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Abstract. Monitoring sea surface salinity (SSS) is important
for understanding and forecasting the ocean circulation. It is
even crucial in the context of the intensification of the wa-
ter cycle. Until recently, SSS was one of the less observed
essential ocean variables. Only sparse in situ observations,
mostly closer to 5 m depth than the surface, were available to
estimate the SSS. The recent satellite ESA Soil Moisture and
Ocean Salinity (SMOS), NASA Aquarius SAC-D and Soil
Moisture Active Passive (SMAP) missions have made it pos-
sible for the first time to measure SSS from space and can
bring a valuable additional constraint to control the model
salinity. Nevertheless, satellite SSS still contains some resid-
ual biases that must be removed prior to bias correction and
data assimilation. One of the major challenges of this study
is to estimate the SSS bias and a suitable observation error
for the data assimilation system. It was made possible by
modifying a 3D-Var bias correction scheme and by using the
analysis of the residuals and errors with an adapted statistical
technique.

This article presents the design and the analysis of an ob-
serving system experiment (OSE) conducted with the 0.25◦

resolution Mercator Ocean global analysis and forecasting
system during the El Niño 2015/16 event. The SSS data
assimilation constrains the model to be closer to the near-
surface salinity observations in a coherent way with the other
data sets already routinely assimilated in an operational con-
text. This also shows that the overestimation of E–P is cor-
rected by data assimilation through salting in regions where
precipitations are higher. Globally, the SMOS SSS assimila-
tion has a positive impact in salinity over the top 30 m. Com-
parisons to independent salinity data sets show a small but

positive impact and corroborate the fact that the impact of
SMOS SSS assimilation is larger in the Intertropical Con-
vergence Zone (ITCZ) and South Pacific Convergence Zone
(SPCZ) regions. There is little impact on the sea surface tem-
perature (SST) and sea surface height (SSH) error statistics.
Nevertheless, the SSH seems to be impacted by the tropical
instability wave (TIW) propagation, itself linked to changes
in barrier layer thickness (BLT).

Finally, this study helped us to progress in the understand-
ing of the biases and errors that can degrade the SMOS SSS
data assimilation performance.

1 Introduction

Recent progress in data treatment of sea surface salinity
(SSS) from space makes possible its assimilation in ocean
analysis systems (Boutin et al., 2017). Since the launch of
the European Space Agency (ESA) Soil Moisture and Ocean
Salinity (SMOS) mission in 2009, then the launch of NASA’s
Aquarius in 2011 and Soil Moisture Active Passive (SMAP)
in 2015, SSS observations from space are available and have
been used in many studies (e.g., Tang et al., 2017; Vino-
gradova et al., 2014; Toyoda et al., 2015; Reul et al., 2013).

Here we present the impact of assimilating SSS observa-
tions from space into the global 0.25◦ Mercator Ocean oper-
ational system (see Lellouche et al., 2013) evaluated in the
SMOS Niño 2015 project (https://www.godae-oceanview.
org/projects/smos-Nino15, last access: 18 April 2019). The
changes induced by assimilating the satellite SSS in addi-
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tion to the observation data operationally assimilated are an-
alyzed. The focus has been primarily on the 2015–2016 El
Niño event, in which strong SSS anomalies are seen in the
tropical Pacific in both model and observations (Hasson et
al., 2018; Gasparin and Roemmich, 2016; Guimbard et al.,
2017). The salinity plays an important role in the ocean–
atmosphere coupling in this region by isolating the ocean in-
terior due to the formation of a barrier layer. It is then not
only the thermocline depth that is of importance but also the
halocline when it becomes shallower than the thermocline.

The most striking event in the global ocean for the year
2015 was the strong El Niño event. It is as strong as in 1997
(von Schuckmann et al., 2018). Because the maximum of the
sea surface temperature (SST) anomalies stays off the eastern
coast of South and Central America, it was more likely to be
an El Niño Modoki (Ashok and Yamagata, 2009) or a central
Pacific El Niño (Kao and Yu, 2009) than a classical eastern
Pacific El Niño.

Warm anomalies began to build in the western Pacific in
2014 triggered by westerly wind bursts but did not lead to
the development of an El Niño in the year. However, as sug-
gested by McPhaden et al. (2015), the presence of El Niño
precursors in early 2014 helped the development of a strong
El Niño at the end of 2015. Anomalously eastward currents
along the Equator and in the North Equatorial Countercur-
rent (NECC) continued from 2014. This is associated with
an increase in precipitation and an eastward shift in fresh sur-
face salinities. A strong equatorial SSS anomaly in 2015 has
been observed and described (Hasson et al., 2018; Gasparin
and Roemmich, 2016). The Pacific freshening is due to an
active ITCZ in 2015, but advection by anomalous eastward
currents also plays a role in the SSS changes. The difference
between the two annual SSS anomalies in 2014 and 2015
in our so-called Reference simulation (hereafter REF) (see
Sect. 3) is shown in Fig. 1. The 2015–2016 El Niño is also
the first important climatic event fully captured by the SMOS
satellite where negative SSS anomalies have been observed
between 0 and 15◦ N around 170◦W from mid-2014 to mid-
2015 (Boutin et al., 2015).

Data assimilation experiments conducted within the
SMOS Niño 2015 project (https://www.godae-oceanview.
org/projects/smos-Nino15, last access: 18 April 2019) are
helping to prepare the assimilation of space SSS data and
allow testing their impact on short-term ocean forecast and
analysis. To evaluate the impact of SSS observations from
satellites on ocean monitoring and forecast systems in a real-
istic context, Observing System Experiments (OSEs) were
conducted with the UK Met Office and Mercator Ocean
global ocean forecast systems. Two simulations are com-
pared, one with and the other without SSS data assimila-
tion. The differences between the two simulations highlight
the “impact” of the withheld observations. Similar OSE ap-
proaches are generally used to evaluate observation networks
in the ocean data assimilation community of GODAE Ocean-
View (Oke et al., 2015; Lea et al., 2014).

Experiments conducted within the SMOS Niño15 project
to test the impact of the satellite SSS data were carefully de-
signed and analyzed to ensure robust conclusions on the im-
pact of SSS measurements on ocean analysis. The system
used for the OSE is based on the operational ocean monitor-
ing and forecasting system operated at Mercator Ocean. The
use of such system ensures that conclusions are relevant for
operational applications.

