Articles | Volume 16, issue 2
https://doi.org/10.5194/os-16-513-2020
https://doi.org/10.5194/os-16-513-2020
Research article
 | 
24 Apr 2020
Research article |  | 24 Apr 2020

Estimation of phytoplankton pigments from ocean-color satellite observations in the Senegalo–Mauritanian region by using an advanced neural classifier

Khalil Yala, N'Dèye Niang, Julien Brajard, Carlos Mejia, Mory Ouattara, Roy El Hourany, Michel Crépon, and Sylvie Thiria

Related authors

Data-driven emulation of melt ponds on Arctic sea ice
Simon Driscoll, Alberto Carrassi, Julien Brajard, Laurent Bertino, Einar Ólason, Marc Bocquet, and Amos Lawless
EGUsphere, https://doi.org/10.5194/egusphere-2024-2476,https://doi.org/10.5194/egusphere-2024-2476, 2024
Short summary
Toward more robust NPP projections in the North Atlantic Ocean
Stéphane Doléac, Marina Lévy, Roy El Hourany, and Laurent Bopp
EGUsphere, https://doi.org/10.5194/egusphere-2024-1820,https://doi.org/10.5194/egusphere-2024-1820, 2024
Short summary
Reconstruction of Arctic sea ice thickness (1992–2010) based on a hybrid machine learning and data assimilation approach
Léo Edel, Jiping Xie, Anton Korosov, Julien Brajard, and Laurent Bertino
EGUsphere, https://doi.org/10.5194/egusphere-2024-1896,https://doi.org/10.5194/egusphere-2024-1896, 2024
Short summary
Monitoring the coastal-offshore water interactions in the Levantine Sea using ocean color and deep supervised learning
Georges Baaklini, Julien Brajard, Leila Issa, Gina Fifani, Laurent Mortier, and Roy El Hourany
EGUsphere, https://doi.org/10.5194/egusphere-2024-1168,https://doi.org/10.5194/egusphere-2024-1168, 2024
Short summary
Improving short-term sea ice concentration forecasts using deep learning
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024,https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary

Related subject area

Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Biological Processes
Ocean colour opportunities from Meteosat Second and Third Generation geostationary platforms
Ewa J. Kwiatkowska, Kevin Ruddick, Didier Ramon, Quinten Vanhellemont, Carsten Brockmann, Carole Lebreton, and Hans G. Bonekamp
Ocean Sci., 12, 703–713, https://doi.org/10.5194/os-12-703-2016,https://doi.org/10.5194/os-12-703-2016, 2016
Short summary
Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution
Tihomir S. Kostadinov, Svetlana Milutinović, Irina Marinov, and Anna Cabré
Ocean Sci., 12, 561–575, https://doi.org/10.5194/os-12-561-2016,https://doi.org/10.5194/os-12-561-2016, 2016
Short summary
Assessment of MERIS ocean color data products for European seas
G. Zibordi, F. Mélin, J.-F. Berthon, and E. Canuti
Ocean Sci., 9, 521–533, https://doi.org/10.5194/os-9-521-2013,https://doi.org/10.5194/os-9-521-2013, 2013
MERIS-based ocean colour classification with the discrete Forel–Ule scale
M. R. Wernand, A. Hommersom, and H. J. van der Woerd
Ocean Sci., 9, 477–487, https://doi.org/10.5194/os-9-477-2013,https://doi.org/10.5194/os-9-477-2013, 2013
Improvement to the PhytoDOAS method for identification of coccolithophores using hyper-spectral satellite data
A. Sadeghi, T. Dinter, M. Vountas, B. B. Taylor, M. Altenburg-Soppa, I. Peeken, and A. Bracher
Ocean Sci., 8, 1055–1070, https://doi.org/10.5194/os-8-1055-2012,https://doi.org/10.5194/os-8-1055-2012, 2012

Cited articles

Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., and Hardman-Mountford, N. : Phytoplankton pigments and functional types in the Atlantic Ocean: A decadal assessment, 1995–2005, Deep-Sea Res. Pt II, 56, 899–917, https://doi.org/10.1016/J.DSR2.2008.09.017, 2009. 
Alvain, S., Moulin, C., Dandonneau, Y., and Breon, F. M.: Remote sensing of phytoplankton groups in case-1 waters from global SeaWiFS imagery, Deep-Sea Res. Pt. I, 52, 1989–2004, 2005. 
Alvain, S., Loisel, H., and Dessailly, D.: Theoretical analysis of ocean color radiances anomalies and implications for phytoplankton group detection, Opt. Express, 20, 1070–1083, 2012. 
Antoine, D., André, J. M., and Morel, A.: Oceanic primary production : Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll, Global Biogeochem. Cy., 10, 57–69, 1996. 
Badran, F., Berrada, M., Brajard, J., Crepon, M., Sorror, C., Thiria, S., Hermand, J. P., Meyer, M., Perichon, L., and Asch, M.: Inversion of satellite ocean colour imagery and geoacoustic characterization of seabed properties : Variational data inversion using a semi-automatic adjoint approach, J. Marine Syst., 69, 126–136, 2008. 
Download
Short summary
The paper is a contribution to the study of phytoplankton pigment climatology from satellite ocean-color observations in the Senegalo–Mauritanian upwelling, which is a very productive region where in situ observations are lacking. We processed the satellite data with an efficient new neural network classifier. We were able to provide the climatological cycle of diatoms. This study may have an economic impact on fisheries thanks to better knowledge of phytoplankton dynamics.