene and related field measurements from three different ocean data sets together with remotely sensed satellite data to model global marine isoprene emissions. Our findings suggest that there is at least one missing oceanic source of isoprene and possibly other unknown factors in the ocean or atmosphere influencing the atmospheric values.
This article is included in the Encyclopedia of Geosciences
Peter R. Oke, Roger Proctor, Uwe Rosebrock, Richard Brinkman, Madeleine L. Cahill, Ian Coghlan, Prasanth Divakaran, Justin Freeman, Charitha Pattiaratchi, Moninya Roughan, Paul A. Sandery, Amandine Schaeffer, and Sarath Wijeratne
Geosci. Model Dev., 9, 3297–3307, https://doi.org/10.5194/gmd-9-3297-2016, https://doi.org/10.5194/gmd-9-3297-2016, 2016
Short summary
Short summary
The Marine Virtual Laboratory (MARVL) is designed to help ocean modellers hit the ground running. Usually, setting up an ocean model involves a handful of technical steps that time and effort. MARVL provides a user-friendly interface that allows users to choose what options they want for their model, including the region, time period, and input data sets. The user then hits "go", and MARVL does the rest – delivering a "take-away bundle" that contains all the files needed to run the model.
This article is included in the Encyclopedia of Geosciences
J. Reisser, B. Slat, K. Noble, K. du Plessis, M. Epp, M. Proietti, J. de Sonneville, T. Becker, and C. Pattiaratchi
Biogeosciences, 12, 1249–1256, https://doi.org/10.5194/bg-12-1249-2015, https://doi.org/10.5194/bg-12-1249-2015, 2015
Short summary
Short summary
Subsurface observations of ocean plastics are very scarce but essential for adequate estimates of marine plastic pollution levels. We sampled plastics from the sea surface to a depth of 5m, at 0.5m intervals. Vertical mixing was dependent on sea state and affected the abundance, mass, and sizes of plastic debris floating at the sea surface. This has important implications for studies assessing at-sea plastic load, size distribution, drifting pattern, and impact on marine species and habitats.
This article is included in the Encyclopedia of Geosciences
A. de Vos, C. B. Pattiaratchi, and E. M. S. Wijeratne
Biogeosciences, 11, 5909–5930, https://doi.org/10.5194/bg-11-5909-2014, https://doi.org/10.5194/bg-11-5909-2014, 2014
A. R. Thurber, A. K. Sweetman, B. E. Narayanaswamy, D. O. B. Jones, J. Ingels, and R. L. Hansman
Biogeosciences, 11, 3941–3963, https://doi.org/10.5194/bg-11-3941-2014, https://doi.org/10.5194/bg-11-3941-2014, 2014
S. R. Kularatne, J. Doucette, and C. B. Pattiaratchi
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurfd-2-215-2014, https://doi.org/10.5194/esurfd-2-215-2014, 2014
Revised manuscript has not been submitted
C. A. Marandino, S. Tegtmeier, K. Krüger, C. Zindler, E. L. Atlas, F. Moore, and H. W. Bange
Atmos. Chem. Phys., 13, 8427–8437, https://doi.org/10.5194/acp-13-8427-2013, https://doi.org/10.5194/acp-13-8427-2013, 2013
N. Serpetti, E. Gontikaki, B. E. Narayanaswamy, and U. Witte
Biogeosciences, 10, 3705–3714, https://doi.org/10.5194/bg-10-3705-2013, https://doi.org/10.5194/bg-10-3705-2013, 2013
A. J. Chivers, B. E. Narayanaswamy, P. A. Lamont, A. Dale, and R. Turnewitsch
Biogeosciences, 10, 3535–3546, https://doi.org/10.5194/bg-10-3535-2013, https://doi.org/10.5194/bg-10-3535-2013, 2013
T. Morato, K. Ø. Kvile, G. H. Taranto, F. Tempera, B. E. Narayanaswamy, D. Hebbeln, G. M. Menezes, C. Wienberg, R. S. Santos, and T. J. Pitcher
Biogeosciences, 10, 3039–3054, https://doi.org/10.5194/bg-10-3039-2013, https://doi.org/10.5194/bg-10-3039-2013, 2013
Cited articles
Abayomi, O. A., Range, P., Al-Ghouti, M. A., Obbard, J. P., Almeer, S. H.,
and Ben-Hamadou, R.: Microplastics in coastal environments of the Arabian
Gulf, Mar. Pollut. Bull., 124, 181–188, https://doi.org/10.1016/j.marpolbul.2017.07.011, 2017.
Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F. J., Dominguez,
A. O., and Jaafarzadeh, N.: Distribution and potential health impacts of
microplastics and microrubbers in air and street dusts from Asaluyeh County,
Iran, Environ. Pollut., 244, 153–164, https://doi.org/10.1016/j.envpol.2018.10.039, 2019.
Akhbarizadeh, R., Moore, F., Keshavarzi, B., and Moeinpour, A.: Microplastics and potentially toxic elements in coastal sediments of Iran's main oil terminal (Khark Island), Environ. Pollut., 220, 720–731, https://doi.org/10.1016/j.envpol.2016.10.038, 2017.
Aliabad, M. K., Nassiri, M., and Kor, K.: Microplastics in the surface seawaters of Chabahar Bay, Gulf of Oman (Makran coasts), Mar. Pollut. Bull.,
143, 125–133, https://doi.org/10.1016/j.marpolbul.2019.04.037, 2019.
Andrady, A. L.: Microplastics in the marine environment, Mar. Pollut. Bull.,
62, 1596–1605, https://doi.org/10.1016/j.marpolbul.2011.05.030, 2011.
Arun Kumar, A., Sivakumar, R., Sai Rutwik Reddy, Y., Bhagya Raja, M. V.,
Nishanth, T., and Revanth, V.: Preliminary study on marine debris pollution
along Marina beach, Cheannai, India, Reg. Stud. Mar. Sci., 5, 35–40,
https://doi.org/10.1016/j.rsma.2016.01.002, 2016.
Baalkhuyur, F. M., Bin Dohaish, E. J. A., Elhalwagy, M. E. A., Alikunhi, N.
M., AlSuwailem, A. M., Røstad, A., Coker, D. J., Berumen, M. L., and
Duarte, C. M.: Microplastic in the gastrointestinal tract of fishes along
the Saudi Arabian Red Sea coast, Mar. Pollut. Bull., 131, 407–415,
https://doi.org/10.1016/j.marpolbul.2018.04.040, 2018.
Baltar, F., Currie, K., Stuck, E., Roosa, S., and Morales, S. E.: Oceanic
fronts: transition zones for bacterioplankton community composition, Environ.
Microbiol. Rep., 8, 132–138, https://doi.org/10.1111/1758-2229.12362, 2016.
Barnes, D. K. A.: Natural and plastic flotsam stranding in the Indian Ocean,
in: The Effects of Human Transport on Ecosystems: Cars and Planes, Boats and
Trains, edited by: Davenport, J. and Davenport, J. L., Royal Irish Academy, Dublin, 193–205, 2004.
Barnes, D. K. A., Galgani, F., Thompson, R. C., and Barlaz, M.: Accumulation
and fragmentation of plastic debris in global environments, Philos. T. Roy.
Soc. B., 364, 1985–1998, https://doi.org/10.1098/rstb.2008.0205, 2009.
Beal, L. M., de Ruijter, W. P. M., Biastoch, A., and Zahn R.: On the role of
the Agulhas system in ocean circulation and climate, Nature, 472, 429–436,
https://doi.org/10.1038/nature09983, 2011.
Beaumont, N. J., Aanesen, M., Austen, M. C., Börger, T., Clark, J. R.,
Cole, M., Hooper, T., Lindeque, P. K., Pascoe, C., and Wyles, K. J.: Global
ecological, social and economic impacts of marine plastic, Mar. Pollut.
