Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-543-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-543-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data assimilation of Soil Moisture and Ocean Salinity (SMOS) observations into the Mercator Ocean operational system: focus on the El Niño 2015 event
Benoît Tranchant
CORRESPONDING AUTHOR
Collecte Localisation Satellites, Ramonville Saint-Agne, 31520, France
Elisabeth Remy
Mercator Ocean, Ramonville Saint-Agne, 31520, France
Eric Greiner
Collecte Localisation Satellites, Ramonville Saint-Agne, 31520, France
Olivier Legalloudec
Mercator Ocean, Ramonville Saint-Agne, 31520, France
Related authors
Benoît Tranchant, Guillaume Reffray, Eric Greiner, Dwiyoga Nugroho, Ariane Koch-Larrouy, and Philippe Gaspar
Geosci. Model Dev., 9, 1037–1064, https://doi.org/10.5194/gmd-9-1037-2016, https://doi.org/10.5194/gmd-9-1037-2016, 2016
Mounir Benkiran, Pierre-Yves Le Traon, Elisabeth Rémy, and Yann Drillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-420, https://doi.org/10.5194/egusphere-2024-420, 2024
Preprint archived
Short summary
Short summary
The assimilation of altimetry data corrects and improves the forecast of a global ocean forecasting system. Until now, the use of altimetry observations from nadir altimeters has had a major impact on the quality of ocean forecasts. Our study shows that the use of observations from swath altimeters will have a greater impact than the quality of these forecasts and will better constrain mesoscale structures.
Antonio Bonaduce, Mounir Benkiran, Elisabeth Remy, Pierre Yves Le Traon, and Gilles Garric
Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018, https://doi.org/10.5194/os-14-1405-2018, 2018
Jean-Michel Lellouche, Eric Greiner, Olivier Le Galloudec, Gilles Garric, Charly Regnier, Marie Drevillon, Mounir Benkiran, Charles-Emmanuel Testut, Romain Bourdalle-Badie, Florent Gasparin, Olga Hernandez, Bruno Levier, Yann Drillet, Elisabeth Remy, and Pierre-Yves Le Traon
Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, https://doi.org/10.5194/os-14-1093-2018, 2018
Short summary
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
Benoît Tranchant, Guillaume Reffray, Eric Greiner, Dwiyoga Nugroho, Ariane Koch-Larrouy, and Philippe Gaspar
Geosci. Model Dev., 9, 1037–1064, https://doi.org/10.5194/gmd-9-1037-2016, https://doi.org/10.5194/gmd-9-1037-2016, 2016
V. Turpin, E. Remy, and P. Y. Le Traon
Ocean Sci., 12, 257–274, https://doi.org/10.5194/os-12-257-2016, https://doi.org/10.5194/os-12-257-2016, 2016
Short summary
Short summary
Argo profiling floats are continuously sampling the world ocean, providing temperature and salinity profiles of up to 2000 m depths. This article addresses the impact of the current Argo array on real-time ocean analyses and forecasts. One-year observing system experiments were carried out with the 0.25° global Mercator Ocean monitoring and forecasting system. The improvement due to the assimilation of the Argo profiles is estimated globally and regionally, showing a significant positive impact.
F. Ninove, P.-Y. Le Traon, E. Remy, and S. Guinehut
Ocean Sci., 12, 1–7, https://doi.org/10.5194/os-12-1-2016, https://doi.org/10.5194/os-12-1-2016, 2016
Short summary
Short summary
Argo floats are one of the main components of the in situ observation network in the ocean. Nowadays, more than 3500 profiling floats are sampling the world ocean. In this study, they are used to characterize spatial scales of temperature and salinity variations from the surface down to 1500m. The scales appear to be anisotropic and vary from about 100km at high latitudes to 700km in the Indian and Pacific equatorial and tropical regions.
Cited articles
Alory, G., Delcroix, T., Téchiné, P., Diverrès, D., Varillon, D.,
Cravatte, S., Gouriou, Y., Grelet, J., Jacquin, S., Kestenare, E., Maes, C.,
Morrow, R., Perrier, J., Reverdin, G., and Roubaud, F.: The French
contribution to the voluntary observing ships network of sea surface
salinity, Deep-Sea Res. Pt. 1, 105, 1–18, https://doi.org/10.1016/j.DSR.2015.08.005,
2015.
Ashok, K. and Yamagata, T.: The El Niño with a difference, Nature, 461,
481–484, 2009.
Benkiran, M. and Greiner, E.: Impact of the Incremental Analysis Updates on
a Real-Time System of the North Atlantic Ocean, J. Atmos. Ocean. Tech., 25, 2055–2073, 2008.
