Articles | Volume 15, issue 2
https://doi.org/10.5194/os-15-401-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-401-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A simple predictive model for the eddy propagation trajectory in the northern South China Sea
Jiaxun Li
Department of Atmospheric and Oceanic Sciences, Institute of
Atmospheric Science, Fudan University, Shanghai, China
Naval Institute of Hydrographic Surveying and Charting, Tianjin, China
Guihua Wang
CORRESPONDING AUTHOR
Department of Atmospheric and Oceanic Sciences, Institute of
Atmospheric Science, Fudan University, Shanghai, China
Huijie Xue
State Key Laboratory of Tropical Oceanography, South China Sea
Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
School of Marine Sciences, University of Maine, Orono, Maine, USA
Huizan Wang
Institute of Meteorology and Oceanography, National University of
Defense Technology, Nanjing, China
Related authors
No articles found.
Wenhu Liu, Guihua Wang, Changlin Chen, and Muping Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2022-439, https://doi.org/10.5194/egusphere-2022-439, 2022
Preprint archived
Short summary
Short summary
We explore the spatial-temporal characteristics of oceanic bottom mixed layer (BML) in the South China Sea (SCS) and investigated its potential formation mechanisms. We found that the BML in the SCS has significant inhomogeneity. In particular, the BML is thick and unstable over the northern continental slope and is relatively thin and stable over the continental shelf and in deep-sea regions. These findings may enhance our understanding of the BML dynamics in the SCS and other marginal seas.
Xiao-Yi Yang, Guihua Wang, and Noel Keenlyside
The Cryosphere, 14, 693–708, https://doi.org/10.5194/tc-14-693-2020, https://doi.org/10.5194/tc-14-693-2020, 2020
Short summary
Short summary
The post-2007 Arctic sea ice cover is characterized by a remarkable increase in annual cycle amplitude, which is attributed to multiyear variability in spring Bering sea ice extent. We demonstrated that changes of NPGO mode, by anomalous wind stress curl and Ekman pumping, trigger subsurface variability in the Bering basin. This accounts for the significant decadal oscillation of spring Bering sea ice after 2007. The study helps us to better understand the recent Arctic climate regime shift.
Chunlin Li, Yunjie Hu, Fei Zhang, Jianmin Chen, Zhen Ma, Xingnan Ye, Xin Yang, Lin Wang, Xingfu Tang, Renhe Zhang, Mu Mu, Guihua Wang, Haidong Kan, Xinming Wang, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 4957–4988, https://doi.org/10.5194/acp-17-4957-2017, https://doi.org/10.5194/acp-17-4957-2017, 2017
Short summary
Short summary
Detailed emission factors for smoke particulate species in PM2.5 and PM1.0 were derived from laboratory simulation of crop straw burning using aerosol chamber systems. Based on this, emissions for crop residue field burning in China were calculated and characterized with respect to five different burning scenarios. Moreover, health effects and health-related economic loss from smoke particle exposure were assessed; a practical emission control policy for agricultural field burning was proposed.
Cited articles
Aberson, S. D. and Sampson, C. R.: On the predictability of tropical cyclone
tracks in the northwest pacific basin, Mon. Wea. Rev., 131, 1491–1497, 2003.
Ali, M. M., Kishtawal, C. M., and Jain, S.: Predicting cyclone tracks in the
north Indian Ocean: An artificial neural network approach, Geophys. Res.
Lett., 34, L04603, https://doi.org/10.1029/2006GL028353, 2007.
Bao, S., Zhang, R. Wang, H., Yan, H., and Yu, Y.: Salinity profile estimation
in the Pacific Ocean from satellite Surface salinity observations, J. Atmos.
Oceanic. Technol., 36, 53–68, 2019.
Cai, S., Long, X., Wu, R., and Wang, S.: Geographical and monthly variability
of the first baroclinic rossby radius of deformation in the south china sea,
J. Mar. Syst., 74, 711–720, 2008.
Canes, M. R.: Description and evaluation of GDEM-V3.0, Rep.
NRL/MR/7330-09-9165, Nav. Res. Lab, Washington, DC, 2009.
Chelton, D., DeSzoeke, R., and Schlax, M.: Geographical variability of the
first baroclinic rossby radius of deformation, J. Phys. Oceanogr., 28,
433–460, 1998.
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global
observations of large oceanic eddies, Geophys. Res. Lett., 34, L15606,
https://doi.org/10.1029/2007GL030812, 2007.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011 (data available at:
http://cioss.coas.oregonstate.edu/eddies/, last access: 30 March 2017).