Bull., 142, 189–195, https://doi.org/10.1016/j.marpolbul.2019.03.022, 2019.
Belkin, I. M. and Cornillon, P. C.: Fronts in the world ocean's large marine ecosystems, in: ICES CM 2007/D:21, International Council for the
Exploration of the Sea, Copenhagen, Denmark, 1–33, 2007.
Belkin, I. M., Cornillon, P. C., and Sherman, K.: Fronts in large marine
ecosystems, Prog. Oceanogr., 81, 223–236, https://doi.org/10.1016/j.pocean.2009.04.015, 2009.
Bergmann, M., Peeken, I., Beyer, B., Krumpen, T., Primpke, S., Tekman, M.
B., and Gerdts, G.: Vast quantities of microplastics in Arctic Sea ice – a
prime temporary sink for plastic litter and a medium of transport, in: Fate
and Impact of Microplastics in Marine Ecosystems, edited by: Baztan, J.,
Jorgensen, B., Pahl, S., Thompson, R. C., and Vanderlinden, J.-P., Elsevier,
Amsterdam, 75–76, 2017.
Bond, A. L., Montevecchi, W. A., Guse, N., Regular, P. M., Garthe, S., and
Rail, J.-F.: Prevalence and composition of fishing gear debris in the nests
of northern gannets (Morus bassanus) are related to fishing effort, Mar. Pollut. Bull., 64, 907–911, https://doi.org/10.1016/j.marpolbul.2012.03.011, 2012.
Bouwman, H., Evans, S. W., Cole, N., Choong Kwet Yive, N. S., and Kylin, H.:
The flip-or-flop boutique: marine debris on the shores of St Brandon's rock,
an isolated tropical atoll in the Indian Ocean, Mar. Environ. Res., 114,
58–64, https://doi.org/10.1016/j.marenvres.2015.12.013, 2016.
Bower, A. S.: A simple kinematic mechanism for mixing fluid parcels across a meandering jet, J. Phys. Oceanogr., 21, 173–180, https://doi.org/10.1175/1520-0485(1991)021<0173:ASKMFM>2.0.CO;2, 1991.
Bowman, M. J. and Esaias, W. E.: Coastal jets, fronts, and phytoplankton patchiness, Elsevier Oceanogr. Ser., 19, 255–268, https://doi.org/10.1016/S0422-9894(08)70846-8, 1977.
Brambilla, E. and Talley, L. D.: Surface drifter exchange between the North
Atlantic subtropical and subpolar gyres, J. Geophys. Res.-Oceans, 111, C07026, https://doi.org/10.1029/2005JC003146, 2006.
Breivik, O. and Allen, A. A.: An operational search and rescue model for
the Norwegian Sea and the North Sea, J. Mar. Syst., 69, 99–113, https://doi.org/10.1016/j.jmarsys.2007.02.010, 2008.
Brink, K. H.: Upwelling fronts: implications and unknowns, S. Afr. J. Mar. Sci., 5, 3–9, https://doi.org/10.2989/025776187784522315, 1987.
Brunner, K., Kukulka, T., Proskurowski, G., and Law, K. L.: Passive buoyant
tracers in the ocean surface boundary layer: 2. Observations and simulations
of microplastic marine debris, J. Geophys. Res.-Oceans, 120, 7559–7573,
https://doi.org/10.1002/2015JC010840, 2015.
Canales, N., Atteridge, A., and Sturesson, A.: Climate finance for the Indian Ocean and African small island developing states, Working paper 2017-11, Stockholm Environment Institute, Stockholm, 2017.
Cartraud, A. E., Le Corre, M., Turquet, J., and Tourmetz, J.: Plastic
ingestion in seabirds of the western Indian Ocean, Mar. Pollut. Bull., 140,
308–314, https://doi.org/10.1016/j.marpolbul.2019.01.065, 2019.
Castillo, A. B., Al-Maslamani, I., and Obbard, J. P.: Prevalence of microplastics in the marine waters of Qatar, Mar. Pollut. Bull., 111,
260–267, https://doi.org/10.1016/j.marpolbul.2016.06.108, 2016.
Chen, M., Pattiaratchi, C. B., Ghadouani, A., and Hanson, C.: Influence of storm events on chlorophyll distribution along the oligotrophic continental shelf off south-western Australia, Front. Mar. Sci., 7, 287, https://doi.org/10.3389/fmars.2020.00287, 2020.
Cherel, Y., Xavier, J. C., de Grissac, S., Trouvé, C., and Weimerskirch,
H.: Feeding ecology, isotopic niche, and ingestion of fishery-related items
of the wandering albatross Diomedea exulans at Kerguelen and Crozet Islands,
Mar. Ecol. Prog. Ser., 565, 197–215, https://doi.org/10.3354/meps11994, 2017.
Cliff, G., Dudley, S. F., Ryan, P. G., and Singleton, N.: Large sharks and
plastic debris in KwaZulu-Natal, South Africa, Mar. Freshwater Res., 53,
575–581, https://doi.org/10.1071/MF01146, 2002.
Cole, K. L., Macdonald, D. G., Kakoulaki, G., and Hetland, R. D.: River plume source-front connectivity, Ocean Model., 150, 101571, https://doi.org/10.1016/j.ocemod.2020.101571, 2020.
Courtene-Jones, W., Quinn, B., Ewins, C., Gary, S. F., and Narayanaswamy, B.
E.: Microplastic accumulation in deep-sea sediments from the Rockall Trough,
Mar. Pollut. Bull., 154, 111092, https://doi.org/10.1016/j.marpolbul.2020.111092, 2020.
Cózar, A., Echevarria, F., Gonzalez-Gordillo, J. I., Irigoien, X., Ubeda, B., Hernandez-Leon, S., Palma, A. T., Navarro, S., Garcia de Lomas, J., Ruiz, A., Fernandez de Puelles, M. L., and Duarte, C. M.: Plastic debris in the open ocean, P. Natl. Acad. Sci. USA, 111, 10239–10244, https://doi.org/10.1073/pnas.1314705111, 2014.
Crutchett, T., Paterson, H., Ford, B. M., and Speldewinde, P.: Plastic
ingestion in sardines (Sardinops sagax) from Frenchman Bay, Western Australia, highlights a problem in a ubiquitous fish, Front. Mar. Sci., 7, 526, https://doi.org/10.3389/fmars.2020.00526, 2020.
Dace, E., Pakere, I., and Blumberga, D.: Evaluation of economic aspects of
the deposit-refund system for packaging in Latvia, Manage. Environ. Qual., 24, 311–329, https://doi.org/10.1108/14777831311322631, 2013.
D'Asaro E. A., Shcherbina, A. Y., Klymak, J. M., Molemaker, J., Novelli, G.,
Guigand, C. M., Haza, A. C., Haus, B. K., Ryan, E. H., Jacobs, G. A., Huntley, H. S., Laxague, N. J. M., Chen, S. Judt, F., McWilliams, J. C.,
Barkan, R., Kirwan, A. D., Poje, A. C., and Özgökmen, T. M.: Ocean
convergence and the dispersion of flotsam, P. Natl. Acad. Sci. USA, 115,
1162–1167, https://doi.org/10.1073/pnas.1718453115, 2018.
Davison, P. and Asch, R. G.: Plastic ingestion by mesopelagic fishes in the
North Pacific subtropical gyre, Mar. Ecol. Prog. Ser., 432, 173–180,
https://doi.org/10.3354/meps09142, 2011.
de Vos, A., Pattiaratchi, C. B., and Wijeratne, E. M. S.: Surface circulation and upwelling patterns around Sri Lanka, Biogeosciences, 11, 5909–5930, https://doi.org/10.5194/bg-11-5909-2014, 2014.
Dobler, D., Huck, T., Maes, C., Grima, N., Blanke, B., Martinez, E., and Ardhuin, F.: Large impact of Stokes drift on the fate of surface floating debris in the South Indian Basin, Mar. Pollut. Bull., 148, 202–209,
https://doi.org/10.1016/j.marpolbul.2019.07.057, 2019.