To assess the benefit of assimilating SSS from satellite in
a realistic context, all observations from the Global Ocean
Observing System (GOOS) that are assimilated in real-time
ocean analysis or reanalysis are also assimilated. SST, in situ
temperature and salinity observations (from moorings, drift-
ing platforms, ships), and along-track sea level anomalies
are assimilated in the REF simulation and OSEs. OSEs con-
ducted were designed to assess the impact of weekly SSS
products as the system has a weekly assimilation cycle.

It is recommended to withhold part of the usually assimi-
lated observations from the OSEs to have fully independent
data to compare with; see Fujii et al. (2015). The tropical-
atmosphere ocean (TAO) mooring salinity data were not as-
similated and kept for verification. Although restricted to the
few mooring points, those data are the only ones to provide
long-term time series of daily temperature and salinity obser-
vations.

Several studies (Reul et al., 2013, or Lee et al., 2012) show
that SSS measured from space can bring new information.
Recently, Toyoda et al. (2015) and Hackert et al. (2014) have
shown the impact of assimilating Aquarius data in the Pacific
region both in uncoupled and coupled ocean–atmosphere
systems. In a recent paper, Chakraborty et al. (2014) show
that the migration of the thermohaline fronts at the eastern
edge of the western Pacific warm pool can be more realistic
with the assimilation of Aquarius SSS. Data assimilation of
Aquarius SSS can also help to better understand the variabil-
ity of salinity structure in the Bay of Bengal (Seelanki et al.,
2018). Finally, satellite SSS data assimilation is promising in
an operational context both for ocean and seasonal forecast-
ing.

Nevertheless, technical challenges are still open to assim-
ilate SSS data efficiently in the context of global ocean anal-
ysis and forecasting. The assimilation of satellite SSS obser-
vations is challenging because of the various complex biases;
see Köhl et al. (2014). The difference between the forecast
and the satellite SSS can be 5 times larger than the misfit
between the forecast and near-surface ARGO salinity. Since
the signal-to-noise ratio is still not high today, retrieval al-
gorithms must be improved. Careful analysis of the SSS data
sets shows that a bias correction is needed before their assim-
ilation as shown by Martin (2016). To have an optimal anal-
ysis, the hypothesis of unbiased errors has to be respected.
This article details the bias correction scheme and the error
estimation scheme used in the data assimilation system for
those data. This is a necessary step to have a positive impact
on SSS data assimilation.
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Figure 1. SSS anomalies (practical salinity scale, pss) in 2014 (a) and 2015 (b) mean salinity difference (model (control run) – the World
Ocean Atlas climatology (WOA) 2013).

The structure of this article is as follows: after a descrip-
tion of the OSE where the operational system, the bias cor-
rection, the SSS observation error and the presentation of the
experimental design are described in Sect. 2, the effect of the
SMOS SSS data assimilation is presented in Sect. 3, while
discussions and conclusions are provided in Sect. 4.

2 OSE approach

The OSEs are conducted with the global 0.25◦ ocean analy-
sis and forecasting system running in real time at Mercator
Ocean. Detailed descriptions of the system can be found in
(Lellouche et al., 2013, 2018). After a brief description of the
system configuration, we will describe the data assimilation
components that were specifically developed or adapted for
the SSS data assimilation in detail.

2.1 Ocean model and configuration

The Mercator Ocean real-time analysis and forecast is based
on the version 3.1 of the NEMO ocean model (Madec, 2016),
which uses a 0.25◦ ORCA grid (Madec and Imbard, 1996).
The water column is discretized into 50 vertical levels, in-

cluding 22 levels within the upper 100 m, with 1 m resolution
at the surface to 450 m resolution at the bottom. The system
was initialized in fall 2006, using temperature and salinity
profiles from the EN4 climatology (Good et al., 2013).

The ocean model is forced by atmospheric fields from
the European Centre for Medium-Range Weather Forecasts-
Integrated Forecast System (ECMWF-IFS) at 3 h resolution
to reproduce the diurnal cycle. Momentum and heat turbu-
lent surface fluxes are computed by using (Large and Yea-
ger, 2009) bulk formulae. Because there are large known bi-
ases in precipitation, a satellite-based large-scale correction
of precipitation is applied to the precipitation fluxes. This
correction has been inferred from the comparison between
the remote-sensing system (RSS) passive microwave water
cycle (PMWC) product (Hilburn, 2009) and the IFS ECMWF
precipitation (Lellouche et al., 2013).

A monthly river runoff climatology is built with data on
coastal runoff from 100 major rivers from Dai et al. (2009).
This database uses new data, mostly from recent years, and
streamflow simulated by the Community Land Model ver-
sion 3 (Verstentein et al., 2004) to fill the gaps, in all land
areas except Antarctica and Greenland. At high latitudes the
effect of iceberg melting is also parameterized. The lack of
interannual variability of the largest rivers is known to lead
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to large errors in the surface ocean salinity in the analysis
and forecast. There is no SSS relaxation term for any clima-
tology as is the case in operational conditions. More details
concerning parameterization of the terms included in the mo-
mentum, heat and freshwater balances (i.e, advection, diffu-
sion, mixing and surface fluxes) can be found in Lellouche et
al. (2018).

2.2 Assimilated observations

2.2.1 Regular observation data

All ocean observations assimilated in the real-time forecast-
ing system are assimilated in the same way in the OSEs
presented here. Along-track sea level anomaly (SLA) ob-
servations distributed by Copernicus Marine Environment
Monitoring Service (CMEMS) (http://marine.copernicus.
eu/, last access: 18 April 2019) referenced to an unbiased
mean dynamic topography (MDT) based on the CNES/CLS
2013 MDT are used. Gridded satellite SST Operational Sea
Surface Temperature and Sea Ice Analysis (OSTIA) Level
4 (L4: SST analysis using optimal interpolation (OI) on a
global 0.054◦ grid) are assimilated each week in addition to
SST measurements from the in situ database delivered by the
CORIOLIS center (http://www.coriolis.eu.org/, last access:
18 April 2019). Assimilation of in situ temperature and salin-
ity profiles from this database is mostly from ARGO floats;
expendable bathythermograph (XBT); conductivity, temper-
ature, and depth measurements(CTDs); moorings; gliders;
and sea mammals. The assimilation of those routine observa-
tions in the OSEs provides a realistic context for the global
ocean observing system so that the experiments address the
complementarity of the different data sets with satellite SSS.
The only exception is the TAO mooring observations of
salinity that are withheld from the analysis and kept as in-
dependent observations to evaluate the performance of the
assimilation experiment and the impact of the SSS assimi-
lation. The model SSS in the real-time system is only con-
strained at a large scale by in situ observations, mostly Argo
floats that usually start to measure at 5 m depth.

