Articles | Volume 17, issue 6
https://doi.org/10.5194/os-17-1753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1753-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rectified tidal transport in Lofoten–Vesterålen, northern Norway
Eli Børve
CORRESPONDING AUTHOR
Department of Geosciences, University of Oslo, 0315 Oslo, Norway
Akvaplan-niva AS, 9296 Tromsø, Norway
Pål Erik Isachsen
Department of Geosciences, University of Oslo, 0315 Oslo, Norway
The Norwegian Meteorological Institute, 0371 Oslo, Norway
Ole Anders Nøst
Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
Akvaplan-niva AS, 7462 Trondheim, Norway
Related authors
Ole Anders Nøst and Eli Børve
Ocean Sci., 17, 1403–1420, https://doi.org/10.5194/os-17-1403-2021, https://doi.org/10.5194/os-17-1403-2021, 2021
Short summary
Short summary
A narrow tidal strait often leads to net transport in one direction, and the water flowing through the strait is not the same as the water that is drawn back into the strait when the tidal flow turns. We investigated this process by simulating the transport through tidal straits of different lengths and widths. A simple theory is established that describes the net transport. The theory can be applied to real coastlines when predicting spreading of pollution and other substances in the ocean.
Mateusz Matuszak, Johannes Röhrs, Pål Erik Isachsen, and Martina Idžanović
EGUsphere, https://doi.org/10.5194/egusphere-2024-1171, https://doi.org/10.5194/egusphere-2024-1171, 2024
Short summary
Short summary
Lagrangian coherent structures (LCS) describe material transport in ocean flow by describing transport barriers and accumulation regions. Noting that circulation fields from models are prone to uncertainties, we discuss the implications for LCS analysis. LCSs add value to forecasting when these are certain and long-lived. Averaging LCS reveals where these are more certain and long-lived, often influenced by bottom topography. Large scale LCSs show a higher degree of certainty and longevity.
Håvard Espenes, Pål Erik Isachsen, and Ole Anders Nøst
Ocean Sci., 19, 1633–1648, https://doi.org/10.5194/os-19-1633-2023, https://doi.org/10.5194/os-19-1633-2023, 2023
Short summary
Short summary
We show that tidally generated eddies generated near the constriction of a channel can drive a strong and fluctuating flow field far downstream of the channel constriction itself. The velocity signal has been observed in other studies, but this is the first study linking it to a physical process. Eddies such as those we found are generated because of complex coastal geometry, suggesting that, for example, land-reclamation projects in channels may enhance current shear over a large area.
Ole Anders Nøst and Eli Børve
Ocean Sci., 17, 1403–1420, https://doi.org/10.5194/os-17-1403-2021, https://doi.org/10.5194/os-17-1403-2021, 2021
Short summary
Short summary
A narrow tidal strait often leads to net transport in one direction, and the water flowing through the strait is not the same as the water that is drawn back into the strait when the tidal flow turns. We investigated this process by simulating the transport through tidal straits of different lengths and widths. A simple theory is established that describes the net transport. The theory can be applied to real coastlines when predicting spreading of pollution and other substances in the ocean.