Duhec, A. V., Jeanne, R. F., Maximenko, N., and Hafner, J.: Composition and
potential origin of marine debris stranded in the western Indian Ocean on
remote Alphonse Island, Seychelles, Mar. Pollut. Bull., 96, 76–86,
https://doi.org/10.1016/j.marpolbul.2015.05.042, 2015.
Egger, M., Sulu-Gambari, F., and Lebreton, L.: First evidence of plastic
fallout from the north Pacific garbage patch, Sci. Rep., 10, 7495,
https://doi.org/10.1038/s41598-020-64465-8, 2020.
Eliot, M. and Pattiaratchi, C.: Remote forcing of water levels by tropical
cyclones in southwest Australia, Cont. Shelf Res., 30, 1549–1561,
https://doi.org/10.1016/j.csr.2010.06.002, 2010.
Engler, R. E.: The complex interaction between marine debris and toxic chemicals in the ocean, Environ. Sci. Technol., 46, 12302–12315,
https://doi.org/10.1021/es3027105, 2012.
Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J.,
Borerro, J. C., Galgani, F., Ryan, P. G., and Reisser, J.: Plastic pollution
in the world's oceans: more than 5 trillion plastic pieces weighing over
250,000 tons afloat at sea, PLoS ONE, 9, e111913,
https://doi.org/10.1371/journal.pone.0111913, 2014.
Findlater, J.: A major low-level air current near the Indian Ocean during the northern summer, Q. J. Roy. Meteorol. Soc., 95, 362–380, https://doi.org/10.1002/qj.49709540409, 1969.
Freinkel, S.: A brief history of plastic's conquest of the world, Sci. Am., available at:
https://www.scientificamerican.com/article/a-brief-history-of-plastic-world-conquest/
(last access: 21 September 2021), 2011.
Frias, J. P. G. L. and Nash, R.: Microplastics: finding a consensus on the
definition, Mar. Pollut. Bull., 138, 145–147, https://doi.org/10.1016/j.marpolbul.2018.11.022, 2019.
Froyland, G., Stuart, R. M., and van Sebille, E.: How well-connected is the
surface of the global ocean?, Chaos, 24, 033126, https://doi.org/10.1063/1.4892530, 2014.
Geyer, R., Jambeck, J. R., and Law, K. L.: Production, use, and fate of all
plastics ever made, Sci. Adv., 3, e1700782, https://doi.org/10.1126/sciadv.1700782, 2017.
Gigault, J., ter Halle, A., Baudrimont, M., Pascal, P. Y., Gauffre, F., Phi,
T. L., El Hadri, H., Grassl, B., and Reynaurd, S.: Current opinion: what is
a nanoplastic? Environ. Pollut., 235, 1030–1034, https://doi.org/10.1016/j.envpol.2018.01.024, 2018.
Gordon, A. L.: The brawniest retroflection, Nature, 421, 904–905,
https://doi.org/10.1038/421904a, 2003.
Gregory, M. R.: Environmental implications of plastic debris in marine settings – entanglement, ingestion, smothering, hangers-on, hitch-hiking and
alien invasions, Philos. T. Roy. Soc. B, 364, 2013–2025,
https://doi.org/10.1098/rstb.2008.0265, 2009.
Guillotreau, P., Campling, L., and Robinson, J.: Vulnerability of small island fishery economies to climate and institutional changes, Curr. Opin.
Environ. Sustain., 4, 287–291, https://doi.org/10.1016/j.cosust.2012.06.003, 2012.
Gunn, R., Hardesty, B. D., and Butler, J.: Tackling `ghost nets': local
solutions to a global issue in northern Australia, Ecol. Manage. Restor., 11, 88–98, https://doi.org/10.1111/j.1442-8903.2010.00525.x, 2010.
Guptha, M. V. S., Curry, W. B., Ittekkot, V., and Muralinath, A. S.: Seasonal variation in the flux of planktic foraminifera: sediment trap results from the Bay of Bengal, northern Indian Ocean, J. Foramin. Res., 27, 5–19, https://doi.org/10.2113/gsjfr.27.1.5, 1997.
Hajbane, S., Calmanovici, B., Reisser, J., Jolly, A., Summers, V., Ferrari,
F., Ghadouani, A., and Pattiaratchi, C. B.: Coastal garbage patches: evidence for significant accumulations of buoyant plastics along shallow coastal fronts at Ashmore Reef (Pulau Pasir) Marine Park, Front. Mar. Sci., 8, 613399, https://doi.org/10.3389/fmars.2021.613399, 2021.
Hartmann, N. B, Thorsten, H., Thompson, R. C., Hassellöv, M., Verschoor,
A., Daugaard, A. E., Rist, S., Karlsson, T., Brennholt, N., Cole, M.,
Herrling, M. P., Hess, M. C., Ivleva, N. P., Lusher, A. L., and Wagner, M.:
Are we speaking the same language? Recommendations for a definition and
categorization framework for plastic debris, Enviriron. Sci. Technol., 53,
1039–1047, https://doi.org/10.1021/acs.est.8b05297, 2019.
Hoarau, L., Ainley, L., Jean, C., and Ciccione, S.: Ingestion and defecation
of marine debris by loggerhead sea turtles, Caretta caretta, from by-catches in the South-West Indian Ocean, Mar. Pollut. Bull., 84, 90–96,
https://doi.org/10.1016/j.marpolbul.2014.05.031, 2014.
Hoornweg, D. and Bhada-Tata, P.: What a waste: a global review of solid
waste management, Urban development series knowledge papers no. 15, World Bank, Washington, DC, available at: https://openknowledge.worldbank.org/handle/10986/17388 (last access: 21 September 2021), 2012.
Huyer, A.: Shelf circulation, in: vol. 9A, The Sea: Ocean Engineering Science, edited by: Mehaute, B. L. and Hanes, D., Wiley Interscience, New York, 423–466, 1990.
Imhof, H. K., Sigl, R., Brauer, E., Feyl, S., Giesemann, P., Klink, S., Leupolz, K., Löder, M. G. J., Löschel, L. A., Missun, J., Muszynski,
S., Ramsperger, A. F. R. M., Schrank, I., Speck, S., Steibl, S., Trotter, B., Winter, I., and Laforsch, C.: Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean, Mar. Pollut. Bull., 116, 340–347, https://doi.org/10.1016/j.marpolbul.2017.01.010, 2017.
Ismail, M. R., Lewaru, M. W., and Prihadi, D. J.: Microplastics ingestion by
fish in the Biawak Island, World Sci. News, 106, 230–237, 2018.
Isobe, A., Kubo, K., Tamura, Y., Kako, S., Nakashima, E., and Fujii, N.:
Selective transport of microplastics and mesoplastics by drifting in coastal
waters, Mar. Pollut. Bull., 89, 324–330, https://doi.org/10.1016/j.marpolbul.2014.09.041, 2014.
Isobe, A., Buenaventura, N. T., Chastain, S., Chavanich, S., Cózar, A., DeLorenzo, M., Hagmann, P., Hinata, H., Kozlovskii, N., Lusher, A. L.,
Martí, E., Michida, Y., Mu, J., Ohno, M., Potter, G., Ross, P. S., Sagawa, N., Shim, W. J., Song, Y. K., Takada, H., Tokai, T., Torii, T., Uchida, K., Vassillenko, K., Viyakarn, V., and Zhang, W.: An interlaboratory
comparison exercise for the determination of microplastics in standard sample bottles, Mar. Pollut. Bull., 146, 831–837, https://doi.org/10.1016/j.marpolbul.2019.07.033, 2019.
Ittekkot, V., Nair, R. R., Honjo, S., Ramaswamy, V., Bartsch, M., Manginini,
S., and Desai B. N.: Enhanced particle fluxes in Bay of Bengal induced by
injection of fresh water, Nature, 351, 385–387, https://doi.org/10.1038/351385a0, 1996.
