Articles | Volume 16, issue 6
https://doi.org/10.5194/os-16-1459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1459-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Seasonal variability of the Arabian Sea intermediate circulation and its impact on seasonal changes of the upper oxygen minimum zone
Henrike Schmidt
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Rena Czeschel
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Martin Visbeck
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker
Weg 20, 24105 Kiel, Germany
Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Related authors
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Gesa Schulz, Kirstin Dähnke, Tina Sanders, Jan Penopp, Hermann W. Bange, Rena Czeschel, and Birgit Gaye
Biogeosciences, 22, 5943–5959, https://doi.org/10.5194/bg-22-5943-2025, https://doi.org/10.5194/bg-22-5943-2025, 2025
Short summary
Short summary
Oxygen-minimum zones (OMZs) are low-oxygen ocean areas that deplete nitrogen, a key marine nutrient. Understanding nitrogen cycling in OMZs is crucial for the global nitrogen cycle. This study examined nitrogen cycling in the OMZ of the Bay of Bengal and the East Equatorial Indian Ocean, revealing limited mixing between both regions. Surface phytoplankton consumes nitrate, while deeper nitrification recycles nitrogen. In the BoB’s OMZ (100–300 m), nitrogen loss likely occurs via anammox.
Pierre L'Hégaret, Florian Schütte, Sabrina Speich, Gilles Reverdin, Dariusz B. Baranowski, Rena Czeschel, Tim Fischer, Gregory R. Foltz, Karen J. Heywood, Gerd Krahmann, Rémi Laxenaire, Caroline Le Bihan, Philippe Le Bot, Stéphane Leizour, Callum Rollo, Michael Schlundt, Elizabeth Siddle, Corentin Subirade, Dongxiao Zhang, and Johannes Karstensen
Earth Syst. Sci. Data, 15, 1801–1830, https://doi.org/10.5194/essd-15-1801-2023, https://doi.org/10.5194/essd-15-1801-2023, 2023
Short summary
Short summary
In early 2020, the EUREC4A-OA/ATOMIC experiment took place in the northwestern Tropical Atlantic Ocean, a dynamical region where different water masses interact. Four oceanographic vessels and a fleet of autonomous devices were deployed to study the processes at play and sample the upper ocean, each with its own observing capability. The article first describes the data calibration and validation and second their cross-validation, using a hierarchy of instruments and estimating the uncertainty.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Jan Lüdke, Marcus Dengler, Stefan Sommer, David Clemens, Sören Thomsen, Gerd Krahmann, Andrew W. Dale, Eric P. Achterberg, and Martin Visbeck
Ocean Sci., 16, 1347–1366, https://doi.org/10.5194/os-16-1347-2020, https://doi.org/10.5194/os-16-1347-2020, 2020
Short summary
Short summary
We analyse the intraseasonal variability of the alongshore circulation off Peru in early 2017, this circulation is very important for the supply of nutrients to the upwelling regime. The causes of this variability and its impact on the biogeochemistry are investigated. The poleward flow is strengthened during the observed time period, likely by a downwelling coastal trapped wave. The stronger current causes an increase in nitrate and reduces the deficit of fixed nitrogen relative to phosphorus.
Cited articles
Acharya, S. S. and Panigrahi, M. K.: Eastward shift and maintenance of
Arabian Sea oxygen minimum zone: Understanding the paradox, Deep-Sea Res. Pt.
I, 115, 240–252, https://doi.org/10.1016/j.dsr.2016.07.004, 2016.
Bange, H. W., Naqvi, S. W. A., and Codispoti, L.: The nitrogen cycle in the
Arabian Sea, Progr. Oceanogr., 65, 145–158,
https://doi.org/10.1016/j.pocean.2005.03.002, 2005.
Banse, K., Naqvi, S. W. A., Narvekar, P. V., Postel, J. R., and Jayakumar, D. A.: Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales, Biogeosciences, 11, 2237–2261, https://doi.org/10.5194/bg-11-2237-2014, 2014.
Beal, L. M., Ffield, A., and Gordon, A. L.: Spreading of Red Sea overflow
waters in the Indian Ocean, J. Geophys. Res., 105, 8549–8564,
https://doi.org/10.1029/1999JC900306, 2000.