2.2.2 SSS from space

In this study, we assimilate an SMOS Level 3 (L3: pro-
vided on a grid, but without infilling) SSS product at
0.25◦ resolution. L3 products are qualified (quality con-
trolled) and processed at the Data Production Center
(CPDC) of the Centre Aval de Traitement des Données
SMOS (CATDS CEC-LOCEAN) (Boutin et al., 2017).
Compared to Level 2 products (L2: SSS values at the
native swath resolution), they benefit from additional
corrections. These are 18-day products sampled at 25 km
resolution provided every 4 days (the precise descrip-
tion of the time filtering is in the documentation at http:
//www.catds.fr/Products/Available-products-from-CEC-OS/

L3-Debiased-Locean-v2, last access: 18 April 2019). We
checked that this temporal resolution fits the model resolu-
tion and the weekly analysis window used in the assimilation
scheme well; see the next section. In practice, the gridded
SSS which is the closest to the analysis date (i.e., the fourth
day of the week) provides the SSS data for the cycle. The
model counterpart is the time average over the weekly cycle.
Due to a low signal-to-noise ratio, the assimilation of the
SSS data is limited in the latitudinal band between 40◦ S and
40◦ N.

2.3 Data assimilation scheme

The assimilation scheme implemented in the real-time Mer-
cator Ocean systems is based on a reduced-order Kalman fil-
ter called SAM2 (Système d’Assimilation Mercator V2), and
it is described in Lellouche et al. (2013, 2018).

As in the operational ocean forecasting system, we use a
weekly assimilation cycle with an analysis date on the fourth
day of the week.

2.3.1 Background error covariances

The SAM2 system uses a background error covariance ma-
trix with a reduced basis of a fixed collection of multivariate
model anomalies. The model anomalies are computed from
a previous simulation over an 8-year period with an in situ
bias correction, detailed in Sect. 2.4. The forecast error co-
variances rely on a fixed basis, seasonally variable ensemble
of anomalies calculated from this long experiment. A signif-
icant number of anomalies are kept from one analysis to the
other, thus ensuring error covariance continuity. The aim is to
obtain an ensemble of anomalies representative of the error
covariance (Oke et al., 2008), which provide an estimate of
the error in the ocean state at a given period of the year. The
localization of the error covariance is performed assuming
zero covariance beyond a distance defined as twice the local
spatial correlation scale (Lellouche et al., 2013). These spa-
tial correlation scales are also used to select the data around
the analysis point. The model correction (analysis increment)
is a linear combination of these anomalies. This correction is
applied incrementally over the assimilation cycle temporal
window using an incremental analysis update (Bloom et al.,
1996; Benkiran and Greiner, 2008).

2.3.2 Observation error covariances

The observation errors specified in the assimilation scheme
are assumed to be uncorrelated with each other. Observation
errors include representativity errors specified as a fixed error
map and an instrumental error. Representativity errors for in
situ observations were calculated a posteriori from a reanal-
ysis over the period 2008–2012. The applied statistic method
(Desroziers et al., 2005) consists of the computation of a ra-
tio, which is a function of observation errors, innovations and
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Table 1. Instrumental errors used for the current operational system.

Instrumental errors (Rinst)

Altimetry

JASON2, ALTIKA/SARAL 2 cm
HAIYANG-2A 4 cm

SST

OSTIA L4 0.5 ◦C

In situ at sea surface

XBT, moorings, Argo floats, 0.03 ◦C and
sea mammals 0.0075 pss

residuals. These estimated errors are constant throughout the
year.

The instrumental errors of SLA, SST and in situ measure-
ments are summarized in Table 1. Figure 2a shows the rep-
resentativity error used for the in situ SSS and an example
of the resulting salinity error (Fig. 2b) for in situ data for the
week of 20–27 January 2016. The SSS error from space is
estimated during the bias correction scheme procedure (see
Sect. 2.5) and then used in SAM2.

2.4 Bias correction scheme

2.4.1 Bias correction scheme for large-scale 3-D
temperature and salinity: in situ T /S

Biases between model and data exist for subsurface quan-
tities such as temperature and salinity. As with the time-
varying error components, such biases can often be related
to systematic errors in the forcing (Leeuwenburgh, 2007).

As written in Lellouche et al. (2013), a 3D-Var bias cor-
rection is applied for large-scale 3-D temperature and salinity
fields. The aim of this bias correction is to correct the large-
scale, slowly evolving errors of the model, whereas the SAM
assimilation scheme is used to correct the smaller scales of
the model forecast error.

This is applied separately to the model’s prognostic T/S
equations from in situ profile innovations calculated over the
preceding month on a coarse grid (1◦× 1◦). This bias (x) is
the minimizer of the cost function given by Eq. (1).

J (x)= 1/2xTB−1x+ 1/2 (d −Hx)TR−1 (d −Hx), (1)

where d =〈Salinityin situ〉− 〈 Salinitymodel〉 for the salinity
field. Here, d is the innovation vector of T/S, i.e., the mean
innovation of in situ T/S over 1 month in 1◦×1◦ grid boxes.
Salinityin situ and Salinitymodel denote salinity values of in
situ data and model and 〈·〉 indicates the mean. x is the tem-
perature or salinity in situ bias to estimate, B denotes the
background error covariance of the 3-D bias, H is the ob-
servation operator and R is the observation covariance error.

The vertical grid is a coarse grid (only 23 levels) which is dif-
ferent to the model vertical grid (50 levels). For example, the
in situ innovation at sea surface for T/S is calculated from
the average of model and observations between 0 and 11 m
depth.

Because temperature and salinity biases are not necessar-
ily correlated at large scales, these two variables are pro-
cessed separately. Spatial correlations in B are modeled by
means of an anisotropic Gaussian recursive filter (Wu et al.,
1992; Riishøjgaard, 1998; Purser et al., 2003). Finally, bias
correction of T , S and dynamic height are computed and in-
terpolated on the model grid and applied as tendencies in the
model prognostic equations with a 1-month timescale.

2.4.2 Bias correction scheme for large-scale SSS: SSS
from space

Earlier attempts to assimilate SSS data have shown the im-
portance of using unbiased satellite SSS data while imple-
menting rigorous quality control in an upstream process
(Tranchant et al., 2015). In this study, the bias control of
satellite SSS has been modeled by modifying the current T/S
bias (in situ) correction 3D-Var cost function (Eq. 1). Two
extra terms to take into account biases in the satellite SSS
data have been added in the following 3D-Var cost function
(Eq. 2). The new SSS bias ξ is the minimizer of the cost
function given by the Eq. (2).