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., and Law, K. L.: Plastic waste inputs from land into the ocean, Science, 347, 768–771, https://doi.org/10.1126/science.1260352, 2015.
Jamieson, A. J., Brooks, L. S. R., Reid, W. D. K., Piertney, S. B., Narayanaswamy, B. E., and Linley, T. D.: Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth, Roy. Soc. Open Sci., 6, 180667, https://doi.org/10.1098/rsos.180667, 2019.
Jayasiri, H. B., Purushothaman, C. S., and Vennila, A.: Plastic litter
accumulation on high-water strandline of urban beaches in Mumbai, India,
Environ. Monit. Assess., 185, 7709–7719, https://doi.org/10.1007/s10661-013-3129-z, 2013.
Joseph, P. V. and Sijikumar, S.: Intraseasonal variability of the low-level
jet stream of the Asian summer monsoon, J. Climate, 17, 1449–1458,
https://doi.org/10.1175/1520-0442(2004)017<1449:IVOTLJ>2.0.CO;2, 2004.
Karati, K. K., Vineetha, G., Raveendran, T. V., Muraleedharan, K. R., Habeebrehman, H., Philson, K. P., and Achuthankutty, C. T.: River plume fronts and their implications for the biological production of the Bay of Bengal, Indian Ocean, Mar. Ecol. Prog. Ser., 597, 79–98, https://doi.org/10.3354/meps12607, 2018.
Karthik, R., Robin, R. S., Purvaja, R., Ganguly, D., Anandavelu, I., Raghuraman, R., Hariharan, G., Ramakrishna, A., and Ramesh, R.: Microplastics along the beaches of southeast coast of India, Sci. Total Environ., 645, 1388–1399, https://doi.org/10.1016/j.scitotenv.2018.07.242, 2018.
Kaza, S., Yao, L. C., Bhada-Tata, P., and Van Woerden, F.: What a waste 2.0:
a global snapshot of solid waste management to 2050, Urban development, World Bank, Washington, DC, IGO, available at:
https://openknowledge.worldbank.org/handle/10986/30317 (last access: 28 December 2021), 2018.
Khalik, W. M. A. W. M., Ibrahim, Y. S., Tuan Anuar, S., Govindasamy, S., and
Baharuddin, N. F.: Microplastics analysis in Malaysian marine waters: a
field study of Kuala Nerus and Kuantan, Mar. Pollut. Bull., 135, 451–457,
https://doi.org/10.1016/j.marpolbul.2018.07.052, 2018.
Koelmans, A. A., Kooi, M., and van Sebille, E.: All is not lost: deriving a
top-down mass budget of plastic at sea, Environ. Res. Lett., 12, 1–9,
https://doi.org/10.1088/1748-9326/aa9500, 2017.
Kooi, M., Reisser, J., Slat, B., Ferrari, F. F., Schmid, M. S., Cunsolo, S.,
Brambini, R., Noble, K., Sirks, L., Linders, T. E. W., Schoeneich-Argent, R.
I., and Koelmans, A. A.: The effect of particle properties on the depth
profile of buoyant plastics in the ocean, Sci. Rep., 6, 33882, https://doi.org/10.1038/srep33882, 2016.
Kooi, M., Nes, E. H., Scheffer, M., and Koelmans, A. A.: Ups and downs in
the ocean: effects of biofouling on vertical transport of microplastics,
Environ. Sci. Technol., 51, 7963–7971, https://doi.org/10.1021/acs.est.6b04702, 2017.
Koongolla, J. B., Andrady, A. L., Terney Pradeep Kumara, P. B., and
Gangabadage, C. S.: Evidence of microplastics pollution in coastal beaches
and waters in southern Sri Lanka, Mar. Pollut. Bull., 137, 277–284,
https://doi.org/10.1016/j.marpolbul.2018.10.031, 2018.
Kosore, C., Ojwang, L., Maghanga, J., Kamau, J., Kimeli, A., Omukoto, J.,
Ngisiag'e, N., Mwaluma, J., Ong'ada, H., Magori, C., and Ndirui, E.:
Occurrence and ingestion of microplastics by zooplankton in Kenya's marine
environment: first documented evidence, Afr. J. Mar. Sci., 40, 225–234,
https://doi.org/10.2989/1814232X.2018.1492969, 2018.
Kukulka, T. and Brunner, K.: Passive buoyant tracers in the ocean surface
boundary layer: 1. Influence of equilibrium wind-waves on vertical distributions, J. Geophys. Res.-Oceans, 120, 3837–3858, https://doi.org/10.1002/2014JC010487, 2015.
Kukulka, T., Proskurowski, G., Moret-Ferguson, S., Meyer, D. W., and Law, K.
L.: The effect of wind mixing on the vertical distribution of buoyant
plastic debris, Geophys. Res. Lett., 39, L07601, https://doi.org/10.1029/2012GL051116, 2012.
Lachmann, F., Almroth, B. C., Baumann, H., Broström, G., Corvellec, H.,
Gipperth, L., Hassellöv, M., Karlsson, T., and Nilsson, P.: Marine plastic litter on small island developing states (SIDS): impacts and measures, Report no. 2017:4, Swedish Institute for the Marine Environment, University of Gothenburg, Gothenburg, 2017.
Laist, D. W. and Liffman, M.: Impacts of marine debris: research and management needs, in: Proceedings of the International Marine Debris Conference on Derelict Fishing Gear and the Ocean Environment, edited by:
McIntosh, N., Simonds, K., Donohue, M., Brammer, C., Manson, S., and
Carbajal, S., 6–11 August 2000, Honolulu, 344–357, 2000.
Lambert, E., Le Bars, D., and de Ruijter, W. P. M.: The connection of the
Indonesian throughflow, south Indian Ocean countercurrent and the Leeuwin
current, Ocean Sci., 12, 771–780, https://doi.org/10.5194/os-12-771-2016, 2016.
Lavee, D.: A cost-benefit analysis of a deposit-refund program for beverage
containers in Israel, Waste Manage., 30, 338–345, https://doi.org/10.1016/j.wasman.2009.09.026, 2010.
Lavers, J. L. and Bond, A. L.: Exceptional and rapid accumulation of
anthropogenic debris on one of the world's most remote and pristine islands,
P. Natl. Acad. Sci. USA, 114, 6052–6055, https://doi.org/10.1073/pnas.1619818114, 2017.
Lavers, J. L., Dicks, L., Dicks, M. R., and Finger, A.: Significant plastic
accumulation on the Cocos (Keeling) Islands, Australia, Sci. Rep., 9, 7102,
https://doi.org/10.1038/s41598-019-43375-4, 2019.
Law, K. L.: Plastics in the marine environment, Annu. Rev. Mar. Sci., 9,
205–229, https://doi.org/10.1146/annurev-marine-010816-060409, 2017.
Laxague, N. J. M., Ozgokmen, T. M., Haus, B. K., Novelli, G., Shcherbina, A., Sutherland, P., Guigand, C. M., Lund, B., Mancha, S., Alday, M., and Molemaker, J.: Observations of near-surface current shear help describe oceanic oil and plastic transport, Geophys. Res. Lett., 45, 245–249,
https://doi.org/10.1002/2017GL075891, 2017.
Lebreton, L., Egger, M., and Slat, B.: A global mass budget for positively
buoyant microplastic debris in the ocean, Sci. Rep., 9, 12922, https://doi.org/10.1038/s41598-019-49413-5, 2019.
Lebreton, L. C., Greer, S. D., and Borrero, J. C.: Numerical modelling of
floating debris in the world's oceans, Mar. Pollut. Bull., 64, 653–661,
https://doi.org/10.1016/j.marpolbul.2011.10.027, 2012.
