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Abstract. A novel predictive model was built for eddy propa-
gation trajectory using the multiple linear regression method.
This simple model relates various oceanic parameters to eddy
propagation position changes in the northern South China
Sea (NSCS). These oceanic parameters mainly represent the
effects of β and mean flow advection on the eddy propaga-
tion. The performance of the proposed model has been ex-
amined in the NSCS based on five years of satellite altimeter
data and demonstrates its significant forecasting skills over
a 4-week forecast window compared to the traditional per-
sistence method. It was also found that the model forecasting
accuracy is sensitive to eddy polarity and the forecast season.

1 Introduction

Mesoscale eddies are coherent rotating structures that are
ubiquitous over most of the world’s oceans (Chelton et al.,
2007). They play an important role in the transport of mo-
mentum, heat, mass, and chemical and biological tracers;
thereby they become critical for issues such as general cir-
culation, water mass distribution, ocean biology, and climate
change (Wang et al., 2012; Dong et al., 2014; Zhang et al.,
2014; Ma et al., 2016; Li et al., 2017). Therefore, forecasting
the eddy propagation positions accurately is not only impor-
tant scientifically, but also important practically for problems

such as designing ocean observing systems, fishing planning,
and detecting underwater acoustics.

Traditionally, ocean dynamical models were used as a
tool to predict the evolution of ocean eddies (Robinson et
al., 1984). Since mesoscale eddies are often associated with
strong nonlinear processes and their dynamical mechanisms
are quite different, the operational forecasting of eddies has
been a big challenge for ocean numerical models. Much
progress has been made in recent years in eddy-resolving
ocean prediction. With data assimilation and the increase
of model resolution, model forecasting skills are increasing.
Daily forecasting errors of eddy center positions in the north-
western Arabian Sea and the Gulf of Oman are 44–68 km
with the 1/12◦ global HYCOM model and reach to 22.5–
37 km with the 1/32◦ NLOM model (Hurlburt et al., 2008).
The forecasting skill and predictability of dynamical models
can only be increased by better assimilation schemes (ini-
tialization), sufficient data (especially the subsurface), and
improving resolution (physics and computing) (Rienecker et
al., 1987; Oey et al., 2005). These restrictions preclude the
all-pervading operational use of dynamical models when the
initial data and computing power are not feasible due to cer-
tain reasons.

In this paper, we developed a simple statistical model to
predict the eddy positions 1–4 weeks in advance using only
the past positions of the eddy and its surrounding fields.
Our “test block” of ocean is the northern South China Sea
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Figure 1. The trajectories of (a) anticyclonic and (b) cyclonic eddies with lifetime≥ 5 weeks in the northern South China Sea (NSCS). The
solid circle represents the ending position of each trajectory. In (a), TI: Taiwan Island, LI: Luzon Island, LS: Luzon Strait, VN: Vietnam. The
two isobaths are for 200 and 2000 m, respectively.

(NSCS). The South China Sea is a semi-enclosed sea un-
der the dramatic influence of the East Asian monsoon and
Kuroshio intrusion (Liu and Xie, 1999; Shaw, 1991). Due
to the variable external forcing and complex topography,
mesoscale eddies show obvious geographic distributions and
various characteristics (Wang et al., 2003; Xiu et al., 2010;
Chen et al., 2011). A common characteristic is the over-
all westward tendency of eddy trajectories regardless of the
eddy polarity (Fig. 1). We will first analyze the pattern and
dynamics of the common westward movement of eddies in
the NSCS, then choose the potential predictors and develop
a simple predictive model for eddy propagation trajectories,
and finally evaluate the model performance and discuss the
impact of eddy polarity and season on the forecasting accu-
racy.

2 Data and methods

2.1 Data

The sea level anomalies (SLAs) are from the Archiv-
ing, Validation and Interpretation of Satellite Oceano-
graphic data (AVISO; ftp://ftp.aviso.oceanobs.com/, last ac-
cess: 20 November 2018) (Ducet et al., 2000). AVISO
merges the measurements of TOPEX/Poseidon, the Euro-
pean Remote Sensing satellites (ERS-1 and ERS-2), the
Geosat Follow-on, Jason-1 and Jason-2 satellites and the En-
visat, and spans the period from 14 October 1992 to 7 Au-
gust 2013. Its temporal resolution is weekly, and its spatial
resolution is 0.25◦ latitude by 0.25◦ longitude. To estimate
the large-scale geostrophic currents, we use the absolute dy-
namic topography (ADT), which consists of the SLAs and a
mean dynamic topography (MDT). The method for calculat-
ing the MDT was introduced by Rio and Hernandez (2004),
and the data are also distributed by AVISO.