Chen, G., Hou, Y., and Chu, X.: Mesoscale eddies in the South China Sea: Mean
properties, spatiotemporal variability, and impact on thermohaline structure,
J. Geophys. Res., 116, C06018, https://doi.org/10.1029/2010JC006716, 2011.
Cushiman-Roisin, B.: Introduction to Geophysical Fluid Dynamics, Prentice
Hall, 320 pp., 1994.
Demaria, M. and Kaplan, J.: A statistical hurricane intensity prediction
scheme (SHIPS) for the Atlantic basin, Weather Forecast., 9, 209–220, 1994.
Dominiak, S. and Terray, P.: Improvement of ENSO prediction using a linear
regression model with a southern Indian Ocean sea surface temperature
predictor, Geophys. Res. Lett., 32, L18702, https://doi.org/10.1029/2005GL023153, 2005.
Dong, C., Mcwilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt
transports by eddy movement, Nat. Commun., 5, 3294,
https://doi.org/10.1038/ncomms4294, 2014.
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping
of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys.
Res., 105, 19477–19498, https://doi.org/10.1029/2000JC900063, 2000 (data available at: ftp://ftp.aviso.oceanobs.com/,
last access: 20 November 2018).
Early, J. J., Samelson, R. M., and Chelton, D. B.: The evolution and
propagation of quasigeostrophic ocean eddies, J. Phys. Oceanogr., 41,
1535–1555, 2011.
Emery, W. J., Thomas, A. C., Collins, M. J., Crawford, W. R., and Mackas, D.
L.: An objective method for computing advective surface velocities from
sequential infrared satellite images, J. Geophys. Res., 91, 12865–12878,
https://doi.org/10.1029/JC091iC11p12865, 1986.
Fu, L.-L.: Pathways of eddies in the South Atlantic Ocean revealed from
satellite altimeter observations, Geophys. Res. Lett., 33, L14610,
https://doi.org/10.1029/2006GL026245, 2006.
Fu, L.-L.: Pattern and speed of propagation of the global ocean eddy
variability, J. Geophys. Res., 114, C11017, https://doi.org/10.1029/2009JC005349, 2009.
Hurlburt, H., Chassignet, E., Cummings, J., Kara, A., Metzger, E., Shriver,
J., Smedstad, O., Wallcraft, A., and Barron., C.: Eddy Resolving Global Ocean
Prediction, Washington DC, American Geophysical Union Geophysical Monograph
Series, 353–381, https://doi.org/10.1029/177GM21, 2008.
Jiang, G.-Q., Xu, J., and Wei, J.: A deep learning algorithm of neural
network for the parameterization of typhoon-ocean feedback in typhoon
forecast models, Geophys. Res. Lett., 45, 3706–3716, https://doi.org/10.1002/2018GL077004, 2018.
Klocker, A. and Marshall, D. P.: Advection of baroclinic eddies by depth mean
flow, Geophys. Res. Lett., 41, 3517–3521, https://doi.org/10.1002/2014GL060001, 2014.
Leese, J. A., Novak, C. S., and Clark, B. B.: An automated technique for
obtaining cloud motion from geosynchronous satellite data using cross
correlation, J. Appl. Meteor., 10, 118–132, 1971.
Li, J., Zhang, R., and Jin, B.: Eddy characteristics in the northern
South China Sea as inferred from Lagrangian drifter data, Ocean Sci., 7,
661–669, https://doi.org/10.5194/os-7-661-2011, 2011.
Li, J., Wang, G., and Zhai, X.: Observed cold filaments associated with
mesoscale eddies in the South China Sea, J. Geophys.
Res.-Oceans, 122, 762–770, https://doi.org/10.1002/2016JC012353, 2017.
Liu, W. T. and Xie, X.: Space-based observations of the seasonal changes of
South Asian monsoons and oceanic response, Geophys. Res. Lett., 26,
1473–1476, 1999.
Ma, X., Jing, Z., Chang, P., Liu, X., Montuoro, R., Small, R. J., Bryan, F. O.,
Greatbatch, R. J., Brandt, P., Wu, D. X., Lin, X. P., and Wu, L. X.: Western boundary
currents regulated by interaction between ocean eddies and the atmosphere,
Nature, 535, 533–537, 2016.
Matear, R. J. and McNeil, B. I.: Decadal accumulation of anthropogenic
CO2 in the Southern Ocean: A comparison of CFC-age derived estimates
to multiple-linear regression estimates, Global Biogeochem. Cy., 17, 1113,
https://doi.org/10.1029/2003GB002089, 2003.
Morrow, R., Birol, F., Griffin, D., and Sudre, J.: Divergent pathways of
cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 31, L24311,
https://doi.org/10.1029/2004GL020974, 2004.
Mittermaier, M.: The potential impact of using persistence as a reference
forecast on perceived forecast skill, Weather Forecast., 23, 1022–1031,
2008.
