Articles | Volume 16, issue 1
https://doi.org/10.5194/os-16-45-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-45-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Implications of different nitrogen input sources for potential production and carbon flux estimates in the coastal Gulf of Mexico (GOM) and Korean Peninsula coastal waters
Jongsun Kim
CORRESPONDING AUTHOR
Department of Oceanography, Texas A&M University, College Station,
TX 77843-3146, USA
Piers Chapman
Department of Oceanography, Texas A&M University, College Station,
TX 77843-3146, USA
Geochemical and Environmental Research Group, Texas A&M
University, College Station, TX 77843-3149, USA
Gilbert Rowe
Department of Oceanography, Texas A&M University, College Station,
TX 77843-3146, USA
Department of Marine Biology, Texas A&M University, Galveston, TX
77553, USA
Steven F. DiMarco
Department of Oceanography, Texas A&M University, College Station,
TX 77843-3146, USA
Geochemical and Environmental Research Group, Texas A&M
University, College Station, TX 77843-3149, USA
Daniel C. O. Thornton
Department of Oceanography, Texas A&M University, College Station,
TX 77843-3146, USA
Related authors
No articles found.
Piers Chapman, Steven F. DiMarco, Anthony H. Knap, Antonietta Quigg, and Nan D. Walker
Ocean Sci., 19, 209–227, https://doi.org/10.5194/os-19-209-2023, https://doi.org/10.5194/os-19-209-2023, 2023
Short summary
Short summary
Hurricane Harvey led to unprecedented rainfall over south central Texas in August/September 2017. We obtained physical and chemical data from the affected offshore area both before and after the hurricane passed. Despite the intense rainfall, the effects on the coastal ocean were apparently only short-lived, and we did not observe major blooms of plankton or inputs of nutrients, possibly because of the sheer volume of rainwater that diluted any runoff.
Related subject area
Approach: Numerical Models | Depth range: Shelf-sea depth | Geographical range: Shelf Seas | Phenomena: Biological Processes
Effects of large-scale floating (solar photovoltaic) platforms on hydrodynamics and primary production in a coastal sea from a water column model
Ocean modelling for aquaculture and fisheries in Irish waters
Thodoris Karpouzoglou, Brigitte Vlaswinkel, and Johan van der Molen
Ocean Sci., 16, 195–208, https://doi.org/10.5194/os-16-195-2020, https://doi.org/10.5194/os-16-195-2020, 2020
Short summary
Short summary
Sustainable operation of floating solar platforms requires knowledge of effects on the marine ecosystem. We modelled effects on water flow and algae growth in a coastal sea. Algae growth was reduced depending on the local currents and on the density of coverage with platforms. The model represented platforms distributed evenly over areas of hundreds of square kilometres. For smaller-scale cases, effects may be smaller, and for more detailed understanding, three-dimensional models are needed.
T. Dabrowski, K. Lyons, C. Cusack, G. Casal, A. Berry, and G. D. Nolan
Ocean Sci., 12, 101–116, https://doi.org/10.5194/os-12-101-2016, https://doi.org/10.5194/os-12-101-2016, 2016
Cited articles
Anderson, G. C.: Subsurface chlorophyll maximum in the northeast Pacific
Ocean, Limnol. Oceanogr., 14, 386–391, 1969.
Alexander, R. B., Smith, R. A., Schwartz, G. E., Preston, S. D., Brakebill,
J. W., Srinivasan, R., and Pacheco, A. P.: Atmospheric nitrogen flux from
the watersheds of major estuaries of the United States: An application of
the SPARROW watershed model, in: Coastal and Estuarine Studies-Nitrogen
Loading in Coastal Water Bodies: An Atmospheric Perspective, edited by:
Valigura, R. A., Alexander, R. B., Castro, M. S., Meyers, T. P., Paerl, H.
W., Stacey, P. E., and Turner, R. E., American Geophysical Union, Washington,
D.C., USA, 119–170, 2001.
Alexander, R. B., Smith, R. A., Schwarz, G. E., Boyer, E. W., Nolan, J. V.,
and Brakebill, J. W.: Differences in phosphorus and nitrogen delivery to the
Gulf of Mexico from the Mississippi river basin, Environ. Sci.
Technol., 42, 822–830, 2008.
Belabbassi, L.: Examination of the relationship of river water to
occurrences of bottom water with reduced oxygen concentrations in the
northern Gulf of Mexico, Texas A & M University, PhD dissertation.,
2006.