J (x,ξ)= (2)

+1/2 xTB−1x+ 1/2 (d −Hx)TR−1(d −Hx)

+1/2 ξTB−1
ξ ξ + 1/2 (dξ −Hξx)TR−1

ξ (dξ −Hξx),

where dξ = (〈SSSSMOS〉−ξ)−〈SSSmodel (0.5 m) 〉 Here, dξ
is the innovation of SSS bias at surface, i.e., the mean in-
novation of satellite SSS over 1 month on a 1◦× 1◦ grid.
SSSSMOS denotes the original (non-debiased) SMOS SSS,
SSSmodel (0.5 m) denotes the model SSS at 5 m depth and
the first term (〈SSSSMOS〉− ξ ) corresponds to the unbiased
SMOS SSS. Hξ is the linear operator which interpolates x
to the positions of SMOS observations. Bξ denotes the back-
ground error covariance of the 2-D satellite SSS bias and Rξ
is the estimated SMOS SSS observation covariance error.

To get an optimal set of parameters (weights, spatial scales
and errors), several estimations were performed with data
withdrawing. Figure 3a and c show examples of the model
salinity bias x, near the surfacewithout Eq. (1) and with
Eq. (2) the estimation of the bias of SMOS data, ξ . The pat-
terns are similar except at the Equator where the estimated
bias of SMOS data (Fig. 3b) influences the estimated model
salinity bias (Fig. 3c) with smaller scales. In this example,
a persistent large innovation at several depths (11, 41 and
79 m) (not shown here) induces a larger bias of salinity (neg-
ative anomaly) at the sea surface near 20◦ S, 120◦W.
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Figure 2. Representativity error of in situ SSS (Rrepr.) (a) and salinity error of in situ data at sea surface (b) over the tropical Pacific used in
the data assimilation system for the week of 20–27 January 2016.

2.5 SSS observation error

The Desroziers diagnostic (Desroziers et al., 2005) is com-
monly used for estimating observation error statistics and
is used here to adapt the observation error from the back-
ground and analysis residuals calculated in the bias correc-
tion (see also Lellouche et al., 2018). Following Desroziers
et al. (2005), the observation error of the bias Rξ is optimal
when it is equal to the statistical expectation of the cross-
product between the residual da

ξ and the innovation dξ of the
SSS bias.

Rξ = E
[
dξ · d

a
ξ

]
(3)

In fact, Rξ is estimated iteratively (n= 5) by an iterative
bootstrap method computed on a 3◦× 3◦ grid. Five succes-
sive analyses are made followed by five estimates of the
Desroziers ratio r iξ expressed as Eq. (4) for an analysis i.

r iξ =
E[

dξ · d
ai
ξ

]Ri−1
ξ (4)

From an observation error a priori Ro
ξ and by the successive

ratio r i=1,n
ξ , we obtain Eq. (5):

Rξ = rnξ . . .r
1
ξRo

ξ . (5)

The a priori error Ro
ξ is a combination of a zonally varying

error, together with an increase over regions with sparse in
situ data and near the coast. This increase varies with the
cycle. It means that the SSS bias could not be estimated ac-
curately in the absence of in situ data and hence will have
no impact in the assimilation in those regions void of in situ
data. Figure 4 shows an example of the final Desroziers ra-
tio product r5

ξ r
4
ξ r

3
ξ r

2
ξ r

1
ξ . It illustrates how the fixed zonal er-

ror is increased near the Equator and reinforced near Central
America where in situ data are sparse. There is also a local
increase near Samoa (170◦W–13◦ S), probably due to radio
frequency interferences (RFIs) pollution. Several simulations
have been done with and without bias correction in order to
check the validity of the estimated SSS errors in the data as-
similation scheme SAM2.

Finally, for each weekly analysis, the total observation er-
ror of satellite SSS (SMOS) (Fig. 5) prescribed in the data
assimilation scheme is the maximum of the above observa-
tion error estimated during the bias correction process and
the measurements error (Rinstr.) supplied by the data produc-
ers (used as a threshold).

RTot =max
(
Rξ ,Rinstr.

)
(6)

These measurement error estimates bring smaller scales than
can be estimated by the Desroziers diagnostic.
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Figure 3. Example of model salinity bias (x) near the surface (Eq. 1) calculated from in situ data between 0 and 10 m depth only (a), of SSS
bias (ξ ) (Eq. 2) calculated from SMOS SSS (b) and salinity bias (x) (Eq. 2) from in situ data between 0 and 10 m and SMOS SSS (c) in the
tropical Pacific (week of 20–27 January 2016).

2.6 OSE design

Two parallel simulations were produced: the REF experi-
ment and the SMOS experiment (hereafter SMOSexp); see
Table 2. The only difference is the assimilation of the SSS
SMOS observations. Both experiments begin in January

2014 from the same initial conditions coming from a pre-
vious reanalysis using only the bias correction of T/S with-
out any data assimilation. The period covers the onset and
development of the El Niño 2015 event. The length of the
OSE should cover at least 1 year, more if possible, as it takes

www.ocean-sci.net/15/543/2019/ Ocean Sci., 15, 543–563, 2019
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Figure 4. Example of the final product of Desroziers ratios r5
ξ r

4
ξ r

3
ξ r

2
ξ r

1
ξ on a 3◦× 3◦ grid (see Eq. 4) estimated and applied to the a priori

error (week of 20–27 January 2016)

Figure 5. Example of SSS error (Eq. 6) of SMOS over the tropical Pacific used in the data assimilation system for the week of 20–27 Jan-
uary 2016.

3 months for the system to be in equilibrium with the new
data assimilated. This “adjustment” period is longer for ob-
servations deeper in the ocean (below the thermocline). Here,
up to 2-year simulations are analyzed (January 2014–March
2016).

The comparison between the two simulations highlights
the impact of the SSS data assimilation on the ocean circula-
tion and the comparison to the other observations (indepen-
dent or not) will allow us to verify the coherency between the
different observation networks and the way they are assimi-
lated.

3 OSE analysis

Different diagnostics are now used to assess the impact of
SSS data assimilation on the analyzed model fields. First the
analysis from the REF and SMOSexp simulations is eval-
uated against the assimilated observations. Then, the 3-D
fields of the simulations with and without SSS data assim-
ilated are compared and the changes in the surface and sub-
surface fields are analyzed. Finally, TAO/TRITON (TRIan-
gle Trancs Ocean buoy Network) array salinity observations
which are deliberately withheld and delayed-time ThermoS-
alinoGraph (TSG) which are not assimilated in the analy-
sis of all experiments are used to conduct an independent
analysis–observation comparison. Our analysis focuses on
the tropical Pacific region during the 2015 El Niño event.
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Table 2. Experiment descriptions.