Lebreton, L. C. M., van der Zwet, J., Damsteeg, J.-W., Slat, B., Andrady, A.,
and Reisser, J.: River plastic emissions to the world's oceans, Nat. Commun.,
8, 15611, https://doi.org/10.1038/ncomms15611, 2017.
Lett, C., Verley, P., Mullon, C., Parada, C., Brochier, T., Penven, P., and
Balnke, P.: A Lagrangian tool for modelling ichthyoplankton dynamics, Environ. Model. Softw., 23, 1210–1214, https://doi.org/10.1016/j.envsoft.2008.02.005, 2008.
Lobelle, D. and Cunliffe, M.: Early microbial biofilm formation of marine
plastic debris, Mar. Pollut. Bull., 62, 197–200, https://doi.org/10.1016/j.marpolbul.2010.10.013, 2011.
Long, M., Moriceau, B., Gallinari, M., Lambert, C., Huvet, A., Raffray, J.,
and Soudant, P.: Interactions between microplastics and phytoplankton aggregates: impact on their respective fates, Mar. Chem., 175, 39–46,
https://doi.org/10.1016/j.marchem.2015.04.003, 2015.
Luketina, D. A. and Imberger, J.: Turbulence and entrainment in a buoyant surface plume, J. Geophys. Res.-Oceans, 94, 12619–12636, https://doi.org/10.1029/JC094iC09p12619, 1989.
Lutjeharms, J. R. E. (Ed.): The Agulhas Current retroflection, in: The Agulhas Current, Springer, Switzerland, 151–207, 2006.
Macfadyen, G., Huntington, T., and Cappell, R.:. Abandoned, lost or otherwise discarded fishing gear, UNEP Regional Seas Reports and Studies no. 185, FAO Fisheries and Aquaculture Technical Paper no. 523, FAO, Rome, 2009.
Madzena, A. and Lasiak, T.: Spatial and temporal variations in beach litter
on the Transkei coast of South Africa, Mar. Pollut. Bull., 34, 900–907,
https://doi.org/10.1016/S0025-326X(97)00052-0, 1997.
Maes, C., Grima, N., Blanke, B., Martinez, E., Paviet-Salomon, T., and Huck,
T.: A surface “superconvergence” pathway connecting the south Indian Ocean
to the subtropical south Pacific gyre, Geophys. Res. Lett., 45, 1915–1922,
https://doi.org/10.1002/2017GL076366, 2018.
Maximenko, N., Hafner, J., and Niiler, P.: Pathways of marine debris derived
from trajectories of Lagrangian drifters, Mar. Pollut. Bull., 65, 51–62,
https://doi.org/10.1016/j.marpolbul.2011.04.016, 2012.
McGregor, S. and Strydom, N. A.: Feeding ecology and microplastic ingestion in Chelon richardsonii (Mugilidae) associated with surf diatom Anaulus australis accumulations in a warm temperate South African surf zone, Mar. Pollut. Bull., 158, 111430, https://doi.org/10.1016/j.marpolbul.2020.111430, 2020.
Meijer, L. J. J., van Emmerink, T., van der Ent, R., and Lebreton, L.: More
than 1000 rivers account for 80 % of global riverine plastic emissions into the ocean, Sci. Adv., 7, eaaz5803, https://doi.org/10.1126/sciadv.aaz5803, 2021.
Meikle, J. L.: American Plastic: A Cultural History, first paperback edition, Rutgers University Press, New Jersey, USA, 1997.
Menezes, V. V., Phillips, H. E., Schiller, A., Bindoff, N. L., Domingues, C.
M., and Vianna, M. L.: South Indian countercurrent and associated fronts, J.
Geophys. Res.-Oceans, 119, 6763–6791, https://doi.org/10.1002/2014JC010076, 2014.
Middleton, J. F. and Cirano, M.: A northern boundary current along Australia's southern shelves: the Flinders current, J. Geophys. Res., 107,
1–11, https://doi.org/10.1029/2000JC000701, 2002.
Miyao, Y. and Isobe, A.: A combined balloon photography and buoy-tracking
experiment for mapping surface currents in coastal waters, J. Atmos. Ocean.
Tech., 33, 1237–1250, https://doi.org/10.1175/JTECH-D-15-0113.1, 2016.
Monteiro, R. C., do Sul, J. A. I., and Costa, M. F.: Plastic pollution in
islands of the Atlantic Ocean, Environ. Pollut., 238, 103–110,
https://doi.org/10.1016/j.envpol.2018.01.096, 2018.
Morris, R. J.: Plastic debris in the surface waters of the South Atlantic,
Mar. Pollut. Bull., 11, 164–166, https://doi.org/10.1016/0025-326X(80)90144-7, 1980.
Nahas, E. L., Pattiaratchi, C. B., and Ivey, G. N.: Processes controlling the position of frontal systems in Shark Bay, Western Australia, Estuar. Coast Shelf Sci., 65, 463–474, https://doi.org/10.1016/j.ecss.2005.06.017, 2005.
Naidu, S. A.: Preliminary study and first evidence of presence of microplastics and colorants in green mussel, Perna viridis (Linnaeus, 1758), from southeast coast of India, Mar. Pollut. Bull., 140, 416–422, https://doi.org/10.1016/j.marpolbul.2019.01.024, 2019.
Naidu, S. A., Ranga Rao, V., and Ramu, K.: Microplastics in the benthic
invertebrates from the coastal waters of Kochi, southeastern Arabian Sea,
Environ. Geochem. Health, 40, 1377–1383, https://doi.org/10.1007/s10653-017-0062-z, 2018.
Naidu, S. A., Mawii, L., Ranga Rao, V., Anitha, G., Mishra, P., Narayanaswamy, B. E., Anil Kumar, V., Ramana Murthy, M. V., and Gupta, G. V.
M.: Characterization of plastic debris from surface waters of the eastern
Arabian Sea–Indian Ocean, Mar. Pollut. Bull., 169, 112468, https://doi.org/10.1016/j.marpolbul.2021.112468, 2021.
Naji, A., Nuri, M., and Vethaak, A. D.: Microplastics contamination in
molluscs from the northern part of the Persian Gulf, Environ. Pollut., 235,
113–120, https://doi.org/10.1016/j.envpol.2017.12.046, 2018.
Nel, H. A. and Froneman, P. W.: A quantitative analysis of microplastic
pollution along the south-eastern coastline of South Africa, Mar. Pollut.
Bull., 101, 274–279, https://doi.org/10.1016/j.marpolbul.2015.09.043, 2015.
Nor, N. H. M. and Obbard, J. P.: Microplastics in Singapore's coastal mangrove ecosystems, Mar. Pollut. Bull., 79, 278–283,
https://doi.org/10.1016/j.marpolbul.2013.11.025, 2014.
Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., and Thompson, R. C.: Global warming releases microplastic legacy frozen in
Arctic Sea ice, Earth's Future, 2, 315–320, https://doi.org/10.1002/2014EF000240, 2014.
O'Donnell, J., Marmorino, G. O., and Trump, C. L.: Convergence and downwelling at a river plume front, J. Phys. Oceanogr., 28, 1481–1495, https://doi.org/10.1175/1520-0485(1998)028<1481:CADAAR>2.0.CO;2, 1998.
Owen, R. W.: Fronts and eddies in the sea: mechanisms, interactions and
biological effects, in: Analysis of Marine Ecosystems, edited by: Longhurst,
A. R., Academic Press, London, 197–233, 1981.
Palastanga, V., van Leeuwen, P. J., Schouten, M. W., and de Ruijter, W. P.
M.: Flow structure variability in the subtropical Indian Ocean: instability
of the south Indian Ocean countercurrent, J. Geophys. Res., 112, C01001,
https://doi.org/10.1029/2005JC003395, 2007.
Patti, T. B., Fobert, E. K., Reeves, S. E., and da Silva, K. B.: Spatial
distribution of microplastics around an inhabited coral island in the
Maldives, Indian Ocean, Sci. Total Environ., 748, 141263,
https://doi.org/10.1016/j.scitotenv.2020.141263, 2020.