The monthly climatology of observed ocean temperature
and salinity from US Navy’s Generalized Digital Environ-
ment Model (GDEM-Version 3.0) is used to calculate the
phase speed of nondispersive baroclinic Rossby waves in
the NSCS. It has a horizontal resolution of 0.25◦ latitude
by 0.25◦ longitude, and 78 standard depth layers from 0 to
6600 m with the vertical resolution varying from 2 m at the
surface to 200 m below 1600 m (Canes, 2009).

The NSCS eddy trajectory data are derived from the
third release of the global eddy dataset (http://cioss.coas.
oregonstate.edu/eddies/, last access: 30 March 2017). The
eddy center positions within their trajectories are recorded at
7-day time intervals. A detailed description of the eddy tra-
jectory dataset can be found in Chelton et al. (2011). To fore-
cast the eddy trajectory 1–4 weeks in advance using the last
position of the eddy, only eddies with a lifetime of 5 weeks
or longer are retained in this study.

2.2 The maximum cross-correlation method

The maximum cross-correlation (MCC) method is a space–
time-lagged technique, which can estimate the surface mo-
tions from time-sequential remote sensing images. It has
been successfully used to track clouds from geosynchronous
satellite data (Leese et al., 1971), to compute sea-ice motion
(Ninnis et al., 1986) and advective surface velocities (Emery
et al., 1986) from sequential infrared satellite images, and to
determine the propagation velocities of ocean eddies from
satellite altimeter data (Fu, 2006, 2009). The MCC method
used in this study is the same as that of Fu (2009), which
is a little different from that of Emery et al. (1986). In the
method of Emery et al., a subarea called the “template win-
dow” of the first image is correlated with many identically
sized subimages within a large “search window” area of the
second image and the speed and direction of the maximum
correlation can be estimated. In the method of Fu (2009),
the correlations of the SLA at a given location with all the

Ocean Sci., 15, 401–412, 2019 www.ocean-sci.net/15/401/2019/

ftp://ftp.aviso.oceanobs.com/
http://cioss.coas.oregonstate.edu/eddies/
http://cioss.coas.oregonstate.edu/eddies/


J. Li et al.: A simple predictive model for the eddy propagation trajectory 403

neighboring SLAs at various time lags are computed, and the
speed and direction of the maximum correlation can be esti-
mated. The reason for this difference may be due to the low
space–time resolution of the SLA compared to other infrared
satellite images.

The MCC method mainly consists of two procedures (Fu,
2009). First, the cross-correlations of the SLA time series
(h) with others within a certain range box are computed for
some time lags (1T ) in multiples of 7 days (time resolution
of SLA data) at each grid node location (x,y) as follows:

Cx,y(1x, 1y, 1T )= h(x, y, t)h(x+1x, y+1y, t +1T ), (1)

where1x and1y are the spatial lags and the over bar means
time averaging. Second, the position of the maximum corre-
lation at each time lag (1T ) is identified, and a speed can
be derived from the time lag and the distance of this posi-
tion from the origin calculated. Then an average speed vector
(u,v) weighted by the correlation coefficients is calculated
from the estimates at various time lags as follows:

(u, v)=

∑
i(1xi/1Ti, 1yi/1Ti)Ci∑

iCi
, (2)

where Ci is the maximum correlation at 1Ti , and 1xi , 1yi
are the distances between the position of maximum correla-
tion and the origin. The average velocities are then assigned
to the eddy movement velocities at the given grid point.