Beal, L. M., Hormann, V., Lumpkin, R., and Foltz, G. R.: The response of the
surface circulation of the Arabian Sea to monsoonal forcing, J. Phys.
Oceanogr., 43(9), 2008-2022, https://doi.org/10.1175/JPO-D-13-033.1, 2013.
Bleck, R.: An oceanic general circulation model framed in hybrid
isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88,
https://doi.org/10.1016/S1463-5003(01)00012-9, 2002.
Bleck, R. and Benjamin, S. G.: Regional Weather Prediction with a Model
Combining Terrain-following and Isentropic Coordinates, Part I: Model
Description, Mon. Weather Rev., 121, 1770–1785.,
https://doi.org/10.1175/1520-0493(1993)121<1770:RWPWAM>2.0.CO;2,
1993.
Bleck, R. and Boudra, D. B.: Initial Testing of a Numerical Ocean
Circulation Model Using a Hybrid (Quasi-Isopycnic) Vertical Coordinate, J.
Phys. Oceanogr., 11, 755–770, https://doi.org/10.1175/1520-0485(1981)011<0755:ITOANO>2.0.CO;2, 1981.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240,
2018.
Brewin, R. J., Hirata, T., Hardman-Mountford, N. J., Lavender, S. J.,
Sathyendranath, S., and Barlow, R.: The influence of the Indian Ocean Dipole
on interannual variations in phytoplankton size structure as revealed by
Earth Observation, Deep-Sea Res. Pt. II, 77–80, 117–127,
https://doi.org/10.1016/j.dsr.2012.04.009, 2012.
COAPS: Center for Ocean-Atmospheric Prediction Studies, HYCOM+NCODA Ocean Reanalysis, available at: http://tds.hycom.org/thredds/catalogs/GLBu0.08/expt_19.1.html, last access: 24 September 2019.
Cummings, J. A.: Operational multivariate ocean data assimilation, Q. J.
Roy. Meteor. Soc., 131, 3583–3604, https://doi.org/10.1256/qj.05.105, 2005.
Cummings, J. A. and Smedstad, O. M.: Variational Data Assimilation for the
Global Ocean, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic
Applications, Vol. II, https://doi.org/10.1007/978-3-642-35088-7, 303–343, 2013.
Diaz, R. J. and Rosenberg, R.: Spreading dead zones and consequences for
marine ecosystems, Science, 321, 926–929, 2008.
Dietze, H. and Loeptien, U.: Revisiting ”nutrient trapping” in global
coupled biogeochemical ocean circulation models, Global Biogeochem. Cy., 27, 265–284, https://doi.org/10.1002/gbc.20029, 2013.
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O.,
Zweng, M., Reagan, J., and Johnson, D.: World Ocean Atlas 2013 Volume 3:
Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation, NOAA
Atlas NESDIS 75, 3, 27 pp, 2013.
Gilly, W. F., Bernan, J. M., Litvin, S. Y., and Robison, B. H.:
Oceanographic and biological effects of shoaling of the oxygen minimum zone,
Annu. Rev. Mar. Sci. 5, 393–420, https://doi.org/10.1146/annurev-marine-120710-100849,
2013.
Gray, J. S., Wu, R. S., and Or, Y. Y.: Effects of hypoxia and organic
enrichment on the coastal marine environment, Mar. Ecol. Prog. Ser., 238,
249–279, https://doi.org/10.3354/meps238249, 2002.
Gary, S. F., Lozier, M. S., Böning, C. W., and Biastoch, A.: Deciphering
the pathways for the deep limb of the Meridional Overturning Circulation,
Deep-Sea Res. Pt. II, 58, 1781–1797, 2011.
Hood, R. R., Wiggert, J. D., and Naqvi, S. W. A.: Indian Ocean Research:
Opportunities and Challenges, Geoph. Monog. Series 185, 409–428,
https://doi.org/10.1029/2008GM000714, 2009.
Ito, T., Minobe, S., Long, M. C., and Deutsch, C.: Upper ocean O2 trends
1958–2015, Geophys. Res. Lett., 44, 4214–4223,
https://doi.org/10.1002/2017GL073613, 2017.