Experiment Period Assimilated SSS
name observations product

Reference (REF) January 2014– Regular observation data No SSS assimilation
or control run March 2016 without satellite SSS

SMOSexp January 2014– Regular observation data 4-day 0.25◦× 0.25◦ SMOS
March 2016 plus SMOS satellite data from LOCEAN

SSS observations (L3 debiased LOCEAN v2)

3.1 Assessment of the misfit reduction based on the
data assimilated in the analysis

3.1.1 Assimilation diagnostics

The REF and SMOSexp simulations differ only by assimi-
lating satellite SSS data (Table 2). We first check the success
of the assimilation procedure in reducing the misfit from the
assimilated SSS observations within the prescribed error bar.
We then look at the root mean square (rms) of in situ salinity
observation innovations near 6 m depth in both simulations.
The forecasted field is mostly independent of the reference
data because those data have not been assimilated yet and
the model forecast ranges from 1 to 7 days.

Figure 6 shows the time series of root-mean-square errors
(RMSEs) of the model near-surface salinity at 6 m depth with
respect to in situ observations (dotted lines) and of the model
SSS (0.5 m depth) with respect to the bias-corrected SMOS
SSS (solid lines) for both simulations (REF in black, SMO-
Sexp in red). As expected, the SMOS SSS data assimilation
clearly leads to a significant reduction in the innovations of
the SMOS data (solid lines). When the SSS SMOS is assim-
ilated, the time series of RMSE for the global, the tropical
Pacific and the central Pacific (Niño3.4) domains present the
same reduction with a higher variability for the smallest do-
main (Niño3.4). The global RMSE to SMOS data are around
0.28 pss (practical salinity scale) in the reference simulation
and reduced to 0.21 pss when debiased SMOS data are as-
similated, corresponding to an error reduction of 24 %. This
shows that the combination of bias correction and data as-
similation perform well.

Nevertheless, the essential issue is the salinity RMSE com-
pared to in situ salinity observations (dotted lines). This error
is slightly reduced from 0.20 to 0.19 pss in the global do-
main (5 %), but this reduction can reach 10 % in the northern
tropical Pacific where the salinity anomaly is the strongest;
see Table 3. This larger decrease in the near-surface salinity
RMSE is consistent with that observed for the SSS SMOS
RMSE (30 %). In addition, the reduction of the near-surface
salinity RMSE is more important in the western part of the
equatorial Pacific (Niño4). This shows that the assimilation
of SMOS SSS observations does not introduce overall inco-
herent information and can even reduce the misfit with the

in situ salinity observations. It also confirms that SSS errors
estimated in the bias correction procedure and used in the
assimilation scheme are well tuned and the data bring co-
herent information. Consequently, salinity large-scale biases
are removed well. From Table 3, it should be mentioned that
the number of in situ salinity observation per week is very
small compared to the SMOS observations and is maybe not
always sufficient to ensure robust statistics in small regions.

Time series and maps of the misfits between observation
and model forecasts are complementary in the analysis of
the temporal and spatial variability of the model–observation
differences. Figure 7 shows the mean and root-mean-square
differences of monthly mean SSS in the analysis fields in
REF and SMOSexp compared to the original (non-debiased)
SMOS data over the year 2015 for the tropical Pacific Ocean.

The mean SSS bias in REF exhibits large-scale pat-
terns, coinciding with the 2015 SSS anomaly for the open
ocean (Fig. 1). A large bias is also found in the Indonesian
archipelago. In contrast, the bias is effectively reduced in
SMOSexp as are the root-mean-square differences, which are
reduced to less than 0.2 pss (black isohaline) in most of the
tropical Pacific Ocean.

The mean RMSE and the percentage of RMSE difference
in the salinity profiles (mainly from Argo floats) are com-
puted over the entire period and the global domain (Fig. 8).
There is a slight decrease in the first 30 m below the surface
when SSS data are assimilated additionally to in situ salin-
ity data. It shows that the additional information brought by
the SSS is in agreement with the salinity in situ observations
close to the surface. It can even help improve the global salin-
ity representation in the first 30 m by better constraining the
model forecast with the satellite SSS.

In situ temperature innovations in the global domain as
well as in the tropical Pacific region do not show signifi-
cant changes. The same is found for SLA (CMEMS/DUACS,
Data Unification and Altimeter Combination System, along
track) and SST innovations (OSTIA L4). SSS data assimila-
tion has a quite neutral impact on the innovations associated
with those observations.
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Figure 6. RMSE of SSS with respect to SMOS data (solid lines) and RMSE of salinity near 6 m depth with respect to in situ salinity data
(dashed lines) in the 1–6-day forecast fields in REF (black lines) and SMOSexp (red line) in the global domain (a), the tropical Pacific
(b) and in the Niño3.4 region (c). RMSEs are evaluated for each week, and the mean RMSE of the in situ salinity is denoted in the legend.
The regions used here have southwest and northeast corners defined as follows: tropical Pacific – 30◦ S, 120◦ E to 30◦ N, 70◦W; Niño3.4 –
5◦ S, 170◦W to 5◦ N, 120◦W.

3.1.2 Impact of assimilating SMOS data during El
Niño 2015/16

We now look at the changes in the analyzed surface and sub-
surface fields due to the SSS data assimilation by comparing
the 3-D analysis of the REF and SMOSexp experiments. At a
basin scale, the REF simulation already agrees well with the
2015 mean deduced from the “unbiased” CATDS SMOS ob-

servations (Fig. 9). SMOS data assimilation induced changes
on the order of 0.2 pss. It tends to weaken the salinity neg-
ative anomaly represented in the REF simulation within the
ITCZ and SPCZ regions. This is in agreement with Kidd et
al. (2013), who show an overestimation of the ECMWF pre-
cipitation in the tropics compared to satellite observations.
Elsewhere, the SMOS data assimilation increases the salinity.
Large changes also occurred in the coastal zones (Indonesian
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Table 3. Percentage of RMSE difference in SSS for SMOS and for in situ salinity at 6 m depth in different regions. The average number of
SSS data assimilated per week is also indicated.