To focus on the global mesoscale eddy, the time lags were
limited to less than 70 days and the dimension of the win-
dow was less than 400 km (Fu, 2009). In the NSCS, the
time lags should be limited to less than 42 days, since with
larger time lags many correlation coefficients are below the
95 % confidence level (Zhuang et al., 2010). Besides, Chen et
al. (2011) found that eddies propagate with 5.0–9.0 cm s−1 in
the NSCS. Thus, the search radius can be generally limited to
300 km (9.0 cm s−1

· 42 days≈ 300 km) to reduce incidence
of spurious MCC vectors. Since the mean flow and associ-
ated eddy propagation in the NSCS have seasonal variabil-
ity, we divided the weekly SLA data from 1992 to 2013 into
four groups according to four seasons (winter: December–
February, spring: March–May, summer: June–August, au-
tumn: September–November). Then the seasonal climatolog-
ical eddy propagation velocities can be estimated from the
same seasonal group at intervals of 1 week using the MCC
method.

2.3 The multiple linear regression model

The multiple linear regression method is used to develop
a simple statistical predictive model for relating various
oceanic parameters to eddy propagation position changes.
Multiple linear regression is a linear approach to model-
ing the relationship between the response and explanatory
variables. This classical method has many practical uses in
oceanography and meteorology, such as the prediction of

Table 1. The eight predictands used in the predictive model.

Predictand Symbol

1-week zonal displacement DX1
1-week meridional displacement DY1
2-week zonal displacement DX2
2-week meridional displacement DY2
3-week zonal displacement DX3
3-week meridional displacement DY3
4-week zonal displacement DX4
4-week meridional displacement DY4

Arctic sea ice extent (Zhang, 2015), the estimation of sub-
surface salinity profiles (Bao et al., 2019), the estimation
of anthropogenic CO2 accumulation in the Southern Ocean
(Matear and McNeil, 2003), the forecast of typhoon tracks
(Aberson and Sampson, 2003) and intensities (Demaria and
Kaplan, 1994), Madden–Julian Oscillation forecast (Seo,
2009), and the El Niño Southern Oscillation (ENSO) pre-
diction (Dominiak and Terray, 2005).

In this study, the predictands (dependent variables) are the
zonal and meridional displacements from the initial positions
at each forecast time (Table 1). The choice of the predictors
based on physical analysis are shown in detail in Sect. 3.
Since the variables used for the regression involve different
scales and units, it is inappropriate to use them directly as it
may cause the fitting to deviate from the physical constraints.
Thus, all the variables are normalized with their anomalies
divided by their corresponding standard deviations before the
regressing. After that, the normalized predicted zonal (merid-
ional) displacement DX (DY) can be estimated using a mul-
tiple linear regression method:

DXj =
n∑
i=1

ai,jPi,j = 1,4, (3)

DYj =
n∑
i=1

bi,jPi,j = 1,4, (4)

where the subscript j refers to the forecasting interval (1–
4 weeks), the subscript i refers to the serial number of nor-
malized predictors (P ), n represents the number of selected
predictors; a and b denote the regression coefficients of pre-
dictors onto DX and DY, respectively.

There are a total of eight regression equations, i.e., both
the meridional and zonal directions for the weeks 1–4. We
separate the whole eddy trajectories into two sets: one for re-
gressing and the other for forecasting. For week 1, we used
1981 (76 %) eddy trajectory segments (a segment is the dis-
tance between two neighboring eddy center positions at 7-
day intervals on a single eddy trajectory) of 283 eddy trajec-
tories during 1992–2008 for regressing, and 623 (24 %) eddy
trajectory segments of 81 eddy trajectories during 2009–
2013 for forecasting. The other forecast experiments for 2,
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3, and 4 weeks maintain the same periods for regressing and
forecasting. To evaluate the overall forecasting ability of the
model, the mean forecasting error is defined as the averaged
distance (D) between the predicted eddy positions and the
satellite observed eddy positions following the great circle
distance (Ali et al., 2007):

D = R · arccos[sinYo sinYF + cosYo cosYF cos(Xo−XF )], (5)

where R is the earth radius, Xo (XF ) and Yo(YF ) represent
the observed (predicted) longitude and latitude in degrees,
respectively.

3 Dynamics of eddy propagation in the NSCS and
choice of predictors

3.1 Pattern and dynamical analysis of eddy
propagation in the NSCS

One of the most important steps in the development of a re-
gression model is the choice of independent variables (pre-
dictors). In choosing the potential predictors, the candidates
should have a physical link (direct or indirect) with the eddy
propagation. To investigate the dynamical factors associated
with eddy propagation in the NSCS, the pattern of eddy prop-
agation speeds should be estimated first.