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Cited articles
Ådlandsvik, B. and Sundby, S.: Modelling the transport of cod larvae from the
Lofoten area, ICES Mar. Sci. Symp., 198, 379–392, 1994. a
Afanasyev, Y. D.: Formation of vortex dipoles, Phys. Fluids, 18,
https://doi.org/10.1063/1.2182006, 2006. a, b
Blauw, A. N., Beninca, E., Laane, R. W. P. M., Greenwood, N., and Huisman, J.:
Dancing with the tides: fluctuations of coastal phytoplankton orchestrated by
different oscillatory modes of the tidal cycle, PLoS One, 7, e49319,
https://doi.org/10.1371/journal.pone.0049319, 2012. a
Børve, E. and Nøst, O. A.: Lofoten 2D tidal simulation, Norstore [data set], https://doi.org/10.11582/2021.00095, 2021. a
Bretherton, F. P. and Haidvogel, D. B.: Two-dimensional turbulence above
topography, J. Fluid Mech., 78, 129–154,
https://doi.org/10.1017/S002211207600236X, 1976. a
Bruggeman, J. and Bolding, K.: A general framework for aquatic biogeochemical
models, Environ. Modell. Softw., 61, 249–265,
https://doi.org/10.1016/j.envsoft.2014.04.002, 2014. a
Chen, C., Beardsley, R., and Franks, P. J. S.: A 3-D prognostic numerical model
study of the Georges Bank ecosystem. Part I: physical model, Deep-Sea
Res. Pt. II, 48, 419–456,
https://doi.org/10.1016/S0967-0645(00)00124-7, 2001. a
Chen, C., Liu, H., and Beardsley, R. C.: An Unstructured Grid, Finite-Volume,
Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal
Ocean and Estuaries, J. Atmos. Ocean. Tech., 20,
159–186, https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2, 2003. a, b
Chen, C., Huang, H., Beardsley, R. C., Xu, Q., Limeburner, R., Cowles, G. W.,
Sun, Y., Qi, J., and Lin, H.: Tidal dynamics in the Gulf of Maine and New
England Shelf: An application of FVCOM, J. Geophys. Res.-Oceans, 116, C12, https://doi.org/10.1029/2011JC007054, 2011. a
Chen, C., Beardsley, R. C., Cowles, G., Qi, J., Lai, Z., Gao, G., Stuebe, D.,
Liu, H., Xu, Q., Xue, P., Ge, J., Hu, S., Ji, R., Tian, R., Huang, H., Wu,
L., Lin, H., Sun, Y., and Zhao, L.: An Unstructured Grid, Finite-Volume
Coastal Ocean Model: FVCOM User Manual, version 3.1.6, Marine Ecosystem
Dynamics Modeling Laboratory, Sea Grant College Program
Massachusetts Institute of Technology
Cambridge, Massachusetts 0213, 4 edn., available at: http://fvcom.smast.umassd.edu/wp-content/uploads/2013/11/MITSG_12-25.pdf (last access: 2 December 2021), 2013. a, b
Cucco, A., Quattrocchi, G., Olita, A., Fazioli, L., Ribotti, A., Sinerchia, M., Tedesco, C., and Sorgente, R.: Hydrodynamic modelling of coastal seas: the role of tidal dynamics in the Messina Strait, Western Mediterranean Sea, Nat. Hazards Earth Syst. Sci., 16, 1553–1569, https://doi.org/10.5194/nhess-16-1553-2016, 2016. a, b
Delandmeter, P., Lambrechts, J., Marmorino, G. O., Legat, V., Wolanski, E.,
Remacle, J.-F., Chen, W., and Deleersnijder, E.: Submesoscale tidal eddies in
the wake of coral islands and reefs: satellite data and numerical modelling,
Ocean Dynam., 67, 897–913, https://doi.org/10.1007/s10236-017-1066-z, 2017. a, b
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Ellertsen, B., Solemdal, P., Strømme, T., Sundby, S., Tilseth, S., and
Westgård, T.: Spawning period, transport and dispersal of eggs from the
spawning area of Arcto-Norwegian cod (Gadus morhua L.), Rapp. P.-v. Reun.
Cons. int. Explor. Mer, 178, 260–267, 1981. a
Geyer, W. R. and Signell, R. P.: A reassessment of the role of tidal dispersion
in estuaries and bays, Estuaries, 15, 97–108,
https://doi.org/10.2307/1352684, 1992. a
Geyer, W. R., Woodruff, J. D., and Traykovski, P.: Sediment transport and
trapping in the Hudson River estuary, Estuaries, 24, 670–679,
https://doi.org/10.2307/1352875, 2001. a
Gjevik, B., Moe, H., and Ommundsen, A.: Sources of the Maelstrom, Nature, 388,
837–838, https://doi.org/10.1038/42159, 1997. a, b, c, d
Halsne, T., Ferrighi, L., Saadatnejad, B., Budewitz, N., Dinessen, F., Breivik,
L.-A., and Godøy, Ø´.: The Norwegian National Ground Segment;
Preservation, Distribution and Exploitation of Sentinel Data, Data Sci.