Pattiaratchi, C. and Woo, M.: The mean state of the Leeuwin current system
between North West Cape and Cape Leeuwin, J. Roy. Soc. West. Aust., 92,
221–241, 2009.
Pattiaratchi, C. B., James, A. E., and Collins, M. B.: Island wakes and headland eddies: a comparison between remotely sensed data and laboratory experiments, J. Geophys. Res.-Oceans, 92, 783–794, https://doi.org/10.1029/JC092iC01p0078319, 1987.
Pauly, D. and Zeller, D.: Catch reconstructions reveal that global marine
fisheries catches are higher than reported and declining, Nat. Commun., 7,
10244, https://doi.org/10.1038/ncomms10244, 2016.
Peeken, I., Primpke, S., Beyer, B., Gütermann, J., Katlein, C., Krumpen,
T., Bergmann, M., Hehemann, L., and Gerdts, G.: Arctic sea ice is an important temporal sink and means of transport for microplastic, Nat. Commun., 9, 1505, https://doi.org/10.1038/s41467-018-03825-5, 2018.
Pham, C. K., Pereira, J. M., Frias, J. P., Ríos, N., Carriço, R.,
Juliano, M., and Rodríguez, Y.: Beaches of the Azores archipelago as
transitory repositories for small plastic fragments floating in the North-East Atlantic, Environ. Pollut., 263, 114494,
https://doi.org/10.1016/j.envpol.2020.114494, 2020.
PlasticsEurope: Plastics – the facts 2019: an analysis of European plastics
production, demand and waste data, Technical report, PlasticsEurope, available at: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2019/ (last access: 28 December 2021), 2019.
Qasim, S. Z.: Contribution of zooplankton in food chains of some warm water
environment, in: Proceedings of the Symposium on Warm Water Zooplankton, National Institute of Oceanography, Goa, 700–708, 1977.
Qui, Y. and Yu, W.: Behaviour of the Wrytki jet observed with surface drifting buoys and satellite altimeter, Geophys. Res. Lett., 36, 1–5,
https://doi.org/10.1029/2009GL039120, 2009.
Raja, K., Aanand, P., Padmavathy, S., and Sampathkumar, J. S.: Present and
future market trends of Indian ornamental fish sector, Int. J. Fish Aquat.
Stud., 7, 6–15, 2019.
Raynaud, J.: Valuing plastic: the business case for measuring, managing and
disclosing plastic use in the consumer goods industry, UNEP, available at: https://wedocs.unep.org/handle/20.500.11822/25302 (last access: 28 December 2021), 2014.
Readman, J. W., DeLuna, F., Ebinghaus, R., Guzman, A. N., Price, A. R. G.,
Readman, E. E., Sheppard, A. L. S., Sleight, V. A., Sturm, R., Thompson, R.
C., Tonkin, A., Wolschke, H., Wright, R. J., and Sheppard, C. R. C.:
Contaminants, pollution and potential anthropogenic impacts in Chagos/BIOT,
in: Coral Reefs of the United Kingdom Overseas Territories, Coral Reefs of the World, vol. 4, edited by: Sheppard, C. R. C., Springer, Dordrecht,
https://doi.org/10.1007/978-94-007-5965-7_21, 2013.
Reddy, M. S., Basha, S., Adimurthy, S., and Ramachandraiah, G.: Description
of the small plastics fragments in marine sediments along the Alang-Sosiya
ship-breaking yard, India, Estuar. Coast. Shelf Sci., 68, 656–660,
https://doi.org/10.1016/j.ecss.2006.03.018, 2006.
Reisser, J., Shaw, J., Wilcox, C., Hardesty, B. D., Proietti, M., Thums, M.,
and Pattiaratchi, C.: Marine plastic pollution in waters around Australia:
characteristics, concentrations, and pathways, PLoS ONE, 8, e80466,
https://doi.org/10.1371/journal.pone.0080466, 2013.
Reisser, J., Slat, B., Noble, K., du Plessis, K., Epp, M., Proietti, M., de
Sonneville, J., Becker, T., and Pattiaratchi, C.: The vertical distribution
of buoyant plastics at sea: an observational study in the North Atlantic
gyre, Biogeosciences, 12, 1249–1256, https://doi.org/10.5194/bg-12-1249-2015, 2015.
Richardson, K., Asmutis-Silvia, R., Drinkwin, J., Gilardi, K. V., Giskes, I., Jones, G., O'Brien, K., Pragnell-Raasch, H., Ludwig, L., Antonelis, K., and Barco, S.: Building evidence around ghost gear: global trends and analysis for sustainable solutions at scale, Mar. Pollut. Bull., 138, 222–229, https://doi.org/10.1016/j.marpolbul.2018.11.031, 2019a.
Richardson, K., Hardesty, B. D., and Wilcox, C.: Estimates of fishing gear
loss rates at a global scale: a literature review and meta-analysis, Fish
Fish., 20, 1218–1231, https://doi.org/10.1111/faf.12407, 2019b.
Richardson, K., Hardesty, B. D., Vince, J. Z., and Wilcox, C.: Global causes, drivers, and prevention measures for lost fishing gear, Front. Mar. Sci., 8, 690447, https://doi.org/10.3389/fmars.2021.690447, 2021.
Richardson, P. L.: Drifting in the wind: leeway error in shipdrift data,
Deep-Sea Res., 44, 1877–1903, https://doi.org/10.1016/S0967-0637(97)00059-9, 1997.
Robin, R. S., Karthik, R., Purvaja, R., Ganguly, D., Anandavelu, I., Mugilarasan, M., and Ramesh, R.: Holistic assessment of microplastics in
various coastal environmental matrices, southwest coast of India, Sci. Total
Environ., 703, 134947, https://doi.org/10.1016/j.scitotenv.2019.134947, 2020.
Rochman, C. M., Hoh, E., Hentschel, B. T., and Kaye, S.: Long-term field
measurements of sorption of organic contaminants to five types of plastic
pellets: implications for plastic marine debris, Environ. Sci. Technol., 47,
1646–1654, https://doi.org/10.1021/es303700s, 2012.
Röhrs, J., Christensen, K. H., Hole, L. R., Brostrom, G., Drivdal, M.,
and Sundby, S.: Observation-based evaluation of surface wave effects on
currents and trajectory forecasts, Ocean Dynam., 62, 1519–1533, https://doi.org/10.1007/s10236-012-0576-y, 2012.
Roman, L., Schuyler, Q., Wilcox, C., and Hardesty, B. D.: Plastic pollution is killing marine megafauna, how do we prioritize policy to reduce mortality?, Conserv. Lett., 14, e12781, https://doi.org/10.1111/conl.12781, 2021.
Roy, R., Chitari, R., Kulkarni, V., Krishna, M. S., Sarma, V. V. S. S., and
Anil, A. C.: CHEMTAX-derived phytoplankton community structure associated
with temperature fronts in the northeastern Arabian Sea, J. Mar. Syst., 144,
81–91, https://doi.org/10.1016/j.jmarsys.2014.11.009, 2015.
Ryan, P. G.: The origin and fate of artefacts stranded on islands in the
African sector of the Southern Ocean, Environ. Conserv., 14, 341–346,
https://doi.org/10.1017/S0376892900016854, 1987.
Saliu, F., Montano, S., Garavaglia, M. G., Lasagni, M., Seveso, D., and Galli, P.: Microplastic and charred microplastic in the Faafu Atoll, Maldives, Mar. Pollut. Bull., 136, 464–471, https://doi.org/10.1016/j.marpolbul.2018.09.023, 2018.
Saliu, F., Montano, S., Leoni, B., Lasagni, M., and Galli, P.: Microplastics
as a threat to coral reef environments: detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives, Mar. Pollut. Bull., 142, 234–241, https://doi.org/10.1016/j.marpolbul.2019.03.043, 2019.