Johns, W., Yao, F., Olson, D., Josey, S., Grist, J., and Smeed, D.:
Observations of seasonal exchange through the Straits of Hormuz and the
inferred heat and freshwater budgets of the Persian Gulf, J. Geophys. Res.,
108, 3391, https://doi.org/10.1029/2003JC001881, 2003.
Kamykowski, D. and Zentara, S.-J.: Hypoxia in the world ocean as recorded in
the historical data set, Deep-Sea Res., 37, 1861–1874, https://doi.org/10.1016/0198-0149(90)90082-7, 1990.
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Progr. Oceanogr., 77,
331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008.
Keeling, R. E., Körtzinger, A., and Gruber, N.: Ocean deoxygenation in a
warming world., Annu. Rev. Mar. Sci., 2, 199–229,
https://doi.org/10.1146/annurev.marine.010908.163855, 2010.
Kim, H.-S., Flagg, C. N., and Howden, S. D.: Northern Arabian Sea
variability from TOPEX/Poseidon altimetry data: an extension of the US JGOFS
shipboard ADCP study, Deep-Sea Res. Pt. II, 48, 1069–1096 ,
https://doi.org/10.1016/S0967-0645(00)00131-4, 2001.
Lamb, S. H.: Hydrodynamics, Cambridge University Press, Cambridge, 1879.
Lachkar, Z., Smith, S., Lévy, M., and Pauluis, O.: Eddies curb
denitrification and compress ecosystems in the Arabian Sea, Geophys.
Res. Lett., 43, 1–17, https://doi.org/10.1002/2016GL069876, 2016.
Lachkar, Z., Lévy, M., and Smith, S.: Intensification and deepening of the Arabian Sea oxygen minimum zone in response to increase in Indian monsoon wind intensity, Biogeosciences, 15, 159–186, https://doi.org/10.5194/bg-15-159-2018, 2018.
Lachkar, Z., Lévy, M., and Smith, K. S.: Strong intensification of the
Arabian Sea oxygen minimum zone in response to Arabian Gulf warming;
Geophys. Res. Lett., 46, 5420–5429, 2019.
Lebedev, K. V., Yoshinari, H., Mximenko, N. A., and Hacker, P.: YoMaHa'07:
velocity data assessed from trajectories of Argo floats at parking level and
at the sea surface, IPRC Tech. Note 4, 2007.
Levin, L. A., Whitcraft, C. R., Mendoza, G. F., and Gonzalez, J. P.: Oxygen
and organic matter thresholds for benthic faunal activity on the Pakistan
margin oxygen minimum zone (700–1100m), Deep-Sea Res. Pt. II, 56,
449–471, https://doi.org/10.1016/j.dsr2.2008.05.032, 2009.
Lumpkin, R. and Pazos, M.: Measuring surface currents with surface velocity
program drifters: the instrument, its data, and some recent results, in: Lagrangian analysis and prediction of coastal and ocean dynamics (LAPCOD), edited by: Griffa, A., Kirwan, A. D., Mariano, A. J., Ozgokmen, T., and Rossby, T., Cambridge University Press, Cambridge, New York, 39–67, 2007.
Luyten, J. R., Pedlosky, J., and Stommel, H.: The ventilated thermocline, J.
Phys. Oceanogr., 13, 292–309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2, 1983.
McCreary, J. P., Yu, Z., Hood, R. R., Vinaychandran, P. N., Furue, R.,
Ishida, A., and Richards, K. J.: Dynamics of the Indian-Ocean oxygen minimum
zones, Progr. Oceanogr., 112–113, 15–37, https://doi.org/10.1016/j.pocean.2013.03.002,
2013.
Naqvi, S. W. A., Naik, H., Pratihary, A., D'Souza, W., Narvekar, P. V., Jayakumar, D. A., Devol, A. H., Yoshinari, T., and Saino, T.: Coastal versus open-ocean denitrification in the Arabian Sea, Biogeosciences, 3, 621–633, https://doi.org/10.5194/bg-3-621-2006, 2006.