Müller, W. A., Baehr, J., Haak, H., Jungclaus, J. H., Kröger, J.,
Matei, D., Notz, D., Pohlmann, H., von Storch, J. S., and Marotzke, J.:
Forecast skill of multi-year seasonal means in the decadal prediction system
of the Max Planck Institute for Meteorology, Geophys. Res. Lett., 39, L22707,
https://doi.org/10.1029/2012GL053326, 2012.
Ninnis, R. M., Emery, W. J., and Collins, M. J.: Automated extraction of pack
ice motion from advanced very high resolution radiometer imagery, J. Geophys.
Res., 91, 10725–10734, https://doi.org/10.1029/JC091iC09p10725, 1986.
Nof, D.: On the β-induced movement of isolated baroclinic eddies, J.
Phys. Oceanogr., 11, 1662–1672, 1981.
Oey, L.-Y., Ezer, T., Forristall, G., Cooper, C., DiMarco, S., and Fan, S.:
An exercise in forecasting loop current and eddy frontal positions in the
Gulf of Mexico, Geophys. Res. Lett., 32, L12611, https://doi.org/10.1029/2005GL023253,
2005.
Rienecker, M. M., Mooers, C. N. K., and Robinson, A. R.: Dynamical
interpolation and forecast of the evolution of mesoscale features off
northern California, J. Phys. Oceanogr., 17, 1189–1213, 1987.
Rio, M.-H. and Hernandez, F.: A mean dynamic topography computed over the
world ocean from altimetry, in situ measurements, and a geoid model, J.
Geophys. Res., 109, C12032, https://doi.org/10.1029/2003JC002226, 2004.
Robinson, A. R., Carton, J. A., Mooers, C. N. K., Walstad, L. J., Carter, E.
F., Rienecker, M. M., Smith, J. A., and Leslie, W. G.: A real-time dynamical
forecast of ocean synoptic/mesoscale eddies, Nature, 309, 781–783, 1984.
Seo, K. H., Wang, W., Gottschalck, J., Zhang, Q., Schemm, J.-K., Higgins, W.,
and Kumar, A.: Evaluation of MJO Forecast Skill from Several Statistical and
Dynamical Forecast Models, J. Climate, 22, 2372–2388, 2009.
Shaw, P. T.: Seasonal variation of the intrusion of the Philippine Sea water
into the South China Sea, J. Geophys. Res., 96, 821–827, 1991.
Wang, G., Su, J., and Chu, P. C.: Mesoscale eddies in the South China Sea
observed with altimeter data, Geophys. Res. Lett., 30, 2121,
https://doi.org/10.1029/2003GL018532, 2003.
Wang, G., Chen, D., and Su, J.: Generation and life cycle of the dipole in
the South China Sea summer circulation, J. Geophys. Res., 111, C06002,
https://doi.org/10.1029/2005JC003314, 2006.
Wang, G., Chen, D., and Su, J.: Winter eddy genesis in the eastern South
China Sea due to orographic wind-jets, J. Phys. Oceanogr., 38, 726–732,
https://doi.org/10.1175/2007JPO3868.1, 2008.
Wang, G., Li, J., Wang, C., and Yan, Y.: Interactions among the winter
monsoon, ocean eddy and ocean thermal front in the South China Sea, J.
Geophys. Res., 117, C08002, https://doi.org/10.1029/2012JC008007, 2012.
Xiu, P., Chai F., Shi, L., Xue, H., and Chao, Y.: A census of eddy activities
in the South China Sea during 1993–2007, J. Geophys. Res., 115, C03012,
https://doi.org/10.1029/2009JC005657, 2010.
Zhang, R.: Meachanims for the low frequency of summer Arctic sea ice extent,
P. Natl. Acad. Sci. USA, 112, 4570–4575, 2015.
Zhang, Z., Wang, W., and Qiu, B.: Oceanic mass transport by mesoscale eddies,
Science, 345, 322–324,
2014.
Zeng, X., Li, Y., and He, R.: Predictability of the loop current variation
and eddy shedding process in the Gulf of Mexico using an artificial neural
network approach, J. Atmos. Oceanic. Technol., 32, 1098–1111, 2015.
Zhuang W., Du, Y., Wang, D., Xie, Q., and Xie, S.-P.: Pathways of mesoscale
variability in the South China Sea, Chin. J. Oceanol. Limn., 28, 1055–1067,
2010.
Short summary
A novel predictive model is built for eddy propagation trajectory using the multiple linear regression method. This model relates various oceanic parameters to eddy propagation position changes in the northern South China Sea (NSCS). Its performance is examined in the NSCS based on five years of satellite altimeter data, and demonstrates its significant forecasting skills over a 4-week forecast window compared to the traditional persistence method.
A novel predictive model is built for eddy propagation trajectory using the multiple linear...