Bianchi, T. S., DiMarco, S. F., Cowan Jr., J. H., Hetland, R. D., Chapman, P.,
Day, J. W., and Allison, M. A.: The Science of hypoxia in the Northern Gulf
of Mexico: A review, Sci. Total Environ., 408, 1471–1484,
2010.
Bierman, V. J., Hinz, S. C., Wiseman Jr., W. J., Rabalais, N. N., and
Turner, R. E.: A Preliminary Mass Balance Model of Primary Productivity and
Dissolved Oxygen in the Mississippi River Plume/Inner Gulf Shelf Region,
Estuaries, 17, 886–899, 1994.
Bode, A. and Dortch, Q.: Uptake and regeneration of inorganic nitrogen in
coastal waters influenced by the Mississippi River: spatial and seasonal
variations, J. Plankton Res., 18, 2251–2258, 1996.
Castro, M. S., Driscoll, C. T., Jordan, T. W., Reay, W. G., Boynton, W. R.,
Seitzinger, S. P., Styles, R. V., and Cable, J. E.: Contribution of
atmospheric deposition to the total nitrogen loads to thirty-four estuaries
on the Atlantic and Gulf coasts of the United States, in: Coastal and
Estuarine Studies-Nitrogen Loading in Coastal Water Bodies: An Atmospheric
Perspective, edited by: Valigura, R. A., Alexander, R. B., Castro, M. S.,
Meyers, T. P., Paerl, H. W., Stacey, P. E., Turner, R. E., American
Geophysical Union, Washington, D.C., USA, 77–106, 2001.
Castro, M. S. and Driscoll, C. T.: Atmospheric nitrogen deposition to
estuaries in the mid-Atlantic and northeastern United States, Environ.
Sci. Technol., 36, 3242–3249, 2002.
Cho, K. R., Reid, O., and Nowlin Jr, W. D.: Objectively mapped stream
function fields on the Texas-Louisana shelf based on 32 months of moored
current meter data, J. Geophys. Res., 103, 10377–10390,
1998.
Choi, H. Y., Lee, S. H., and Oh, I. S.: Quantitative Analysis of the Thermal
Front in the Mid-Eastern Coastal Area of the Yellow Sea, J. Korean Soc. Oceanogr., 3, 1–8, 1998.
Choi, H. Y., Lee, S. H., and Yoo, K. Y.: Salinity Distribution in the
Mid-eastern Yellow Sea during the High Discharge from the Keum River Weir,
J. Korean Soc. Oceanogr., 4, 1–9, 1999.
Christensen, P. B., Rysgaard, S., Sloth, N. P., Dalsgaard, T., and
Schwaerter, S.: Sediment mineralization, nutrient fluxes, denitrification
and dissimilatory nitrate reduction to ammonium in an estuarine fjord with
sea cage trout farms, Aquat.Microbial Ecol., 21, 73–84, 2000.
Cornell, S., Rendell, A., and Jickells, T.: Atmospheric inputs of dissolved
organic nitrogen to the oceans, Nature, 376, 243–246, 1995.
Dagg, M. J. and Breed, G. A.: Biological effects of Mississippi River
nitrogen on the northern Gulf of Mexico-a review and synthesis, J.
Mar. Syst., 43, 133–152, 2003.
Dagg, M. J., Ammerman, J. W., AMON, R. M. W., Gardner, W. S., Green, R. E.,
and Lohrenz, S. E.: A review of water column processes influencing hypoxia in
the northern Gulf of Mexico, Estuar. Coasts, 30, 735–752, 2007.
Dalsgaard, T.: Benthic primary production and nutrient cycling in sediments
with benthic microalgae and transient accumulation of macroalgae, Limnol.
Oceanogr., 48, 2138–2150, 2003.
de Boer, A. M., Watson, A. J., Edwards, N. R., and Oliver, K. I. C.: A multi-variable box model approach to the soft tissue carbon pump, Clim. Past, 6, 827–841, https://doi.org/10.5194/cp-6-827-2010, 2010.
Diaz, R. J. and Rosenberg, R.: Marine benthic hypoxia: A review of its
ecological effects and the behavioural responses of benthic macrofauna,
Oceanogr. Mar. Biol. Ann. Rev., 33, 245–303, 1995.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for
marine ecosystems, Science, 321, 926–929, 2008.