Percentage of RMSE difference in SSS when SMOS
SSS is assimilated and mean number of observations

SMOS SSS In situ salinity
near 6 m depth

Regions % Mean number % Mean number
(southwest to northeast corners) of obs. per week of obs. per week

Global ocean 24 % 372 000 4.7 % 1500

Tropical Pacific 26 % 165 000 7.9 % 500
(30◦ S, 120◦ E) to (30◦ N, 70◦W)

Niño 3.4 23 % 9500 4.8 % 36
(5◦ S, 170◦W) to (5◦ N, 120◦W)

Niño 4 22 % 9500 6.7 % 38
(5◦ S, 160◦ E) to (5◦ N, 150◦W)

Niño 3 25 % 11 400 3.3 % 57
(5◦ S, 150◦W) to (5◦ N, 90◦W)

North tropical Pacific 30 % 22 300 10 % 33
(8◦ N, 160◦ E) to (20◦ N, 100◦W)

South tropical Pacific 24 % 24 000 6.6 % 64
(20◦ S, 160◦ E) to (8◦ S, 90◦W)

archipelago and Central America coast), even if the specified
error in SSS data was larger in those regions than in the open
ocean.

The associated vertical salinity changes brought by SMOS
SSS data assimilation at the Equator are represented in
Fig. 10. The largest high-salinity anomaly is found in the
first 50 m depth and along the coastal bathymetry; elsewhere
changes are very small (less than 0.05 pss). Overall, at the
Equator (excepted in coastal areas), the data assimilation of
SMOS SSS leads to fresher waters in the east and saltier wa-
ters in the west for the year 2015.

The highest variability of the surface salinity at a monthly
scale during the year 2015 is found within the ITCZ, SPCZ
and in the eastern Pacific fresh pool in both simulations and
SMOS observations (not shown). SMOS assimilation de-
creases the intensity of the variability of the SSS, in agree-
ment with the observed variability. In summary, the SSS as-
similation acts to counteract the precipitation excess, with a
visible result in the salinity both in terms of time mean but
also in terms of variability.

During the El Niño 2015 event, a strong salinity anomaly
pattern developed in the tropical Pacific (Gasparin et Roem-
mich, 2016); see also Fig. 1. This anomaly corresponds to the
ITCZ and SPCZ areas. Figure 11 shows the time–longitude
evolution of the SSS at 5◦ N, the latitude where the salin-
ity anomaly is the largest (Hackert et al., 2014). Both the
REF and SMOSexp simulations represent the decrease in the

salinity in fall 2015 between 160◦ E and 120◦W. Note that
this salinity anomaly is smaller in the SMOS data (SMOS
SSS is saltier) with a smaller extent. The eastern freshwater
pool extended further west during 2015, but it was fresher in
the REF simulation compared to the SMOSexp experiment.

While the impact of SSS assimilation is neutral on the
other variables (temperature and sea surface height, SSH)
in terms of data assimilation statistics (RMSE averaged in
different areas), it is not the case when we look at the time
evolution of model fields.

SST differences at 5◦ N and zonal velocity differences at
the Equator are represented in Fig. 12. The differences are
mainly associated with the wave propagation seen in all the
surface fields. In the eastern freshwater pool, the SMOS data
assimilation weakens the freshening and induces a slight
warming of about 0.05 ◦C (Fig. 12b). At the Equator, the
zonal eastward advection is enhanced (positive pattern at the
east of the date line) from January to October 2015 (Fig. 12c)
which could help the warm water pool migration to the east
but this effect is very weak here. Note that the eastward
warm water pool migration is known to promote the ocean–
atmosphere coupling and thus the triggering of El Niño. In
the eastern basin, there is also an increase in the westward
propagation during fall 2015 that is possibly linked to the
increase in tropical instability waves (TIWs), which will be
shown later.
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Figure 7. Mean difference (a, b) and root-mean-square difference (c, d) of monthly mean SSS (pss) with respect to the SMOS data (model
minus SMOS) in the analysis fields in REF (a, c) and SMOSexp (b, d) experiments in the year 2015.

Figure 8. Average salinity RMSE (pss) compared to all in situ mea-
surements (a) over the period 1 January 2014 to 2 March 2016 in
the global domain for the REF (green line) and SMOSexp (red line)
experiments as a function of depth over the top 50 m. The corre-
sponding percentage of RMSE difference in all in situ salinity mea-
surements between REF and SMOSexp experiments (b) (positive
difference implies a reduction in RMSE by the SSS assimilation).

Another effect of SSS changes can be viewed on bar-
rier layers which are quasi-permanent in the tropical Pacific.
Barrier layer thickness (BLT) can influence the air–sea in-
teraction, ocean heat budget, climate change and onset of
El Niño–Southern Oscillation (ENSO) events (Maes et al.,
2002, 2004). The barrier layer acts as a barrier to turbulent
mixing of cooler thermocline waters into the mixed layer and
thereby plays an important role in the ocean surface layer
heat budget (Lukas and Lindstrom, 1991). The Hovmöller
diagram of BLT at 5◦ N is shown in Fig. 13 for both exper-
iments. It shows the occurrence of great BLT in the eastern
Pacific (120–140◦W) from September to November, which
corresponds to measurements taken during strong El Niño
events (Mignot et al., 2007). Note also that the eastward dis-
placement of the thick barrier layer has already been ob-
served during previous El Niño events (see Qu et al., 2014).

From Figs. 12a and 13, we show that the eastern and cen-
tral Pacific are saltier in the SMOSexp experiment, which
induces a decrease in the stratification and then a decreased
BLT. A decrease in the stratification by SSS data assimila-
tion can increase the convective mixing, on the one hand, and
the TIWs can be modified by this change in stratification, on
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Figure 9. Mean October 2015 SSS estimation from the REF experiment (a), the SMOSexp experiment (b), the SMOS SSS measurements
(c) and annual mean difference (2015) between the SMOSexp and REF experiment (d). The isohaline 34.8 pss is the (black solid line) is
represented.

Figure 10. Vertical section along the Equator of the mean model
salinity difference between the SMOSexp and REF experiments for
the year 2015.

the other hand. From a long-term TAO mooring record at
0◦ N, 140◦W, Moum et al. (2009) suggest that mixing may
always be enhanced during the passage of TIWs both in and
below the surface mixed layer. Lien et al. (2008) show that
turbulence mixing was modulated strongly by the TIW. Con-
sequently, even if TIWs are less active during an El Niño
phase than in a La Niña phase, it was interesting to investi-
gate the TIW propagation signature in SSH. Moreover, Yin
et al. (2014) and Lee et al. (2012) also show the capability
of monitoring TIWs by Aquarius and SMOS data. Lyman
et al. (2007) show that TIWs, which have a 33-day period,
are associated with the first meridional-mode Rossby wave.
Hovmöller diagram of daily anomalies of SSH at 4◦ N fil-
tered at 33 days are shown in Fig. 14. For both experiments,
the westward propagation of TIW is shown in the eastern part
of the basin. A reinforcement of the TIWs at the eastern edge
of the western Pacific warm pool near 140◦W (the slope is
steeper) appears during the end of the second half of 2015 in
the SMOSexp experiment (0.35 m s−1) compared to the REF
experiment (0.20 m s−1). As mentioned above, this could be
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Figure 11. Hovmöller diagram of SSS at 5◦ N for the REF (a) and SMOSexp (b) and SMOS data (c).