Instead of a Lagrangian description of the movement of
individual eddies as reported in the previous studies (e.g.,
Wang et al., 2003; Chen et al., 2011), the space–time-lagged
MCC method provides an Eulerian description of the pat-
tern of eddy propagation speeds (Fu, 2009). As shown in
Fig. 2a and d, the MCC method has mapped the propaga-
tion speeds of eddies in the NSCS for the winter and summer
seasons, respectively. The propagation of eddies is generally
westward in the ocean interior and southward in the west-
ern boundary with a typical speed of 4–10 cm s−1. The prop-
agation direction of eddies generated southwest of Taiwan
is southwestward along the 200–2000 m isobaths, indicating
the steering effects of the ocean’s bathymetry. There are two
distinct differences between the winter season and the sum-
mer season: one is that the eddy propagation speed in winter
is relatively larger than that in summer; and the other is that
the influence of the western boundary current can be clearly
seen near 16–18◦ N along the Vietnam coast only in winter,
creating an organized band of a southward eddy propagation
pattern. The different patterns of the eddy propagation speed
in winter and summer have revealed several details of the
mean flow in the NSCS: the large-scale circulation under the
influence of northeasterly winter monsoon is stronger than
that in the southwesterly summer monsoon, and the robust
western boundary current in winter becomes relatively weak
and unorganized in summer.

Eddies also have their own westward drift under the plan-
etary β effect in the absence of any mean flow (Nof, 1981;
Cushiman-Roisin, 1994). Their propagation speed is approx-

imately the phase speed of the first baroclinic Rossby waves
with preferences for small poleward and equatorward deflec-
tion of cyclonic and anticyclonic eddies in the global ocean,
respectively (Chelton et al., 2007). Theoretically, the phase
speed of the first baroclinic Rossby wave is CR1 =−βR1,
where the first baroclinic Rossby radius of deformation R1 is
estimated using the climatological GDEM temperature and
salinity data. Figure 2c and d show the theoretical phase
speed of nondispersive baroclinic Rossby waves calculated
from GDEM winter (summer) climatological temperature
and salinity data. The direction of the phase speed is due west
and the magnitude increases from about 2 cm s−1 in the north
latitude to 12 cm s−1 in the south latitude. It should be noted
that the difference between the winter and summer distribu-
tions of the phase speed of the first baroclinic Rossby wave
is relatively small. The underlying reason is that the variation
of seasonal stratification in the upper layer has little effect on
the seasonal distribution of the first baroclinic Rossby defor-
mation radius (Chelton et al., 1998; Cai et al., 2008).

The differences between the satellite observed propaga-
tion speed (Fig. 2a and b) and the propagation speed induced
by the β effect (Fig. 2c and d) in winter and summer are
shown in Fig. 2e and f, respectively, which may represent the
propagation speed caused by the advection of the mean flow.
To further illustrate the advection effect of the mean flow,
the winter (summer) mean dynamic topography is superim-
posed on the propagation speed caused by the mean flow. As
can be seen, there is a good spatial correlation (0.61 in the
zonal direction and 0.52 in the meridional direction, both of
which are significant at the 95 % confidence level) between
the cyclonic eddy propagation speed advected by the mean
flow and the large-scale surface cyclonic circulation in win-
ter, both of which are centered northwest of the Luzon Island
(Fig. 2e). Due to the weak cyclonic gyre in the NSCS, the
spatial correspondence in summer (Fig. 2f) is not as obvious
as that in winter. Since the propagation speed induced by the
β effect is westward, this tendency is reinforced by the mean
flow in the north, but compensated by the mean flow in the
south. Because the mean flow in the south is not so strong,
it is not able to reverse eddy propagation from its westward
motion induced by the β effect, as in the Antarctic Circum-
polar Current region (Klocker and Marshall, 2014), no matter
if it is winter or summer.