Sari, D. A. A., Suryanto, Sudarwanto, A. S., Nugraha, S., and Utomowati, R.: Reduce marine debris policy in Indonesia, Earth Environ. Sci., 724, 012118, https://doi.org/10.1088/1755-1315/724/1/012118, 2021.
Sarijan, S., Azman, S., Said, M. I. M., Andu, Y., and Zon, N. F.: Microplastics in sediment from Skudai and Tebrau river, Malaysia: a preliminary study, MATEC Web Conf., 250, 06012, https://doi.org/10.1051/matecconf/201825006012, 2018.
Sarkar, K., Aparna, S. G., Dora, S., and Shankar, D.: Seasonal variability of sea-surface temperature fronts associated with large marine ecosystems in the north Indian Ocean, J. Earth Syst. Sci., 128, 1–8, https://doi.org/10.1007/s12040-018-1045-x, 2018.
Sarma, V. V. S. S., Delabehra, H. B., Sudharani, P., Remya, R., Patil, J. S., and Desai, D.V.: Variations in the inorganic carbon components in the thermal fronts during winter in the northeastern Arabian Sea, Mar. Chem., 169, 16–22, https://doi.org/10.1016/j.marchem.2014.12.009, 2015.
Sathish, N., Jeyasanta, K. I., and Patterson, J.: Abundance, characteristics
and surface degradation features of microplastics in beach sediments of five
coastal areas in Tamil Nadu, India, Mar. Pollut. Bull., 142, 112–118,
https://doi.org/10.1016/j.marpolbul.2019.03.037, 2019.
Schmidt, C., Krauth, T., and Wagner, S.: Export of plastic debris by rivers
into the sea, Environ. Sci. Technol., 51, 12246–12253, https://doi.org/10.1021/acs.est.7b02368, 2017.
Schmidt, C., Krauth, T., and Wagner, S.: Correction to export of plastic
debris by rivers into the sea, Environ. Sci. Technol., 52, 927, https://doi.org/10.1021/acs.est.7b06377, 2018.
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian
Ocean, Prog. Oceanogr., 51, 1–123, https://doi.org/10.1016/S0079-6611(01)00083-0, 2001.
Schott, F. A., Xie, S. P., and McCreary, J. P.: Indian Ocean circulation and
climate variability, Rev. Geophys., 47, RG1002, https://doi.org/10.1029/2007RG000245, 2009.
Schumann, E. H., MacKay, C. F., and Strydom, N. A.: Nurdle drifters around
South Africa as indicators of ocean structures and dispersion, S. Afr. J.
Sci., 115, 5372, https://doi.org/10.17159/sajs.2019/5372, 2019.
Schuyler, Q., Hardesty, B. D., Lawson, T. J., Opie, K., and Wilcox, C.:
Economic incentives reduce plastic inputs to the ocean, Mar. Policy, 96,
250–255, https://doi.org/10.1016/j.marpol.2018.02.009, 2018.
Serra-Gonçalves, C., Lavers, J. L., and Bond, A. L.: Global review of
beach debris monitoring and future recommendations, Environ. Sci. Technol.,
53, 12158–12167, https://doi.org/10.1021/acs.est.9b01424, 2019.
Seth, C. K. and Shriwastav, A.: Contamination of Indian sea salts with
microplastics and a potential prevention strategy, Environ. Sci. Pollut. Res., 25, 30122–30131, https://doi.org/10.1007/s11356-018-3028-5, 2018.
Shankar, D. and Shetye, S. R.: On the dynamics of the Lakshadweep high and
low in the southeastern Arabian Sea, J. Geophys. Res.-Oceans, 102,
12551–12562, https://doi.org/10.1029/97JC00465, 1997.
Sharples, J. and Simpson, J .H.: Shelf Sea and Shelf Slope Fronts, in: Encyclopaedia of Ocean Sciences, 2nd Edn., edited by: Steele, J. H., Academic Press, Cambridge, Massachusetts, USA, 391–400, https://doi.org/10.1016/B978-012374473-9.00623-8, 2020.
Sheavly, S. B. and Register, K. M.: Marine debris & plastics: environmental concerns, sources, impacts and solutions, J. Polym. Environ., 15, 301–305, https://doi.org/10.1007/s10924-007-0074-3, 2007.
Shenoi, S. S. C., Shankar, D., and Shetye, S. R.: Remote forcing annihilates
barrier layer in southeastern Arabian Sea, Geophys. Res. Lett., 31, L05307, https://doi.org/10.1029/2003GL019270, 2004.
Simpson, J. H. and Hunter, J. R.: Fronts in the Irish Sea, Nature, 250, 404–406, https://doi.org/10.1038/250404a0, 1974.
Slip, D. J. and Burton, H. R.: Accumulation of fishing debris, plastic litter, and other artefacts, on Heard and Macquarie islands in the Southern Ocean, Environ. Conserv., 18, 249–254, https://doi.org/10.1017/S0376892900022177, 1991.
Spalding, M., Burke, L., Wood, S. A., Ashpole, J., Hutchison, J., and zu Ermgassen, P.: Mapping the global value and distribution of coral reef
tourism, Mar. Policy, 82, 104–113, https://doi.org/10.1016/j.marpol.2017.05.014, 2017.
Sparks, C. and Immelman, S.: Microplastics in offshore fish from the Agulhas Bank, South Africa, Mar. Pollut. Bull., 156, 111216, https://doi.org/10.1016/j.marpolbul.2020.111216, 2020.
Sprintall, J., Wijffels, S. E., Molcard, R., and Jaya, I.: Direct estimates
of the Indonesian throughflow entering the Indian Ocean: 2004–2006, J.
Geophys. Res.-Oceans, 114, 1–19, https://doi.org/10.1029/2008JC005257, 2009.
Sruthy, S. and Ramasamy, E. V.: Microplastic pollution in Vembanad Lake, Kerala, India: the first report of microplastics in lake and estuarine
sediments in India, Environ. Pollut., 222, 315–322, https://doi.org/10.1016/j.envpol.2016.12.038, 2016.
Stelfox, M., Hudgins, J., and Sweet, M.: A review of ghost gear entanglement
amongst marine mammals, reptiles and elasmobranchs, Mar. Pollut. Bull., 111, 6–17, https://doi.org/10.1016/j.marpolbul.2016.06.034, 2016.
Stelfox, M., Lett, C., Reid, G., Souch, G., and Sweet, M.: Minimum drift
times infer trajectories of ghost nets found in the Maldives, Mar. Pollut.
Bull., 154, 111037, https://doi.org/10.1016/j.marpolbul.2020.111037, 2020a.
Stelfox, M., Burian, A., Shanker, K., Rees, A. F., Jean, C., Willson, M. S.,
Manik, N. A., and Sweet, M.: Tracing the origin of olive ridley turtles entangled in ghost nets in the Maldives: a phylogeographic assessment of
populations at risk, Biol. Conserv., 245, 108499, https://doi.org/10.1016/j.biocon.2020.108499, 2020b.
Stramma, L., Fischer, J., and Schott, F.: The flow field off southwest India
at 8∘ N during the southwest monsoon of August 1993, J. Mar. Res., 54, 55–72, https://doi.org/10.1357/0022240963213448, 1996.
Su, D., Wijeratne, S., and Pattiaratchi, C. B.: Monsoon influence on the island mass effect around the Maldives and Sri Lanka, Front. Mar. Sci., 8,
645672, https://doi.org/10.3389/fmars.2021.645672, 2021.
Syakti, A. D., Bouhroum, R., Hidayati, N. V., Koenawan, C. J., Boulkamh, A.,
Sulistyo, I., Lebarillier, S., Akhlus, S., Doumenq, P., and Wong-Wah-Chung,
P.: Beach macro-litter monitoring and floating microplastic in a coastal
area of Indonesia, Mar. Pollut. Bull., 122, 217–225,
https://doi.org/10.1016/j.marpolbul.2017.06.046, 2017.