Figure 12. Hovmöller diagram of differences in SSS (a), SST (b) at 5◦ N and sea surface zonal velocity (U ) (c) at the Equator between the
SMOSexp and the REF experiment in 2015.

correlated to the decrease in BLT (see Fig. 13) which is asso-
ciated with a mixing enhancement. By contrast, a weakening
of TIWs appears during the August–September period in the
eastern part of the basin for the SMOSexp experiment. The
same kind of impact has been shown recently in Hackert et
al. (2014) for the initialization of the coupled forecast, where

a positive impact of SSS assimilation is provided on surface
layer density changes via Rossby waves. They also show that
these density perturbations provide the background state to
amplify equatorial Kelvin waves and the ENSO signal.
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Figure 13. Hovmöller diagram of barrier layer thickness (BLT) at 5◦ N for the REF experiment in (a) and for the SMOSexp (b) experiment
in 2015.

Figure 14. Hovmöller diagram of 28–40-day (33 days) band-passed SSH anomalies at 4◦ N referenced to the temporal annual mean of
June–December 2015 for the REF experiment (a) and for the SMOSexp experiment (b). The propagation speeds of 0.20 and 0.35 m s−1

(solid lines) are representative of the propagation speed for the 28–40-day bands.

3.2 Evaluation of the analysis toward independent
observations

We now compare the analyzed fields to independent ob-
servations, i.e., withheld from all assimilation experiments.
This will allow verification that the changes in the physical
fields induced by the SMOS data assimilation are in agree-
ment with external sources of information. For this purpose,
the TAO mooring (salinity) observations and the reprocessed
TSG data from the French SSS Observation Service were

withheld from all experiments. This is therefore a fully in-
dependent validation.

3.2.1 Comparisons to TAO mooring

TAO moorings deliver high-frequency measurements at fixed
locations. Such platforms allow us to look at high-frequency
variability that is not captured by drifting platforms. The
hourly analyzed salinity is collocated at the TAO mooring
positions for the REF and SMOSexp simulations. Figure 15
shows the time evolution of TAO salinity observations (valid
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Figure 15. Time evolution of the hourly TAO observed salinity
(black), the hourly model REF (green), SMOSexp (red) simulations
and the assimilated SMOS data (magenta) at three different TAO
moorings locations: cold tongue (a) (7.97◦ N, 125◦W), warm pool
(b) (4.99◦ S, 165◦ E) and (c) salt front (4.99◦ S, 170◦W) from Jan-
uary 2015 to March 2016. The precipitation rate (blue line) coming
from the atmospheric ECMWF forcing is superimposed

at 1 m depth) at three mooring locations in the equatorial Pa-
cific (warm pool, cold tongue and salt front) compared to
the model (analysis) for the REF and SMOSexp OSE exper-
iments at the first level (∼ 0.5 m depth). Assimilated SMOS
data have also been added. In this example, the salinity evo-
lution of the REF experiment (in green) appears less cor-
related with the TAO salinity mooring observations (black
dots). The SMOSexp simulation shows a better agreement,
except for some strongly variable events. The differences be-
tween the SMOSexp simulation and TAO non-assimilated
observations are most of the time less than 0.1 pss. The high-
frequency variability seen in the observations is also repro-
duced in the assimilative simulations, with a better agreement
when SMOS data are assimilated, except during some spe-
cific periods. Tang et al. (2017) also found some disagree-
ment among the TAO, SMAP/SMOS and Argo analysis dur-
ing short periods. There is an improvement in the cold tongue
during the end of summer, in fall 2015 and during the last
2 months of the SMOS simulation (Fig. 15a). The data assim-
ilation of SMOS reduces the freshening in this region. Glob-
ally, an improvement occurs also in the warm pool (Fig. 15b)
over the entire period. One interesting feature is that when
TAO mooring data are missing during a long period near the
salt front, the SSS from the SMOSexp experiment is differ-
ent but closer to TAO mooring when measurements come
back (Fig. 15c). Obviously, the time series of the assimilated
SMOS data is smoother but is able to capture the large-scale
variability. This also shows the level of accuracy we need
to capture higher variability. The precipitation rate superim-
posed on the SSS proves that it is not the only process that
plays a role in the salinity variability. Indeed, a high precip-
itation rate does not necessarily induce a strong freshening
at the sea surface where advection, vertical mixing and SSS
SMOS data assimilation can counteract its effect. This also
shows that the observation error is not necessarily increased
locally depending on the precipitation.

These three examples show a positive impact, but it is
also interesting to have a global view of all TAO moor-
ings over the 2015/2016 El Niño event. As in Martin et
al. (2019), Fig. 16 shows the differences in root mean square
difference (RMSD) from hourly TAO mooring salinity val-
ues at 1 m depth calculated over the period 1 January 2014
to 16 March 2016. The impact of the SMOS assimilation
is contrasted by showing negative (positive) values, which
indicates that it reduces (increases) the RMSD. The impact
is positive and more significant in the western tropical Pa-
cific near the dateline and in the western Pacific up to 5◦ N.
The impact is quite neutral and even negative in the eastern
tropical Pacific (140–110◦W) between 2◦ S and 2◦ N, where
generally (i) the SMOS bias is larger (Fig. 3b), (ii) there are
few in situ SSS data (Fig. 2) and (iii) the observation error is
larger (Fig. 5). Actually, the impact of SMOS SSS assimila-
tion is larger in the ITCZ and SPCZ regions, as shown also
in Fig. 9. This reflects the tendency for the SMOS data as-
similation to reduce the low-salinity biases by mitigating the
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Figure 16. Difference in model salinity RMSE (pss) at 1 m depth calculated against the 1 m depth TAO mooring salinity values (SMOSexp
– REF) calculated over the period 1 January 2014 to 16 March 2016 (negative/positive difference implies a reduction/increase in RMSE by
the SMOS assimilation). Moorings are only included if they have more than 1 week of measurements during the period.

overestimation of E–P in the regions of large precipitation.
Finally, during the El Niño 2015/2016 event, there is a small
positive impact overall from the SMOS assimilation with a
reduction in RMSD from 0.326 to 0.316 pss (about 3 %).