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data
assimilation using incremental analysis updates, Mon. Weather Rev., 124,
1256–1271, https://doi.org/10.1175/1520-04932, 1996.
Boutin, J., Chao, Y., Asher, W. E., Delcroix, T., Drucker, R., Drushka, K., Kolodziejczyk, N.,
Lee, T., Reul, N., Reverdin, G., Schanze, J., Soloviev, A., Yu, L., Anderson, J., Brucker, L.,
Dinnat, E., Garcia, A. S., Jones, W. L., Maes, C., Meissner, T., Tang, W., Vinogradova, N., and
Ward, B.: Satellite and in Situ Salinity: Understanding Stratification and Sub-Footprint
Variability, B. Am. Meteorol. Soc., 97, 1391–1407, https://doi.org/10.1175/BAMS-D-15-00032.1, 2015.
Boutin, J., Vergely, J. L., and Marchand, S.: SMOS SSS L3 Debias v2 Maps
Generated by CATDS CEC LOCEAN, 54823, https://doi.org/10.17882/52804, 2017.
Chakraborty, A., Sharma, R., Kumar, R., and Basu, S.: A SEEK filter
assimilation of sea surface salinity from Aquarius in an OGCM: Implication
for surface dynamics and thermohaline structure, J. Geophys. Res.-Oceans,
119, 4777–4796, https://doi.org/10.1002/2014JC009984, 2014.
Corbett, C. M., Subrahmanyam, B., and Giese, B. S.: A comparison of sea
surface salinity in the equatorial Pacific Ocean during the 1997–1998,
2012–2013, and 2014–2015 ENSO events, Clim. Dynam., 49, 3513–3526,
https://doi.org/10.1007/s00382-017-3527-y., 2017.
Dai A., Qian, T., Trenberth, K., and Milliman, J. D.: Changes in Continental
Freshwater 31 Discharge from 1948 to 2004, J. Climate, 22, 2773–2792,
2009.
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation,
background and analysis error statistics in observation space, Q. J. Roy. Meteor. Soc., 131, 3385–3396, 2005.
Durack, P. J.: Ocean salinity and the global water cycle, Oceanography, 28, 20–31, https://doi.org/10.5670/oceanog.2015.03, 2015.
Fujii, Y., Ogawa, K., Brassington, G. B., Ando, K., Yasuda, T., and
Kuragano, T.: Evaluating the impacts of the tropical Pacific observing
system on the ocean analysis fields in the global ocean data assimilation
system for operational seasonal forecasts in JMA, J. Oper. Oceanogr., 8, 25–39, https://doi.org/10.1080/1755876X.2015.1014640, 2015.
Gasparin, F. and Roemmich, D.: The strong freshwater anomaly during the
onset of the 2015/2016 El Niño, Geophys. Res. Lett., 43, 6452–6460,
https://doi.org/10.1002/2016GL069542, 2016.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013.
Guimbard, S., Reul, N., Chapron, B., Umbert, M., and Maes, C.: Seasonal and
interannual variability of the Eastern Tropical Pacific Fresh Pool, J. Geophys. Res.-Oceans, 122,
1749–1771, https://doi.org/10.1002/2016JC012130, 2017.
Hackert, E., Busalacchi, A. J., and Ballabrera-Poy, J.: Impact of Aquarius
sea surface salinity observations on coupled forecasts for the tropical
Indo-Pacific Ocean, J. Geophys. Res.-Oceans, 119, 4045–4067, https://doi.org/10.1002/2013JC009697, 2014.
Hasson, A., Puy, M., Boutin, J., Guilyardi, E., and Morrow, R.: Northward
propagation across the tropical North Pacific Ocean revealed by surface
salinity: how El Nino anomalies reach Hawaii?, J. Geophys. Res., 123, 2697–2715, https://doi.org/10.1002/2017JC013423, 2018.
Hilburn, K. A.: The passive microwave water cycle product: Technical Report, Remote Sensing Systems, Santa Rosa, CA, available at:
http://www.remss.com (last access: 20 September 2018), 072409, 30 pp., 2009.
Kao, H.-Y. and Yu, J.-Y.: Contrasting Eastern-Pacific and
Central-Pacific Types of ENSO, J. Climate, 22, 615–632, https://doi.org/10.1175/2008JCLI2309.1, 2009.
Kidd, C., Dawkins, E., and Huffman, G.: Comparison of precipitation derived
from the ECMWF operational forecast model and satellite precipitation
datasets, J. Hydrometeorol., 14, 1463–1482, https://doi.org/10.1175/JHM-D-12-0182.1,
2013.