Naqvi, S. W. A., Bange, H. W., Farías, L., Monteiro, P. M. S., Scranton, M. I., and Zhang, J.: Marine hypoxia/anoxia as a source of CH4 and
N2O, Biogeosciences, 7, 2159–2190, https://doi.org/10.5194/bg-7-2159-2010, 2010.
NOAA: National Oceanic and Atmospheric Administration, WOA13 temperature, salinity and oxygen, available at: https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13oxnu.pl; https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl, last access: 10 April 2019.
Olson, D. B., Hitchcock, G. L., Fine, R. A., and Warren, B. A.: Maintenance
of the low-oxygen layer in the central Arabian Sea, Deep-Sea Res. Pt. II, 40, 673–685, https://doi.org/10.1016/0967-0645(93)90051-N, 1993.
Oschlies, A., Schulz, K. G., Riebesell, U., and Schmittner, A.: Simulated
21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon
export, Global Biogeochem. Cy., 22, GB4008, https://doi.org/10.1029/2007GB003147, 2008.
Phelps, J. J., Polton, J. A., Souza, A. J., and Robinson, L. A.: Hydrodynamic
timescales in a hyper-tidal region of freshwater influence. Cont. Shelf Res.
63, 13–22, https://doi.org/10.1016/j.csr.2013.04.027, 2013.
Piontkovski, S. A. and Queste, B. Y.: Decadal changes of the Western Arabian
Sea ecosystem, International Aquatic Research, 8, 49–64, https://doi.org/10.1007/s40071-016-0124-3, 2016.
Piontkovski, S. A. and Al-Oufi, H. S.: The Oman shelf hypoxia and the
warming Arabian Sea, Int. J. Environ. Stud., 72, 256–264,
https://doi.org/10.1080/00207233.2015.1012361, 2015.
Prasad, T. G., Ikeda, M., and Kumar, S. P.: Seasonal spreading of the
Persian Gulf Watermass in the Arabian Sea, J. Geophys. Res., 106,
17059–17071, https://doi.org/10.1029/2000JC000480, 2001.
Qasim, S.: Oceanography of the northern Arabian Sea, Deep Sea Res. Pt. I,
49, 2035–2051, 1982.
Queste, B. Y., Vic, C., Heywood, K. J., and Piontkovski, S. A.: Physical
controls on oxygen distribution and denitrification potential in the north
west Arabian Sea, Geophys. Res. Lett., 45, 4143–4152,
https://doi.org/10.1029/2017GL076666, 2018.
Rao, C. K., Naqvi, S. W. A., Kumar, M. D., Varaprasad, S. D. J., Jayakumar,
D. A., George, M. D., and Singbal, S. Y. S.: Hydrochemistry of Bay of
Bengal: possible reasons for a different water column cycling of carbon and
nitrogen from the Arabian Sea, Mar. Chem., 47, 279–290,
https://doi.org/10.1016/0304-4203(94)90026-4, 1994.
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., and Kumar, D.: Controlling factors of the oxygen balance in the Arabian Sea's OMZ, Biogeosciences, 9, 5095–5109, https://doi.org/10.5194/bg-9-5095-2012, 2012.
Sarma, V.: An evaluation of physical and biogeochemical processes regulating
perennial suboxic conditions in the water column of the Arabian Sea, Global
Biogeochem. Cy., 16, 1082, https://doi.org/10.1029/2001GB001461, 2002.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017.
Schott, F. A. and McCreary, J. P.: The monsoon circulation of the Indian
Ocean, Progr. Oceanogr., 51, 1–123, https://doi.org/10.1016/S0079-6611(01)00083-0,
2001.
Schott, F. A., Xie, S. P., and McCreary Jr., J. P.: Indian Ocean circulation and climate variability, Rev. Geophys., 47, RG1002,
https://doi.org/10.1029/2007RG000245, 2009.
Shankar, D., Shenoi, S. S. C., Nayak, R. K., Vinayachandran, P. N.,
Nampoothiri, G., Almeida, A. M., Michael, G. S., Ramesh Kumar, M. R.,
Sundar, D., and Sreejith, O. P.: Hydrography of the eastern Arabian Sea
during summer monsoon 2002, J. Earth Syst. Sci., 114, 459–474,
https://doi.org/10.1007/BF02702023, 2005.