DiMarco, S. F. and Zimmerle, H. M.: MCH Atlas: Oceanographic Observations
of the Mechanisms Controlling Hypoxia Project, Texas A&M University,
Texas Sea Grant, College Station, TX, Publication TAMU-SG- 17-601, 350, 2017.
DiMarco, S. F., Chapman, P., Walker, N., and Hetland, R. D.: Does local
topography control hypoxia of the Texas-Louisiana Shelf?, J. Mar.
Syst., 80, 25–35, 2010.
Dodds, W. K. and Smith, V. H.: Nitrogen, phosphorus, and eutrophication in
streams, Inland Waters., 6, 155–164, 2016.
Doney, S. C., Mahowald, N., Lima, L., Feely, R. A., Mackenzie, F. T.,
Lamarque, J. F., and Rasch, P. J.: Impact of anthropogenic atmospheric
nitrogen and sulfur deposition on ocean acidification and the inorganic
carbon system, P. Natl. Acad. Sci. USA, 104,
14580–14585, 2007.
Dortch, Q. and Whitledge, T. E.: Does nitrogen or silicon limit
phytoplankton in the Mississippi River plume and nearby regions?, Cont.
Shelf Res., 12, 1293–1309, 1992.
Duce, R. A., LaRoche, J., Altierl, K., Arrigo, K. R., Baker, A. R., Capone,
D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R.
J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M.,
Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, A., Pedersen, T.,
Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M.,
Ulloa, O., Voss, M., Ward, B., and Zamora, L.: Impacts of Atmospheric
Anthropogenic Nitrogen on the Open Ocean, Science, 320, 893–897, 2008.
Fasham, M. J. R., Ducklow, H. W., and Mckelvie, S. M.: A nitrogen-based
model of plankton dynamics in the oceanic mixed layer, J. Mar.
Res., 48, 591–639, 1990.
Feng, Y., DiMarco, S. F., and Jackson, G. A.: Relative role of wind forcing
and riverine nutrient input on the extent of hypoxia in the northern Gulf of
Mexico, Geophys. Res. Lett., 39, L09601, https://doi.org/10.1029/2012GL051192, 2012.
Feng, Y., Fennel, K., Jackson, G. A., DiMarco, S. F., and Hetland, R. D.: A
model study of the response of hypoxia to upwelling-favorable wind on the
northern Gulf of Mexico shelf, J. Mar. Syst., 131, 63–73, 2014.
Fennel, K., Wilkin, J., Levin, J., Moisan, J., O'Reilly, J., and Haidvogel,
D.: Nitrogen cycling in the Middle Atlantic Bight: Results from a
three-dimensional model and implications for the North Atlantic nitrogen
budget, Global Biogeochem. Cy., 20, GB3007, https://doi.org/10.1029/2005GB002456, 2006.
Fennel, K., Hetland, R., Feng, Y., and DiMarco, S.: A coupled physical-biological model of the Northern Gulf of Mexico shelf: model description, validation and analysis of phytoplankton variability, Biogeosciences, 8, 1881–1899, https://doi.org/10.5194/bg-8-1881-2011, 2011.
Fennel, K., Hu, J., Laurent, A., Marta-Almeida, M., and Hetland, D. R.:
Sensitivity of hypoxia predictions for the northern Gulf of Mexico to
sediment oxygen consumption and model nesting, J. Geophys.
Res.-Oceans, 118, 990–1002, 2013.
Forrest, D. R., Hetlandl R. D., and DiMarco, S. F.: Multivariable
statistical regression models of the areal extent of hypoxia over the
Texas–Louisiana continental shelf, Environ. Res. Lett., 6,
045002, https://doi.org/10.1088/1748-9326/7/1/019501, 2011.
Goolsby, D. A.: Mississippi basin nitrogen flux believed to cause Gulf
hypoxia, EOS Transactions, 2000, 29–321, 2000.
Green, R. E., Gould Jr., R. W., and Ko, D. S.: Statistical models for
sediment/detritus and dissolved absorption coefficients in coastal waters of
the northern Gulf of Mexico, Cont. Shelf Res., 28, 1273–1285,
2008.
Hagy, J. D., Sanford, L. P., and Boynton, W. R.: Estimation of net physical
transport and hydraulic residence times for a coastal plain estuary using
box models, Estuaries, 23, 328–340, https://doi.org/10.2307/1353325, 2000.