Köhl, A., Sena Martins, M., and Stammer, D.: Impact of assimilating surface
salinity from SMOS on ocean circulation estimates, J. Geophys. Res.-Oceans,
119, 5449–5464, https://doi.org/10.1002/2014JC010040, 2014.
Lea, D. J., Martin, M. J., and Oke, P. R.: Demonstrating the complementarity
of observations in an operational ocean forecasting system, Q. J. Roy. Meteor. Soc., 140, 2037–2049, https://doi.org/10.1002/qj.2281, 2014.
Lee, T., Lagerloef, G., Gierach, M. M., Kao, H.-Y., Yueh, S., and Dohan,
K.: Aquarius reveals salinity structure of tropical instability waves, Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052232, 2012.
Leeuwenburgh, O.: Validation of an EnKF system for OGCM initialization
assimilating temperature, Salinity, and surface height measurements, Mon.
Weather Rev., 135, 125–139, 2007.
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E., Garric, G.,
Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C., Bourdallé-Badie, R., Tranchant, B.,
Benkiran, M., Drillet, Y., Daudin, A., and De Nicola, C.: Evaluation of global monitoring
and forecasting systems at Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, 2013.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C.,
Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F.,
Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent
updates to the Copernicus Marine Service global ocean monitoring and forecasting
real-time 1/12∘ high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lien, R. C., D'Asaro E. A., and Menkes C. E.: Modulation of equatorial
turbulence by tropical instability waves, Geophys. Res. Lett., 35, L24607,
https://doi.org/10.1029/2008GL035860, 2008.
Lukas, R. and Lindstrom, E.: The mixed layer of the western equatorial Pacific
Ocean, J. Geophys. Res.-Oceans, 96, 3343–3357, 1991.
Lyman, J. M., Johnson, G. C., and Kessler, W. S.: Distinct 17- and 33-day
tropical instability waves in subsurface observations, J. Phys. Oceanogr.,
37, 855–872, https://doi.org/10.1175/JPO3023.1, 2007.
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole singularity, Clim. Dynam., 12, 381–388, 1996.
Madec, G.: NEMO Ocean Engine, Technical Report, Pole de modelisation de IPSL, 396 pp., 2016.
Maes, C., Picaut, J., and Belamari, S.: Salinity barrier layer and onset of
El Nino in a Pacific coupled model, Geophys. Res. Lett., 29, 2206, https://doi.org/10.1029/2002GL016029, 2002.
Maes, C., J. Picaut, Kuroda, Y., and Ando, K.: Characteristics of the
convergence zone at the eastern edge of the Pacific warm pool, Geophys. Res.
Lett., 31, L11304, https://doi.org/10.1029/2004GL019867, 2004.
Martin M. J., King, R. R., While, J., and Aguiar, A.: Assimilating satellite
sea surface salinity data from SMOS, Aquarius and SMAP into a global ocean
forecasting system, Q. J. Roy. Meteor. Soc., 145, 705–726, https://doi.org/10.1002/qj.3461, 2019.
McPhaden, M. J., Timmermann, A., Widlansky, M. J., Balmaseda, M. A., and
Stockdale, T. N.: The curious case of the El Niño that never happened: A
perspective from 40 years of progress in climate research and forecasting.
B. Am. Meteorol. Soc., 96, 1647–1665, 2015.
Mignot, J., de Boyer Montegut, C., Lazar, A., and Cravatte, S.: Control of
salinity on the mixed layer depth in the world ocean: 2. Tropical areas, J.
Geophys. Res., 112, C10010, https://doi.org/10.1029/2006JC003954, 2007.
Moum, J. N., Lien, R. C. , Perlin, A., Nash, J. D., Gregg, M. C., and Wiles,
P. J.: Sea surface cooling at the equator by subsurface mixing in tropical
instability waves, Nat. Geosci., 2, 761–765, https://doi.org/10.1038/ngeo657., 2009.
Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The
Bluelink Ocean Data Assimilation System (BODAS), Ocean Model., 21, 46–70,
2008.
Oke, P. R., Larnicol, G., Fujii, Y. , Smith, G. C. , Lea, D. J., Guinehut,
S., Remy, E., Alonso Balmaseda, M., Rykova, T., Surcel-Colan, D., Martin, M.
J., Sellar, A. A., Mulet, S., and Turpin, V.: Assessing the impact of
observations on ocean forecasts and reanalyses: Part 1, Global studies, J.
Oper. Oceanogr., 8, 49–62, 2015.
Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Numerical
aspects of the application of recursive filters to variational statistical
analysis, Part I: Spatially homogeneous and isotropic Gaussian covariances,
Mon. Weather Rev., 131, 1524–1535, 2003a.