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Descriptive
Physical Oceanography: An Introduction, 6th Edn., Academic Press, New York, 2011.
Taylor, M. L., Gwinnett, C., Robinson, L. F., and Woodall, L. C.: Plastic
microfibre ingestion by deep-sea organisms, Sci. Rep., 6, 33997, https://doi.org/10.1038/srep33997, 2016.
Thushari, G. G. N., Senevirathna, J. D. M., Yakupitiyage, A., and Chavanich,
S.: Effects of microplastics on sessile invertebrates in the eastern coast
of Thailand: an approach to coastal zone conservation, Mar. Pollut. Bull., 124, 349–355, https://doi.org/10.1016/j.marpolbul.2017.06.010, 2017.
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An Introduction, 2nd Edn., Daya Publishing House, Delhi, 2003.
Uneputty, P. A. and Evans, S. M.: Accumulation of beach litter on islands of the Pulau Seribu Archipelago, Indonesia, Mar. Pollut. Bull., 34, 652–655, https://doi.org/10.1016/S0025-326X(97)00006-4, 1997.
Van Cauwenberghe, L., Vanreusel, A., Mees, J., and Janssen, C. R.: Microplastic pollution in deep-sea sediments, Environ. Pollut., 182, 495–499, https://doi.org/10.1016/j.envpol.2013.08.013, 2013.
van der Mheen, M.: Chapter 6: Escape pathways for buoyant debris from the
Indian Ocean, in Transport and Accumulation of Buoyant Marine Plastic Debris
in the Indian Ocean, PhD thesis, the University of Western Australia, Perth, Australia, https://doi.org/10.26182/x6a8-9r24, 2020.
van der Mheen, M., Pattiaratchi, C., and van Sebille, E.: Role of Indian Ocean dynamics on accumulation of buoyant debris, J. Geophys. Res.-Oceans,
124, 2571–2590, https://doi.org/10.1029/2018JC014806, 2019.
van der Mheen, M., Pattiaratchi, C., Cosoli, S., and Wandres, M.: Depth-dependent correction for wind-driven drift current in particle
tracking applications, Front. Mar. Sci., 7, 305, https://doi.org/10.3389/fmars.2020.00305, 2020a.
van der Mheen, M., van Sebille, E., and Pattiaratchi, C. B.: Beaching patterns of plastic debris along the Indian Ocean rim, Ocean Sci., 16,
1317–1336, https://doi.org/10.5194/os-16-1317-2020, 2020b.
van Franeker, J. A.: Reshape and relocate: seabirds as transformers and
transporters of microplastics, NOAA Technical Memorandum, NOS-OR&R,
NOAA, 278–280, available at: https://marinedebris.noaa.gov/sites/default/files/publications-files/TM_NOS-ORR_38.pdf
(last access: 28 December 2021), 2011.
van Sebille, E., Wilcox, C., Lebreton, L., Maximenko, N., Hardesty, B. D.,
van Franeker, J. A., Eriksen, M., Siegel, D., Galgani, F., and Law, K. L.: A
global inventory of small floating plastic debris, Environ. Res. Lett., 10,
124006, https://doi.org/10.1088/1748-9326/10/12/124006, 2015.
van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M., Bagaev, A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A.,
Delandmeter, P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy,
L., Hardesty, B. D., Hoffman, M. J., Isobe, A., Jongedijk, C. E., Kaandorp,
M. L. A., Khatmullina, L., Koelmans, A. A., Kukulka, T., Laufkötter, C.,
Lebreton, L., Lobelle, D., Maes, C., Martinez-Vicente, V., Maqueda, M. A.
M., Poulain-Zarcos, M., Rodriguez, E., Ryan, P. G., Shanks, A. L., Shim, W.
J., Suaria, G., Thiel, M., van den Bremer, T. S., and Wichmann, D.: The
physical oceanography of the transport of floating marine debris, Environ.
Res. Lett., 15, 023003, https://doi.org/10.1088/1748-9326/ab6d7d, 2020.
Veerasingam, S., Mugilarasan, M., Venkatachalapathy, R., and Vethamony, P.:
Influence of 2015 flood on the distribution and occurrence of microplastic
pellets along the Chennai coast, India, Mar. Pollut. Bull., 109, 196–204, https://doi.org/10.1016/j.marpolbul.2016.05.082, 2016a.
Veerasingam, S., Saha, M., Suneel, V., Vethamony, P., Rodrigues, A. C.,
Bhattacharyya, S., and Naik, B. G.: Characteristics, seasonal distribution and surface degradation features of microplastic pellets along the Goa coast, India, Chemosphere, 159, 496–505, https://doi.org/10.1016/j.chemosphere.2016.06.056, 2016b.
Vince J. and Hardesty, B. D.: Plastic pollution challenges in marine and
coastal environments: from local to global governance, Restor. Ecol., 25,
123–128, https://doi.org/10.1111/rec.12388, 2016.
Weiss, L., Ludwig, W., Heussner, S., Canals, M., Ghiglione, J. F., Estournel, C., Constant, M., and Kerhevé, P.: The missing ocean plastic sink: gone with the rivers, Science, 373, 107–111, https://doi.org/10.1126/science.abe0290, 2021.
Wijeratne, S., Pattiaratchi, C., and Proctor, R.: Estimates of surface and
subsurface boundary current transport around Australia, J. Geophys. Res.-Oceans, 123, 3444–3466, https://doi.org/10.1029/2017JC013221, 2018.
Wilcox, C., Heathcote, G., Goldberg, J., Gunn, R., Peel, D., and Hardesty, B. D.: Understanding the sources and effects of abandoned, lost, and discarded fishing gear on marine turtles in northern Australia, Conserv. Biol., 29, 198–206, https://doi.org/10.1111/cobi.12355, 2015.
Wolanski, E. and Hamner, W. M.: Topographically controlled fronts in the ocean and their biological influence, Science, 241, 177–181, https://doi.org/10.1126/science.241.4862.177, 1988.
Wong, P. P.: Small island developing states, Wiley Interdisciplin. Rev. Clim.
Change, 2, 1–6, https://doi.org/10.1002/wcc.84, 2011.
Woodall, L. C., Sanchez-Vidal, A., Canals, M., Paterson, G. L. J., Coppock,
R., Sleight, V., Calafat, A., Rogers, A. D., Narayanaswamy, B. E., and Thompson, R. C.: The deep sea is a major sink for microplastic debris, Roy.
Soc. Open Sci., 1, 140317, https://doi.org/10.1098/rsos.140317, 2014.
Woodson, C. B. and Litvin, S. Y.: Ocean fronts drive marine fishery production and biogeochemical cycling, P. Natl. Acad. Sci. USA, 112, 1710–1715, https://doi.org/10.1073/pnas.1417143112, 2015.
World Bank: What A Waste Global Database, available at:
https://datacatalog.worldbank.org/dataset/what-waste-global-database, last access: 13 August 2021.
Wyrtki, K.: An equatorial jet in the Indian Ocean, Science, 181, 262–264,
https://doi.org/10.1126/science.181.4096.262, 1973.
Zhang, H.: Transport of microplastics in coastal seas, Estuar. Coast. Shelf
Sci., 199, 74–86, https://doi.org/10.1016/j.ecss.2017.09.032, 2017.
Short summary
The Indian Ocean receives a large proportion of plastics, but very few studies have addressed the sources, transport pathways, and sinks. There is a scarcity of observational data for the Indian Ocean. Most plastic sources are derived from rivers, although the amount derived from fishing activity (ghost nets, discarded ropes) is unknown. The unique topographic features of the Indian Ocean that create the monsoons and reversing currents have a large influence on the transport and sinks.
The Indian Ocean receives a large proportion of plastics, but very few studies have addressed...