3.2.2 Comparisons to ship SSS

Post-processed TSG observations from the French SSS Ob-
servation Service (SSS-OS; (http://www.legos.obs-mip.fr/
observations/sss, last access: 18 April 2019) were collected
along the routes of voluntary merchant ships; see Alory et al.,
2015. The SSS estimates have a ∼ 2.5 km resolution along
the ship track with an estimated error close to 0.08 pss. Salin-
ity analyzed fields from REF and SMOSexp simulations is
collocated to the TSG observations. Salinity observations
from vessel-mounted thermosalinographs allow the valida-
tion of the short timescales and space scales of near-surface
salinity. Two ship routes (Fig. 17a) that cross the tropical Pa-
cific Ocean in June 2015 are chosen to verify that salinity
changes when SSS SMOS data are assimilated are in agree-
ment with such observations.

Figure 17b and c (zoom) show the comparison between
the TSG salinity observations (in red) along the Matisse ship
route collocated with the REF (black dashed line) and SMO-
Sexp (black line) salinity analyzed fields. The variability of
the SSS measurements, lower than the daily frequency, is
well represented in both simulations with only small differ-
ences of less than 0.2 pss except in the freshwater in the east-
ern part of the basin. In this region, the salinity dropped down
to less than 34.0 pss. The REF simulation differs from the
TSG data by more than 0.5 pss within the eastern freshwater
pool, marked by a very sharp salinity front. The SMOSexp
simulation shows a much better agreement with the SSS from
the TSG observations: even if the differences remain large,
the misfit is reduced. This confirms once again that the weak-
ening of the freshening in the freshwater pool in the eastern
Pacific induced by the SMOS data assimilation is realistic, as
it is seen by different in situ observation platforms.

4 Discussion and conclusions

The L3 SMOS CATDS data used in this study are regarded
as an unbiased product. Yet, they still contain some residual
biases that must be removed prior to bias correction and data
assimilation. One of the major challenges of this study was to
estimate the residual SSS bias and a suitable observation er-
ror for the data assimilation system. It was made possible by
using a 3D-Var bias correction scheme and an analysis of the
residuals and errors with a statistical technique (Desroziers et
al., 2005). The “debiased” data could then be assimilated by
the SAM2 assimilation scheme which relies on the unbiased
hypothesis. The bias estimated by the ocean forecasting sys-
tem can also be used to correct the L3 SMOS CATDS data
for other purposes.

The system was carefully tuned and tested to efficiently as-
similate the new SSS observations before running the longer
simulations that are analyzed here. The proper specification
of the observation operator and error covariance matrix were
also based on discussions with the data provider. This study
helped us to progress in the understanding of the biases and
errors that can degrade the SMOS SSS performance.

Nevertheless, there is still room for improvement. For in-
stance, we used a zonal error as input to the error estima-
tion with the Desroziers technique (Desroziers et al., 2005).
It could be beneficial to take into account the smaller scales
linked to a shallow stratification that arises with strong pre-
cipitations and/or river runoff.

The SMOS data need accurate in situ data (not only at the
surface) to correct their own biases and estimate a suitable er-
ror (including data or system representativity). When enough
accurate SMOS data are available, they really act as a gap-
filler. There is a clear impact on the scale of about 1–2◦. This
can be seen in Fig. 12 (Hovmöller diagram), and additional
spectral analyses (not shown) confirm this finding. So, it is
important for future satellite SSS to provide a good accuracy
at those scales. It also shows that background error correla-
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Figure 17. Ship route of the Matisse with TSG salinity observations (PSS) (a) and TSG salinity observations compared to near-sea-surface
salinity analysis (b, c) from the OSEs (red line: observations; dashed line: REF; black solid line: SMOSexp). A zoom from the orange
rectangle of (b) is shown in (c).

tion length scales used in the bias correction scheme could
be optimized with an improvement of the in situ network and
the SSS SMOS accuracy.

Globally, the SSS data assimilation slightly improves the
simulation compared to a simulation assimilating only ob-
servations of in situ, SST and SLA data. It highlights that no
incoherent information was brought by the SSS data com-
pared to the other assimilated observations. When looking at
the impact of the SMOS SSS assimilation, we found a pos-
itive impact in salinity with respect to in situ data over the
top 30 m. The RMSE of in situ surface salinity is reduced in
all regions of the tropical Pacific and is very often close to
0.15 pss. The improvement varies depending on the region
and can reach 10 % in the north tropical Pacific where the
SSS anomaly is the strongest. Comparisons to independent
TAO/TRITON data corroborate the fact that the impact of
SMOS SSS assimilation is larger in the ITCZ and SPCZ re-
gions. This also reflects that the overestimation of E–P is
mitigated by the data assimilation through salting in regions
of large precipitations.

There is little impact on the SST. For instance, the area of
the SST warmer than 28.5 ◦C (warm pool region) was little
affected. It means that the local impact on the air–sea cou-
pling is negligible. However, an impact on TIW has been
seen through SSH fields. Amplitude and propagation speed
of TIWs are reduced while their activity is enhanced in the
eastern part of the basin during the last half of 2015. This
wave activity enhancement may induce a stronger mixing
which decreases the BLT. Nevertheless, the decreased BLT
caused by an increase in sea surface salinity due to SMOS
SSS assimilation may also enhance a stronger mixing. An-
other result can be seen in the strengthened eastward advec-
tion of the warm pool in 2015 (Fig. 12, Hovmöller diagram of
zonal velocity difference). These findings are close to those
of Hackert et al. (2014) with a global ocean–atmosphere cou-
pled model, but benefits in term of seasonal forecasting still
have to be quantified.

The next step will be to assimilate SSS from space at
higher latitudes where low SST degrades the brightness tem-
perature sensitivity to SSS (Sabia et al., 2014). A longer
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ocean reanalysis with continuously improved SSS SMOS
(available for over 9 years) and SMAP (available since 2015)
data could bring new information on the water cycle.

The focus of this study was on the tropical Pacific. But
the system is global, and, in spite of RFI pollution near some
coasts, we found clear improvements near the Amazon and
the Rio de la Plata plumes. So, the benefit from assimilating
SMOS SSS is not restricted to the equatorial band. Its pos-
itive impact near the midlatitude major rivers is a chance to
better monitor the strengthening of the water cycle (Durack,
2015).
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