J., 18, 61, https://doi.org/10.5334/dsj-2019-061, 2019. a
Hjermann, D. Ø., Melsom, A., Dingsør, G. E., Durant, J. M., Eikeset,
A. M., Røed, L. P., Ottersen, G., Storvik, G., and Stenseth, N. C.: Fish and oil
in the Lofoten-Barents Sea system: synoptic review of the effects of oil
spill on fish populations, Marine Ecol. Prog. Ser., 339, 238–299,
https://doi.org/10.3354/meps339283, 2007. a
Huthnance, J. M.: Tidal current asymmetries over the Norfolk Sandbanks,
Estuar. Coast. Marine Sci., 1, 89–99,
https://doi.org/10.1016/0302-3524(73)90061-3, 1973. a, b, c
Isachsen, P. E., LaCasce, J. H., Mauritzen, C., and Häkkinen, S.:
Wind-Driven Variability of the Large-Scale Recirculating Flow in the Nordic
Seas and Arctic Ocean, J. Phys. Oceanogr., 33, 2534–2550,
https://doi.org/10.1175/1520-0485(2003)033<2534:WVOTLR>2.0.CO;2, 2003. a
Kashiwai, M.: Tidal Residual Circulation Produced by a Tidal Vortex. Part 1.
Life-History of a Tidal Vortex, J. Oceanogr. Soc.
Japan, 40, 279–294, https://doi.org/10.1007/BF02302521, 1984. a, b
Kobayashi, M. H., Pereira, J. M., and Pereira, J. C.: A conservative
finite-volume second-order-accurate projection method on hybrid unstructured
grids, J. Comput. Phys., 150, 40–75,
https://doi.org/10.1006/jcph.1998.6163, 1999. a
LaCasce, J. H.: Statistics from Lagrangian observations, Prog.
Oceanogr., 77, 1–29, https://doi.org/10.1016/j.pocean.2008.02.002, 2008. a
Limeburner, R. and Beardsley, R. C.: Near-surface recirculation over Georges
Bank, Deep-Sea Res. Pt. II, 43,
1547–1574, https://doi.org/10.1016/S0967-0645(96)00052-5, 1996. a
Maas, L., Zimmerman, J. T. F., and Temme, N. M.: On the exact shape of the
horizontal profile of a topographically rectified tidal flow, Geophys.
Astrophys. Fluid Dynam., 38, 105–129, https://doi.org/10.1080/03091928708210107,
1987. a
Maas, L. R. M. and Zimmerman, J. T. F.: Tide-topography interactions in a
stratified shelf sea I. Basic equations for quasi-nonlinear internal tides,
Geophys. Astrophys. Fluid Dynam., 45, 1–35,
https://doi.org/10.1080/03091928908208891, 1989. a
Mork, M.: Experiments with theoretical models of the Norwegian Coastal Current,
in: The Norwegian Coastal Current, edited by: Sætre, R. and Mork, M.,
2, 518–530, University of Bergen, Bergen, 1981. a
Ommundsen, A.: Models of cross shelf transport introduced by the Lofoten
Maelstrom, Cont. Shelf Res., 22, 93–113,
https://doi.org/10.1016/S0278-4343(01)00069-3, 2002. a, b, c
Ommundsen, A. and Gjevik, B.: Scattering of tidal Kelvin waves along shelves
which vary in their lengthwise direction, Preprint series, Mech.
Appl. Math., available at: http://urn.nb.no/URN:NBN:no-28523 (last access: 29 November 2021), 2000. a
Opdal, A. F., Vikebø, F. B., and Fiksen, Ø.: Relationships between
spawning ground identity, latitude and early life thermal exposure in
Northeast Arctic cod, J. Northwest Atlantic Fish. Sci., 41,
13–22, https://doi.org/10.2960/J.v41.m621, 2008. a, b, c
Ou, H.-W.: A Model of Tidal Rectification by Potential Vorticity Mixing. Part
I: Homogeneous Ocean, J. Phys. Oceanogr., 29, 821–827,
https://doi.org/10.1175/1520-0485(1999)029<0821:AMOTRB>2.0.CO;2, 1999. a
Ou, H.-W.: A Model of Tidal Rectification by Potential Vorticity Mixing. Part
II: Frontal Regime, J. Phys. Oceanogr., 30, 564–571,
https://doi.org/10.1175/1520-0485(2000)030<0564:AMOTRB>2.0.CO;2, 2000. a
Parker, B. B.: The relative importance of the various nonlinear mechanisms in a
wide range of tidal interactions, in: Tidal Hydrodynamics, 13, 237–268, John Wiley and
sons, inc., ISBN 978-0-471-51498-5, 1991. a
Pingree, R. D. and Maddock, L.: Rotary currents and residual circulation around
banks and islands, Deep-Sea Res. Pt. I,
32, 1, https://doi.org/10.1016/0198-0149(85)90037-8, 1985. a
Polton, J. A.: Tidally induced mean flow over bathymetric features: a
contemporary challenge for high resolution wide-area models, Geophys.