To explore other possible causes of eddy propagation,
Fig. 3a shows the annual mean eddy propagation speed. The
most striking pattern is that the eddy propagation speed is
markedly accelerated on the northern continental shelf of the
NSCS (also can be seen in Fig. 2a and b), which corresponds
well to the region of negative maximum meridional topo-
graphic βT =

f
H

dH
dy , where H is the water depth. Their cor-

relation is−0.40, which is significant at the 95 % confidence
level. This relatively good correspondence suggests that be-
sides the planetary β effect and advection of mean flow, the
topographic β effect also contributes to the eddy propaga-

Ocean Sci., 15, 401–412, 2019 www.ocean-sci.net/15/401/2019/



J. Li et al.: A simple predictive model for the eddy propagation trajectory 405

Figure 2. Winter climatology of (a) eddy propagation speed directions (vectors) and magnitudes (color, cm s−1). (c) The phase speed direc-
tions (vectors) and magnitudes (color, cm s−1) of the first baroclinic Rossby wave. (e) The speed difference (vectors) between (a) and (c) su-
perimposed on the winter mean absolute dynamic topography (color, cm). (b), (d) and (f) are the same as (a), (c) and (e), respectively, but
represent the summer season.

tion in some regions where the bathymetry gradient cannot
be neglected.

3.2 Choice of predictors

As mentioned above, the mean flow advection and the effects
of β (both planetary and topographic) are closely related with
the eddy propagation. These factors should be considered as
the potential predictors, and the seasonal climatological eddy
zonal and meridional motions (U_CLIM, V_CLIM) derived
from the MCC are calculated to represent the effects of β
and the mean flow advection. Note that we have tried to de-
compose U_CLIM and V_CLIM into the effects of β and
the mean flow advection, and to incorporate them into the re-
gression model, but found no improvement in the forecasting
skill.

In reality, the large-scale circulation evolves during the
forecast period; this synoptic effect of mean flow advec-
tion should also be taken into account. To help account for
the time variation of the mean flow advection, the current
zonal and meridional absolute geostrophic flows (U_ADT,
V_ADT) derived from the satellite data are evaluated at the
beginning of the forecast time along the eddy trajectory. Be-
sides, the persistence factors should also be considered in
the regression model, since they contain the “latest” pattern
of eddy propagation under the effects of β and the mean
flow advection. The chosen persistence factors are the ini-
tial eddy position (LON, LAT) and the eddy motion past 1
week (U_PAST, V_PAST). All the chosen eight predictors
are listed in Table 2 and can be derived along the eddy trajec-
tories. They can be divided into two categories: (1) P1–P6 re-
lated to climatology and persistence, i.e., “static predictors”,
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Figure 3. (a) Annual mean of eddy propagation speed directions (vectors) and magnitudes (color, cm s−1). (b) Meridional distribution of the
topographic β effect (color shading).

Table 2. The eight predictors used in the predictive model.

Predictor Symbol

Initial longitude (LON) P1
Initial latitude (LAT) P2
Eddy zonal motion past 1 week (U_PAST) P3
Eddy meridional motion past 1 week (V_PAST) P4
Climatological eddy zonal motion from MCC (U_CLIM) P5
Climatological eddy meridional motion from MCC (V_CLIM) P6
Initial zonal absolute geostrophic flow (U_ADT) P7
Initial meridional absolute geostrophic flow (V_ADT) P8

and (2) P7–P8 related to the changing environmental condi-
tions, i.e., “synoptic predictors”.

The relative contribution of each predictor on each fore-
casting period is illustrated by the normalized regression co-
efficient (Table 3). The larger the normalized regression co-
efficient, the greater its contribution to the individual fore-
cast equation. Persistence factors (U_PAST, V_PAST) are
initially the most important predictors, while after 2 weeks
the most important predictors are the climatology factors
(U_CLIM, V_CLIM). The synoptic predictors (U_ADT,
V_ADT) contribute less to the forecast equations compared
to persistence and climatology. The underlying reason may
be that the week to week variations are too large, so the repre-
sentation of the initial U_ADT and V_ADT to the actual ve-
locities in the 4-week window is not as good as the U_CLIM
and V_CLIM representation.