Shenoi, S. S. C., Saji, P. K., and Almeida, A. M.: Near-surface circulation
and kinetic energy in the tropical Indian Ocean derived from Lagrangian
drifters, J. Mar. Res., 57, 885–907, https://doi.org/10.1357/002224099321514088,
1999.
Shenoy, D. M., Sujith, K. B., Gauns, M. U., Patil, S., Sarkar, A., Naik, H.,
Narvekar, P. V., and Naqvi, S. W. A.: Production of dimethylsulphide during
the seasonal anoxia off Goa, Biogeochemistry, 110, 47–55, https://doi.org/10.1007/s10533-012-9720-5, 2012.
Shenoy, D. M., Suresh, I., Uskaikar, H., Kurian, S., Vidya, P. J.,
Shirodkar, G., Gauns, M. U., and Naqvi, S. W. A.: Variability of dissolved
oxygen in the Arabian Sea Oxygen Minimum Zone and its driving mechanisms,
J. Mar. Syst., 204, 103310, https://doi.org/10.1016/j.jmarsys.2020.103310, 2020.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
Oxygen-Minimum Zones in the Tropical Oceans, Science, 320, 655–658,
https://doi.org/10.1126/science.1153847, 2008.
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57,
587–595, https://doi.org/10.1016/j.dsr.2010.01.005, 2010.
Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P.,
Visbeck, M., Wallace, D. W. R., Brandt, P., and Körtzinger, A.:
Expansion of oxygen minimum zones may reduce available habitat for tropical
pelagic fishes, Nat. Clim. Change, 2, 33–37, https://doi.org/10.1038/nclimate1304,
2012.
Swallow, J. C.: Some aspects of the physical oceanography of the Indian
Ocean, Deep-Sea Res., 31, 639–650, https://doi.org/10.1016/0198-0149(84)90032-3,
1984.
Van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P.,
Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J.,
Deleersnijder, E., Döös, K., Drake, H. F., Drijfhout, S., Gary, S.
F., Heemink, A. W., Kjellsson, J., Koszalka, I. M., Lange, M., Lique, C.,
MacGilchrist, G. A., Marsh, R., Mayorga Adame, C. G., McAdam, R., Nencioli,
F., Paris, C. B., Piggott, M. D., Polton, J. A., Rühs, S. Shah, S. H. A.
M., Thomas, M. D., Wang, J., Wolfram, P. J., Zanna, L., und Zika, J. D.:
Lagrangian ocean analysis: fundamentals and practices, Ocean Model., 121,
49–75, 2018.
Vitale, S. S., DiMarco S. F., Seidel, H. F., and Wang, Z.: Circulation
analysis in the northwest Indian Ocean using Argo floats and surface drifter
observations, and SODA reanalysis output, Dyn. Atmos. Oceans, 78, 57–70, https://doi.org/10.1016/j.dynatmoce.2017.02.002, 2017.
Wang, Z., DiMarco, S. F., Jochens, A. E., and Ingle, S.: High salinity
events in the northern Arabian Sea and Sea of Oman, Deep Sea Res. Pt. I,
74, 14–24, https://doi.org/10.1016/j.dsr.2012.12.004, 2013.
Wang, Z., DiMarco, S. F., Ingle, S., Belabbassi, L., and Al-Kharusi, L. H.:
Seasonal and annual variability of vertically migrating scattering layers in
the northern Arabian Sea, Deep Sea Res. Pt. I, 90, 152–165,
https://doi.org/10.1016/j.dsr.2014.05.008, 2014.
You, Y. and Tomczak, M.: Thermocline circulation and ventilation in the
Indian Ocean derived from water mass analysis, Deep-Sea Res. Pt. I, 40,
13–56, https://doi.org/10.1016/0967-0637(93)90052-5, 1993.
Short summary
Our investigations give detailed insight on the seasonally changing current system at intermediate depth in the Arabian Sea that is influenced by the monsoon. The changing currents influence the oxygen transport in the interior ocean and thus allow us to draw conclusions on the maintenance and seasonal variability of the upper part of the oxygen minimum zone in the Arabian Sea.
Our investigations give detailed insight on the seasonally changing current system at...