Astrophys. Fluid Dynam., 109, 207–215,
https://doi.org/10.1080/03091929.2014.952726, 2015. a
Richardson, K., Visser, A., and Pedersen, F. B.: Subsurface phytoplankton
blooms fuel pelagic production in the North Sea, J. Plankton
Res., 22, 1663–1671, https://doi.org/10.1093/plankt/22.9.1663, 2000. a
Robinson, I. S.: Tidal vorticity and residual circulation, Deep-Sea Res.
Pt. I, 28, 195–212,
https://doi.org/10.1016/0198-0149(81)90062-5, 1981. a
Signell, R. P. and Butman, B.: Modeling tidal exchange and dispersion in Boston
Harbor, J. Geophys. Res.-Oceans, 97, 15591–15606,
https://doi.org/10.1029/92JC01429, 1992. a
Signell, R. P. and Geyer, R.: Transient eddy formation around headlands,
J. Geophys. Res., 96, 2561–2575, https://doi.org/10.1029/90JC02029,
1991.
a, b
Smagorinsky, J.: General circulation experiments with the primitive equations:
I. The basic experiment, Mon. Weather Rev., 91, 99–164,
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2, 1963. a
Sundby, S. and Bratland, P.: Spatial distribution and production of eggs from
North-East Arctic cod at the coast of northern Norway 1983–1985, Report
series Fisken og Havet., Institute of Marine Research, Norway, 1, 1987. a
Vikebø, F., Jørgensen, C., Kristiansen, T., and Fiksen, Ø.: Drift,
growth, and survival of larval Northeast Arctic cod with simple rules of
behaviour, Marine Ecol. Prog. Ser., 347, 207–219,
https://doi.org/10.3354/meps06979, 2007. a, b, c
Wells, M. G. and van Heijst, G.-J. F.: A model of tidal flushing of an estuary
by dipole formation, Dynam. Atmos. Oceans, 37, 223–244,
https://doi.org/10.1016/j.dynatmoce.2003.08.002, 2003. a, b, c
Whilden, K. A., Socolofsky, S. A., Chang, K.-A., and Irish, J. L.: Using
surface drifter observations to measure tidal vortices and relative diffusion
at Aransas Pass, Texas, Environ. Fluid Mech., 14, 1147–1172,
https://doi.org/10.1007/s10652-014-9361-4, 2014. a
White, M., Mohn, C., de Stigter, H., and Mottram, G.: Deep-water coral
development as a function of hydrodynamics and surface productivity around
the submarine banks of the Rockall Trough, NE Atlantic, Erlangen Earth
Conference Series, Springer, https://doi.org/10.1007/3-540-27673-4_25, 2005. a
White, M., Bashmachnikov, I., Arístegui, J., and Martins, A.: Physical
processes and seamount productivity, Seamounts: ecology, fisheries and
conservation, in: Seamounts: Ecology, Fisheries and Conservation, Blackwell publishing, chapter 4, 65–84, 2007. a
Wright, D. G. and Loder, J. W.: A depth-dependent study of the topographic
rectification of tidal currents, Geophys. Astrophys. Fluid Dynam.,
31, 169–220, https://doi.org/10.1080/03091928508219269, 1985. a
Zimmerman, J. T. F.: Dynamics, diffusion and geomorphological significance of
tidal residual eddies, Nature, 290, 549–555, https://doi.org/10.1038/290549a0, 1981. a, b, c
Short summary
Non-linear tidal dynamics can produce prominent time-mean transport in coastal regions where strong tidal currents interact with topography. We investigate tidal-induced transport using a tidally driven ocean model for Lofoten–Vesterålen in northern Norway and find that both tidal pumping and tidal rectification can play an important role for time-mean transport in the region. The study emphasizes the importance of non-linear tidal dynamics for time-mean transport in complex coastal regions.
Non-linear tidal dynamics can produce prominent time-mean transport in coastal regions where...