4 Performance of the multiple regression model

4.1 Comparison to the persistence method

To evaluate the performance of our prediction model, the
persistence method and our model are used to predict the
eddy trajectories during 2009–2013. The persistence method
is a benchmark comparison and forecast reference widely ac-

Table 3. Normalized regression coefficients ai,j (bi,j ) for use with
the eddy zonal (meridional) motion prediction equation.

j = 1 j = 2 j = 3 j = 4

i = 1 −0.10 (0.03) −0.14 (0.04) −0.18 (0.05) −0.24 (0.06)
i = 2 0.10 (0.02) 0.13 (0.01) 0.16 (0.00) 0.18 (−0.03)
i = 3 0.26 (0.00) 0.21 (0.03) 0.19 (0.07) 0.18 (0.09)
i = 4 −0.02(0.19) −0.01 (0.10) 0.01 (0.08) 0.00 (0.08)
i = 5 0.14 (0.09) 0.19 (0.13) 0.23 (0.16) 0.26 (0.16)
i = 6 0.05 (0.17) 0.07 (0.23) 0.09 (0.26) 0.16 (0.27)
i = 7 −0.05 (0.02) −0.07 (0.02) −0.07 (0.02) −0.07 (0.03)
i = 8 −0.03 (−0.07) −0.01 (−0.08) 0.02 (−0.09) 0.04 (−0.09)

cepted in the atmospheric and oceanic sciences (Mittermaier,
2008; Müller et al., 2012), which is defined as χt+1 = χt ,
where χ is any parameter, and t is a distance time step. In
this study, χ refers to the eddy propagation speed and the
persistence means no change of propagation speed from the
initial state (Fig. 4a). The root mean square error (RMSE)
and correlation coefficient between the predicted and actual
longitudes (latitudes), and the mean distance errors of our
model and the persistence method over a 4-week horizon are
computed.

Table 4 lists the comparison of prediction results. It shows
that our multiple linear regression model beats the persis-
tence method and indicates our model has some forecast-
ing skill (Table 5): the RMSE between the predicted and the
actual longitudes (latitudes) throughout the 4-week horizon
is 32.7–89.2 km (29.5–73.5 km) with the correlation coeffi-
cients >0.93 (>0.95).

As an example, Fig. 5 compares the 1–2 weeks forecasting
performances of our model (blue) and the persistence method
(green) with the observation (red). Generally, the eddy trajec-
tory predicted 1–2 weeks in advance by our model coincides
well with the observed trajectory with an overall average er-
ror of 27.6 km (week 1) and 42.5 km (week 2). Even the con-
voluted pattern can be reproduced properly (Fig. 5b, and d)
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Figure 4. (a) Schematic of the persistence method. A, B, and C are three observed eddy positions on the trajectory at each 1-week interval.
C’ is the predictive eddy position 1 week in advance by the persistence method; BC’=AB. Thus CC’ is the persistence error at week
1. (b) Scatterplot of persistence error versus forecast error of our model at week 1 with a best fit linear regression.

Figure 5. A comparison of the satellite observed trajectory (red), the trajectory predicted by our model (blue) and persistence trajectory
(green) at (a) week 1 and (c) week 2. (b) and (d) are the same as (a) and (c), respectively, but for a recurved trajectory. The biweekly eddy
positions of each trajectory are shown by the solid circles. The ending position of each trajectory is represented by the solid triangle.

Table 4. Comparison of the mean forecast distance errors (km) of
the persistence, multiple linear regression (MLR), and artificial neu-
ral network (ANN) methods.

Forecast Persistence MLR ANN
weeks

1 47.6 38.1 37.8
2 95.2 64.8 64.1
3 135.0 86.6 84.7
4 180.5 106.5 102.3

though the mean error is slightly larger than in the smooth
case. In contrast, although the persistence forecast trajectory
at week 1 is relatively consistent with the observed trajec-
tory (Fig. 5a and b), the persistence method cannot forecast
the eddy trajectories properly when the forecast horizon in-
creases (Fig. 5c and d). To further compare their differences,
their forecast distance errors are normalized with the Rossby
radius on each forecast grid over a 4-week forecast window,
respectively. The correlation between the normalized fore-
cast distance errors of the persistence method and our model
decreases from 0.67 at week 1 to 0.38 at week 4. This is con-
sistent with the above judgement and confirms the superiority

www.ocean-sci.net/15/401/2019/ Ocean Sci., 15, 401–412, 2019
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Figure 6. Comparison of the mean forecast errors between anticy-
clonic eddies (red) and cyclonic eddies (blue) over a 4-week win-
dow.

of our multiple linear regression model over the persistence
method.