He, C. H., Wang, X., Liu, X., Fangmeler, A., Christie, P., and Zhang, F.:
Nitrogen deposition and its contribution to nutrient inputs to intensively
managed agricultural ecosystems, Ecol. Appl., 20, 80–90,
2010.
Hetland, R. D. and DiMarco, S. F.: How does the character of oxygen demand
control the structure of hypoxia on the Texas-Louisiana continental shelf?,
J. Mar. Syst., 70, 49–62, 2008.
Howarth, R. W. and Marino, R.: Nitrogen as the limiting nutrient for
eutrophication in coastal marine ecosystems: Evolving views over three
decades, Limnol. Oceanogr., 51, 364–376, 2006.
Jacob, G. A., Hur, H. B., and Riedlinger, S. K.: Yellow and East China Seas
response to winds and currents, J. Geophys. Res., 105,
947–968, 2000.
Justic, D., Rabalais, N. N., and Turner, R. E.: Effects of climate change on
hypoxia in coastal waters; A doubled CO2 scenario for the northern Gulf of
Mexico, Limnol. Oceanogr., 41, 992–1003, 1996.
Justic, D., Rabalais, N. N., and Turner, R. E.: Modeling the impacts of
decadal changes in riverine nutrient fluxes on coastal eutrophication near
the Mississippi River Delta, Ecol. Model., 152, 33–46, 2002.
Justic, D., Rabalais, N. N., and Turner, R. E.: Simulated responses of the
Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient
loading, J. Mar. Syst., 42, 115–126, 2003.
Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., and Fanourgakis, G.:
Past, Present, and Future Atmospheric Nitrogen Deposition, American
Meteorological Society, J. Atmos. Sci., 73,
2039–2047, 2016.
Kim, G., Kim, J. S., and Hwang, D. W.: Submarine groundwater discharge from
oceanic islands standing in oligotrophic oceans: Implications for global
production and organic carbon fluxes, Limnol. Oceanogr., 56,
673–682, 2011.
Kim, J. S.: Implications of different nitrogen input sources for primary
production and carbon flux estimates in coastal waters, Texas A&M
University, PhD dissertation, 2018.
Kim, J. S., Lee, M. J., Kim, J., and Kim, G.: Measurement of Temporal and
Horizontal Variations in 222Rn Activity in Estuarine Waters for Tracing
Groundwater Inputs, Ocean Sci. J., 45, 197–202, 2010.
Kim, J. Y., Ghim, Y. S., Lee, S. B., Moon, K. C., Shim, S. G., Bae, G. N.,
and Yoon, S. C.: Atmospheric Deposition of Nitrogen and Sulfur in the Yellow
Sea Region: Significance of Long-Range Transport in East Asia, Water Air
Soil Pollut., 205, 259–272, 2010.
Kim, T. W., Lee, K., Najjar, R. G., Jeong, H. D., and Jeong, H. J.:
Increasing N abundance in the northwestern Pacific Ocean due to atmospheric
nitrogen deposition, Science, 334, 505–509, 2011.
Lahiry, S.: Relationships between nutrients and dissolved oxygen
concentrations on the Texas-Louisiana shelf during spring-summer of 2004,
Texas A & M University, MS Thesis, 2007.
Lamarque, J.-F., Dentener, F., McConnell, J., Ro, C.-U., Shaw, M., Vet, R., Bergmann, D., Cameron-Smith, P., Dalsoren, S., Doherty, R., Faluvegi, G., Ghan, S. J., Josse, B., Lee, Y. H., MacKenzie, I. A., Plummer, D., Shindell, D. T., Skeie, R. B., Stevenson, D. S., Strode, S., Zeng, G., Curran, M., Dahl-Jensen, D., Das, S., Fritzsche, D., and Nolan, M.: Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, 2013.
Laurent, A., Fennel, K., Hu, J., and Hetland, R.: Simulating the effects of
phosphorus limitation in the Mississippi and Atchafalaya River plumes,
Biogeosciences, 9, 4707–4723, https://doi.org/10.5194/bg-9-4707-2012,
2012.
Lawrence, G. B., Goolsby, D. A., Battaglin, W. A., and Stensland, G. J.:
Atmospheric nitrogen in the Mississippi River Basin-emissions, deposition
and transport, Sci. Total Environ., 248, 87–100, 2000.
Lee, J. S., Kim, K. H., Shim, J. H., Han, J. H., Choi, Y. H., and Khang, B.