Qu, T., Song, Y. T., and Maes, C.: Sea surface salinity and barrier layer
variability in the equatorial Pacific as seen from Aquarius and Argo, J.
Geophys. Res.-Oceans, 119, 15–29, https://doi.org/10.1002/2013jc009375, 2014.
Reul, N., Fournier, S., Boutin, J., Hernandez, O., Maes, C., Chapron, B.,
Alory, G., Quilfen, Y., Tenerelli, J., Morisset, S., Kerr, Y., Mecklenburg
S., and Delwart, S.: Sea Surface Salinity Observations from Space with the
SMOS Satellite: A New Means to Monitor the Marine Branch of the Water
Cycle, Surv. Geophys., 35, 681–722, https://doi.org/10.1007/s10712-013-9244-0, 2013.
Riishøjgaard, L. P.: A direct way of specifying flow-dependent background
error correlations for meteorological analysis systems, Tellus A, 50, 42–57,
1998.
Sabia, R., Cristo, A., Talone, M., Fernández-Prieto, D., and Portabella, M.:
Impact of Sea Surface Temperature and Measurement Sampling on
the SMOS Level 3 Salinity Products, IEEE Geosci. Remote S., 11, 1245–1249, https://doi.org/10.1109/LGRS.2013.2290710,
2014.
Seelanki, V. and Sreenivas, P., Prasad KVSR: Impact of Aquarius Sea-Surface
Salinity Assimilation in Improving the Ocean Analysis Over Indian Ocean,
Mar. Geodesy, 41, 144–158, https://doi.org/10.1080/01490419.2017.1422817, 2018.
Tang, W., Alexander, F., Simon, Y., Tong, L., Akiko, H., Sanchez, F.,
Martinez, A., King, B., and Baranowski, D.: Validating SMAP SSS with in situ
measurements, Remote Sens. Environ., 200, 326–340, https://doi.org/10.1016/j.rse.2017.08.021, 2017.
Toyoda, T., Fujii, Y., Kuragano T, Matthews, J. P., Abe, H., Ebuchi, N.,
Usui, N., Ogawa, K., and Kamachi, M.: Improvements to a Global Ocean Data
Assimilation System Through the Incorporation of Aquarius Surface Salinity
Data, Q. J. Roy. Meteor. Soc., 141, 2750–2759, https://doi.org/10.1002/qj.2561.,
2015.
Tranchant, B., Greiner, E., Legalloudec, O., and Letraon, P.: Sea Surface
Salinity Data Assimilation Improvement in a Global Ocean Forecasting System
at 1/4∘ from SMOS and Aquarius Data, 2 science SMOS
conference, 25–29 May 2015, ESA-ESAC, (near Madrid) Spain, 2015.
Vinogradova, N. T., Ponte, R. M., Fukumori, I., and Wang, O.: Estimating
Satellite Salinity Errors for Assimilation of Aquarius and SMOS Data into
Climate Models, J. Geophys. Res.-Oceans, 119, 4732–4744, https://doi.org/10.1002/2014JC009906, 2014.
von Schuckmann, K., Le Traon P.-Y., Smith, N., Pascual, A., Brasseur, P., Fennel, K., Djavidnia, S., et al.:
The Copernicus Marine Service Ocean State Report,
J. Oper. Oceanogr., J. Oper. Oceanogr., 11, 1–142, https://doi.org/10.1080/1755876X.2018.1489208, 2018.
Vertenstein, M., Hoffman, F., Oleson, K., and Levis, S.: Community
Land Model version 3.0 (CLM3.0) user's guide, Technical
report, National Center for Atmospheric Research, 50 pp, 2004.
Wu, W.-S., Purser, R. J., and Parrish, D. F.: Three-dimensional variational
analysis with spatially inhomogeneous covariances, Mon. Weather Rev., 130,
2905–2916, 1992.
Yin, X., Boutin, J., Reverdin, G., Lee, T., Arnault, S., and Martin, N.:
SMOS Sea Surface Salinity signals of tropical instability waves, J. Geophys.
Res.-Oceans, 119, 7811–7826, https://doi.org/10.1002/2014JC009960, 2014.
Short summary
This work deals with the use of sea surface salinity measurements from space in the context of operational oceanography. The salinity plays an important role in the ocean–atmosphere coupling, especially when an El Niño event occurs in the tropical Pacific. However, it is still difficult to use such data in ocean models due to a large extent to large-scales biases. This study shows that from recent data with a suitable bias correction scheme, it is possible to improve our forecast skill.
This work deals with the use of sea surface salinity measurements from space in the context of...