Articles | Volume 16, issue 2
Ocean Sci., 16, 513–533, 2020
Ocean Sci., 16, 513–533, 2020

Research article 24 Apr 2020

Research article | 24 Apr 2020

Estimation of phytoplankton pigments from ocean-color satellite observations in the Senegalo–Mauritanian region by using an advanced neural classifier

Khalil Yala et al.

Related authors

Towards an objective assessment of climate multi-model ensembles – a case study: the Senegalo-Mauritanian upwelling region
Juliette Mignot, Carlos Mejia, Charles Sorror, Adama Sylla, Michel Crépon, and Sylvie Thiria
Geosci. Model Dev., 13, 2723–2742,,, 2020
Short summary
Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models
Marc Bocquet, Julien Brajard, Alberto Carrassi, and Laurent Bertino
Nonlin. Processes Geophys., 26, 143–162,,, 2019
Short summary
LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean
Anna Denvil-Sommer, Marion Gehlen, Mathieu Vrac, and Carlos Mejia
Geosci. Model Dev., 12, 2091–2105,,, 2019
Short summary
Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: a case study with the Lorenz 96 model
Julien Brajard, Alberto Carrassi, Marc Bocquet, and Laurent Bertino
Geosci. Model Dev. Discuss.,,, 2019
Revised manuscript not accepted
Short summary
Variational assimilation of land surface temperature within the ORCHIDEE Land Surface Model Version 1.2.6
Hector Simon Benavides Pinjosovsky, Sylvie Thiria, Catherine Ottlé, Julien Brajard, Fouad Badran, and Pascal Maugis
Geosci. Model Dev., 10, 85–104,,, 2017
Short summary

Related subject area

Depth range: Surface | Approach: Remote Sensing | Geographical range: All Geographic Regions | Phenomena: Biological Processes
Ocean colour opportunities from Meteosat Second and Third Generation geostationary platforms
Ewa J. Kwiatkowska, Kevin Ruddick, Didier Ramon, Quinten Vanhellemont, Carsten Brockmann, Carole Lebreton, and Hans G. Bonekamp
Ocean Sci., 12, 703–713,,, 2016
Short summary
Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution
Tihomir S. Kostadinov, Svetlana Milutinović, Irina Marinov, and Anna Cabré
Ocean Sci., 12, 561–575,,, 2016
Short summary
Assessment of MERIS ocean color data products for European seas
G. Zibordi, F. Mélin, J.-F. Berthon, and E. Canuti
Ocean Sci., 9, 521–533,,, 2013
MERIS-based ocean colour classification with the discrete Forel–Ule scale
M. R. Wernand, A. Hommersom, and H. J. van der Woerd
Ocean Sci., 9, 477–487,,, 2013
Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data
A. Sadeghi, T. Dinter, M. Vountas, B. B. Taylor, M. Altenburg-Soppa, I. Peeken, and A. Bracher
Ocean Sci., 8, 1055–1070,,, 2012

Cited articles

Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., and Hardman-Mountford, N. : Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995–2005, Deep-Sea Res. Pt II, 56, 899–917,, 2009. 
Alvain, S., Moulin, C., Dandonneau, Y., and Breon, F. M.: Remote sensing of phytoplankton groups in case-1 waters from global SeaWiFS imagery, Deep-Sea Res. Pt. I, 52, 1989–2004, 2005. 
Alvain, S., Loisel, H., and Dessailly, D.: Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton group detection, Opt. Express, 20, 1070–1083, 2012. 
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production : Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996. 
Badran, F., Berrada, M., Brajard, J., Crepon, M., Sorror, C., Thiria, S., Hermand, J. P., Meyer, M., Perichon, L., and Asch, M.: Inversion of satellite ocean colour imagery and geoacoustic characterization of seabed properties : Variational data inversion using a semi-automatic adjoint approach, J. Marine Syst., 69, 126–136, 2008. 
Short summary
The paper is a contribution to the study of phytoplankton pigment climatology from satellite ocean-color observations in the Senegalo–Mauritanian upwelling, which is a very productive region where in situ observations are lacking. We processed the satellite data with an efficient new neural network classifier. We were able to provide the climatological cycle of diatoms. This study may have an economic impact on fisheries thanks to better knowledge of phytoplankton dynamics.