4.2 Sensitive performance of different eddy polarities
and the season

Previous studies have shown that anticyclonic eddies and cy-
clonic eddies in the NSCS have different dynamic character-
istics, such as generation sites, rotation speeds, and propaga-
tion trajectories; and the seasonal variability of these eddies
is robust (Wang et al., 2006, 2008; Li et al., 2011). Two nat-
ural questions arise: (1) is there any difference on the model
forecast ability between anticyclonic eddies (Fig. 1a) and cy-
clonic eddies (Fig. 1b)? (2) If so, is there any difference on
the forecasting ability for one type of eddy in winter (Figs. 7a
and 8a) and summer (Figs. 7b and 8b)? This section will ex-
plore the different model performances for two types of ed-
dies during different seasons in the NSCS.

The period considered for regressing and predicting the
anticyclonic eddy and cyclonic eddy positions is the same as
that used in developing the predictive model (see Sect. 2.3).
The mean forecast errors of anticyclonic (cyclonic) eddies
from week 1 to week 4 are 36.9 km (41.1 km), 62.6 km
(68.1 km), 81.0 km (88.5 km), and 102.0 km (108.2 km), re-
spectively (Fig. 6). These results show that the forecast er-
rors of anticyclonic eddies are smaller than those of cyclonic
eddies in all forecast horizons, and the maximum error dif-
ference can reach 7.5 km at week 3. To investigate the un-
derlying reasons of different model performances for anti-
cyclonic eddies and cyclonic eddies, we use the persistence
error (CC’=

√
AB2
+BC2

− 2AB ·BC · cosθ in Fig. 4a) at
week 1 as an index to measure the difficulty of trajectory
forecast. The underlying reason in physics is that CC’, which
includes the effects of the winding angle (θ , measuring the
trajectory curvature) and the eddy propagation distances in
the last week and the next week (AB and BC, measuring the
eddy propagation speed), is an integral characteristic of the

eddy trajectory. The correlation between this integrated in-
dex and the eddy trajectory forecast error is relatively high
with R = 0.62 (Fig. 4b), which is significant at the 95 %
confidence level and shows its ability in measuring the in-
herent difficulty of a trajectory forecast: the larger the index,
the more difficult the trajectory forecast, thus the larger the
forecast error. Because the indices (mean persistence errors)
of all the anticyclonic and cyclonic eddy trajectories in the
NSCS are 46.6 and 53.0 km, respectively, it is not difficult to
understand why the mean forecast error of anticyclonic eddy
trajectories is smaller than that of cyclonic eddy trajectories
in the NSCS. The index difference between anticyclonic and
cyclonic eddy trajectories is caused by these different tra-
jectory patterns (Fig. 1a and b), which could be due to the
opposing meridional drifts of anticyclonic and cyclonic ed-
dies expected from the combination of the β effect and self-
advection (Morrow et al., 2004).

Figure 7c (Fig. 8c) shows the mean forecast errors of anti-
cyclonic (cyclonic) eddy trajectories in winter and summer
over a 4-week horizon. Because the mean persistence er-
ror (42.0 km) of anticyclonic eddy trajectories in winter is
smaller than that (51.9 km) in summer, as expected, the mean
forecast error of anticyclonic eddy trajectories in winter is
smaller than that in summer for all cases. This is also the
case for the cyclonic eddy: since the mean persistence error
(54.6 km) of cyclonic eddy trajectories in winter is relatively
larger than that (52.8 km) in summer, the mean forecast er-
ror of the cyclonic eddy trajectories in winter is larger than
that in summer. The index difference of one type of eddy
trajectory between winter and summer is also caused by the
different trajectory patterns. Why do the anticyclonic and cy-
clonic eddies follow different trajectories in winter (Figs. 7a
and 8a) and summer (Fig. 7b and b)? One possible dynam-
ical reason is the different interactions between the eddies
and seasonal mean flows. Other underlying factors such as
eddy generation mechanisms and eddy-topography interac-
tions in different seasons may also contribute. This is beyond
the scope of this study and needs further investigation using
numerical models.