J.: Massive sedimentation of fine sediment with organic matter and enhanced
benthic-pelagic coupling by an artificial dyke in semi-enclosed Chonsu Bay,
Korea, Mar. Pollut. Bull., 64, 153–163, 2012.
Lehrter, J. C., Beddick Jr., D. L., Devereux, R., Yates, D. F., and Murrell.
M. C.: Sediment-water fluxes of dissolved inorganic carbon, O2, nutrients,
and N2 from the hypoxic region of the Louisiana continental shelf,
Biogeochemistry, 109, 233–252, 2012.
Lim, D., Kang, M. R., Jang, P. G., Kim, S. Y., Jung, H. S., Kang, Y. S., and
Kang, U. S.: Water Quality Characteristics Along Mid-Western Coastal Area of
Korea, Ocean Polar Res., 30, 379–399, 2008.
Liu, S. M., Zhang, J., Chen, S. Z., Chen, H. T., Hong, G. H., Wei, H., and
Wu, Q. M.: Inventory of nutrient compounds in the Yellow Sea, Cont.
Shelf Res., 23, 1161–1174, 2003.
Lohrenz, S. E., Wiesenburg, D. A., Arnone, R. A., and Chen, X. G.: What
controls primary production in the Gulf of Mexico? in: The Gulf of Mexico Large Marine Ecosystem: Assessment, edited by: Sherman, K., Kumpf, H.,
and Steidinger, K.,
sustainability and management, Blackwell Science, Malden, MA, 151–170,
1998.
Lohrenz, S. E., Fahnenstiel, G. L., Redalje, D. G., Lang, G. A., Dagg, M.
J., Whitledge, T. E., and Dortch, Q.: Nutrients, irradiance, and mixing as
factors regulating primary production in coastal waters impacted by the
Mississippi River plume, Cont. Shelf Res., 19, 1113–1141, 1999.
Luo, X. S., Tang, A. H., Shi, K., Wu, L. H., Li, W. Q., Shi, W. Q., Shi, X.
K., Erisman, J. W., Zhang, F. S., and Liu, X. J.: Chinese coastal seas are
facing heavy atmospheric nitrogen deposition, Environ. Res.
Lett., 9, 1–10, 2014.
McCarthy, M. J., Newell, S. E., Carini, S. A., and Cardner, W. S.:
Denitrification dominates sediment nitrogen removal and is enhanced by
bottom-water hypoxia in the Northern Gulf of Mexico, Estuaries and Coasts,
38, 2279–2294, 2015.
Milliman, J. D. and Meade, R. H.: World-wide delivery of river sediment to
the oceans, J. Geol., 91, 1–21, 1983.
Mississippi River/Gulf of Mexico Watershed Nutrient Task Force.: Action Plan
for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of
Mexico, Washington, D.C., 33 pp., 2001.
Mississippi River/Gulf of Mexico Watershed Nutrient Task Force.: Gulf
Hypoxia Action Plan 2008 for Reducing, Mitigating, and Controlling Hypoxia
in the Northern Gulf of Mexico and Improving Water Quality in the
Mississippi River Basin, Washington, D.C., 61 pp., 2008.
Nipper, M., Sanchez Chavez, J. A., Tunnell Jr., J. W.: GulfBase: Resource
Database for Gulf of Mexico Research: Corpus Christi, Texas A&M
University, available at: http://www.gulfbase.org (last access: 1 May 2017), 2004.
Nowlin Jr., W. D., Jochens, A. E., Reid, R. O., and DiMarco, S. F.:
Texas-Louisiana Shelf Circulation and Transport processes Study: Synthesis
Report, Volume I: Technical Report, OCS Study MMS 98-0035, U.S. Dept. of the
Interior, Minerals Mgmt Service, Gulf of Mexico OCS Region, New Orleans,
LA, 502, 1998a.
Nowlin Jr., W. D., Jochens, A. E., Reid, R. O., and DiMarco, S. F.:
Texas-Louisiana Shelf Circulation and Transport processes Study: Synthesis
Report, Volume II: Appendices. OCS Study MMS 98-0036. U.S. Dept. of the
Interior, Minerals Mgmt Service, Gulf of Mexico OCS Region, New Orleans,
LA, 288, 1998b.
Nunnally, C., Quigg, A., DiMarco, S. F., Chapman, P., and Rowe, G. T.:
Benthic-Pelagic Coupling in the Gulf of Mexico Hypoxic Area: Sedimentary
enhancement of hypoxic conditions and near bottom primary production,
Cont. Shelf Res., 85, 143–152, 2014.
Paerl, H. W.: Controlling Eutrophication along the Freshwater-Marine
Continuum: Dual Nutrient (N and P) Reductions are Essential, Estuar.
Coasts, 32, 593–601, 2009.
Paerl, H. W., Dennis, R. L., and Whitall, D. R.: Atmospheric Deposition of
Nitrogen: Implications for Nutrient Over-Enrichment of Coastal Waters,
Estuaries, 25, 677–693, 2002.
Park, M. J., Savenije, H. H. G., Cai, H., Jee, E. K., and Kim, N. H.:
Progressive change of tidal wave characteristics from the eastern Yellow Sea
to the Asan Bay, a strongly convergent bay in the west coast of Korea, Ocean
Dynam., 67, 1137–1150, 2017.
Park, Y. H.: Analysis of characteristics of Dynamic Tidal Power on the west
coast of Korea, Renew. Sustain. Energy Rev., 68, 461–474,
2017.
Quigg, A., Sylvan, J., Gustafson, A., Fisher, T., Oliver, R., Tozzi, S., and
Ammerman, J.: Going west: nutrient limitation of primary production in the
northern Gulf of Mexico and the importance of the Atchafalaya River, Aquat.
Geochem., 17, 519–544, 2011.
Qureshi, N. A.: The role of fecal pellets in the flux of carbon to the sea
floor on a river-influenced continental shelf subject to hypoxia, Louisiana
State University, PhD dissertation, 1995.
Rabalais, N. N. and Smith, L. E.: The effects of bottom water hypoxia on
benthic communities of the southeastern Louisiana continental shelf, New
Orleans, Louisiana, U.S. Minerals Management Service, Gulf of Mexico OCS
Region, 105, 1995.
Rabalais, N. N. and Turner, R. E.: Hypoxia in the Northern Gulf of Mexico:
Description, causes and change, pp. 1–36, in: Coastal Hypoxia: Consequences for Living Resources and
Ecosystems, edited by: Rabalais, N. N. and Turner, R. E., Coastal and Estuarine Studies, 58, 2001.
Rabalais, N. N., Turner, R. E., and Scavia, D.: Beyond science into policy:
Gulf of Mexico hypoxia and the Mississippi river, Bioscience, 52,
129–142, 2002.
Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Boesch, D. F., Chapman,
P., and Murrell, M. C.: Hypoxia in the northern Gulf of Mexico: Does the
science support the plan to reduce, mitigate, and control hypoxia?, Estuaries
Coastal, 30, 753–772, 2007.
Rabalais, N. N., Turner, R. E., Justic, D., and Diaz, R. J.: Global change and
eutrophication of coastal waters, ICES, J. Mar. Sci., 66,
1528–1537, 2009.
Ramesh, R., Chen, Z., Cummins, V., Day, J., D'Elia, C., Dennison, B.,
Forbes, D. L., Glaeser, B., Claser, M., Clavovic, B., Kremer, H., Lange, M.,
Larsen, J. N., Tissier, M. L., Newton, A., Pelling, M., Purvaja, R., and
Wolanski, E.: Land-ocean interactions in the coastal zone: past, present
& future, Anthtropocene, 12, 85–98, 2015.
Redalje, D. G., Lohrenz, S. E., and Fahnenstiel, G. L.: The relationship
between primary production and the vertical export of particulate organic
matter in a river impacted coastal ecosystem, Estuaries, 17, 829–838, 1994.
Robertson, D. M. and Saad, D. A.: SPARROW Models Used to Understand
Nutrient Sources in the Mississippi/Atchafalaya River Basin, J.
Environ. Qual., 42, 1422–1440, 2014.
Rowe, G. T. and Chapman, P.: Continental Shelf Hypoxia: some nagging
questions, Gulf Mexico Science, 20, 153–160, 2002.
Rowe, G. T., Kaegi, M. E. C., Morse, J. W., Boland, G. S., and Briones, E.
G. E.: Sediment community metabolism associated with continental shelf
hypoxia, northern Gulf of Mexico, Estuaries, 25, 1097–1106, 2002.