5 Summary and discussion

In this study, we have investigated the underlying dynamics
of the eddy propagation in the NSCS and found their propa-
gation is mainly driven by the combination of the planetary β
effect and mean flow advection. In addition, the topographic
β effect also has some contribution to the eddy propagation
where the bathymetry gradient cannot be neglected, like the
steep continental shelf in the NSCS (Fig. 1a).

Based on dynamical analysis, predictors were chosen and
a simple statistical predictive model for relating various
oceanic parameters to eddy propagation position changes
was developed using the multiple linear regression method.
This predictive model is made up of eight predictands (zonal
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Figure 7. The trajectories of anticyclonic eddies in (a) winter and (b) summer with lifetime≥ 5 weeks in the northern South China Sea. The
solid circle represents the ending position of each trajectory. (c) Comparison of their mean forecast errors over a 4-week window.

Figure 8. The same as Fig. 7, but for the cyclonic eddies.
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Table 5. Statistics of our multiple linear regression model for different forecast times of eddy propagation positions in terms of longitude
(latitude).

Forecast Total/predicted RMSE, km Correlation Mean distance
weeks number of points coefficient error, km

1 2604/623 32.7 (29.5) 0.99 (0.99) 38.1
2 2310/549 55.1 (47.3) 0.97 (0.98) 64.8
3 2016/475 72.5 (61.4) 0.95 (0.97) 86.6
4 1722/401 89.2 (73.5) 0.93 (0.95) 106.5

Note: the total/predicted number of points refers to the eddy positions at 7-day time intervals in the
total/predicted eddy trajectories during 1992–2013/2009–2013; the RMSE is the root mean square
error between the predicted and the observed longitude (latitude).

and meridional displacements over 1–4 weeks) and eight pre-
dictors (six static predictors, two synoptic predictors). The
six static predictors are associated with the initial position,
the zonal and meridional motions past 1 week, and the cli-
matological eddy zonal and meridional motions. The other
two synoptic predictors account for the time variation of the
mean flow advection. Results showed that this simple model
has significant forecasting skills over a 4-week forecast hori-
zon compared to the traditional persistence method. More-
over, the model performance is sensitive to the eddy type and
the forecast season: (1) the predicted trajectory errors of an-
ticyclonic eddies are smaller than those of cyclonic eddies,
and (2) the predicted trajectory errors of anticyclonic eddies
in winter are smaller than those in summer; while the con-
trary is the case for the cyclonic eddy. The predictive model
performance strongly depends on the inherent difficulty of
the trajectory forecast.

Although the performance of the proposed predictive
model is encouraging, it could be refined further. Further im-
provement may be possible by including the effect of eddy–
eddy interactions on the eddy propagation, which is supposed
to help induce the eddy trajectory curve or loop (Early et al.,
2011). Another possible improvement is to use artificial neu-
ral network (ANN) in developing the forecast model. ANN
has been successfully used in predicting cyclone tracks (Ali
et al., 2007) and loop current variation (Zeng et al., 2015).
ANN can represent both linear and non-linear relationships
learned directly from the data being modeled. It mainly con-
tains three layers: the input layer, the hidden layer, and the
output layer. To be consistent with the multiple linear regres-
sion model, both the input layer and the output layer include
the same predictors and predictands as the regression model,
respectively. The hidden layer consists of two layers of neu-
ral variables. Through iterations on backward propagation of
the error, the neural network learns by itself to achieve an op-
timum weighting function and a minimum error. The forecast
errors of ANN for 1–4 weeks are listed in Table 4. We can see
that some improvements (0.3–4.2 km during 1–4 weeks fore-
cast horizon) have been shown compared to the linear regres-
sion method. Recently, Jiang et al. (2018) have found that the
deep-learning algorithm of neural networks performs better

than the simple ANN for the parameterization of typhoon–
ocean feedback in typhoon forecast models. These enhance-
ments (both physics and algorithms) are topics warranting
future research and development.

Data availability. The SLA and MDT data can be downloaded
from AVISO (ftp://ftp.aviso.oceanobs.com/, Ducet et al., 2000), and
the NSCS eddy trajectory data can be derived from the third release
global eddy dataset (http://cioss.coas.oregonstate.edu/eddies/, Chel-
ton et al., 2011).
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