Scavia, D., Justic, D., and Bierman, V. J.: Reducing Hypoxia in the Gulf of
Mexico: Advice from Three Models, Estuaries, 27, 419–425, 2004.
Scavia, D., Evans, M. A., and Obenour, D. R.: A scenario and forecast model
for Gulf of Mexico hypoxic area and volume, Environ. Sci.
Technol., 47, 10423–10428, 2013.
Shou, W., Zong, H., Ding, P., and Hou, L.: A modelling approach to assess
the effects of atmospheric nitrogen deposition on the marine ecosystem in
the Bohai Sea, China, Estuar. Coast. Shelf Sci., 208, 36–48,
2018.
Sigman, D. M. and Hain, M. P.: The Biological Productivity of the Ocean,
Nat. Educat., 3, 1–16, 2012.
Son, S. H., Campbell, J. W., Dowell, M., Yoo, S. J., and Noh, J.: Primary
production in the Yellow Sea determined by ocean color remote sensing,
Mar. Ecol. Prog. Ser., 303, 91–103, 2005.
Sylvan, J. B., Dortch, Q., Nelson, D. M., Maier Brown, A. F., Morrison, W.,
and Ammerman, J. W.: Phosphorus limits phytoplankton growth on the Louisiana
shelf during the period of hypoxia formation, Environ. Sci.
Technol., 40, 7548–7553, 2006.
Testa, J. M., Kemp, W. M., Boynton, W. R., and Hagy, J. D.: Long-term changes
in water quality and productivity in the Patuxent river estuary: 1985 to
2003, Estuar. Coasts, 31, 1021–1037, 2008.
Thornton, D. C. O., Dong, L. F., Underwood, G. J. C., and Nedwell, D. B.:
Sediment-water inorganic nutrient exchange and nitrogen budgets in the Colne
Estuary, UK, Mar. Ecol. Prog. Ser., 337, 63–77, 2007.
Turner, R. E. and Rabalais, N. N.: Changes in the Mississippi River
nutrient supply and offshore silicate-based phytoplankton community
responses, in: Changes in Fluxes in Estuaries: Implications from Science to
management Proceedings of ECSA22/ERF Symposium, International Symposium
Series, Olsen, Gredensborg, Denmark, 147–150, 1994.
Turner, R. E. and Rabalais, N. N.: Nitrogen and phosphorus phytoplankton
growth limitation in the northern Gulf of Mexico, Aquat. Microbial Ecol., 68,
159–169, 2013.
Turner, R. E., Rabalais, N. N., and Justic, D.: Predicting summer hypoxia in
the northern Gulf of Mexico: riverine N, P and Si loading, Mar. Pollut.
Bull., 51, 139–148, 2006.
Turner, R. E., Rabalais, N. N., and Justic, D.: Gulf of Mexico Hypoxia:
Alternate States and a Legacy, Environ. Sci. Technol., 42,
2323–2327, 2008.
Wade, T. L. and Sweet, S. T.: Final Report Coastal Bend Bays and Estuaries
Program (CBBEP): Atmospheric Deposition Study, Coastal Bend Bays &
Estuaries Program, Corpus Christi, Texas, USA, 48 pp., 2008.
Wang, H., Dai, M., Liu, J., Kao, S. J., Zhang, C., Cai, W. J., Wang, G.,
Qian, W., Zhao, M., and Sun, Z.: Eutrophication-Driven Hypoxia in the East
China Sea off the Changjiang Estuary, Environ. Sci.
Technol., 50, 2255–2263, 2016.
Yang, J. S. and Ahn, T. Y.: The analysis of the correlation between
groundwater level and the moving average of precipitation in Kuem river
watershed, J. Engineer. Geol., 18, 1–6, 2008.
Zhao, Y., Zhang, L., Pan, Y., Wang, Y., Paulot, F., and Henze, D. K.: Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution, Atmos. Chem. Phys., 15, 10905–10924, https://doi.org/10.5194/acp-15-10905-2015, 2015.
Short summary
We used a simple nitrogen-based box model to estimate production in the coastal northern Gulf of Mexico and off the west of the Korean Peninsula, which receive nitrogen in different forms. The Gulf of Mexico gets almost all its nitrogen from rivers, while atmosphere and groundwater discharges are also contributed in Korea. Production in both areas decreased away from river mouths, and we identified three zones with different productivity that vary in size as river flow and other factors change.
We used a simple nitrogen-based box model to estimate production in the coastal northern Gulf of...