Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1439-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1439-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Internal tide energy flux over a ridge measured by a co-located ocean glider and moored acoustic Doppler current profiler
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
Barbara Berx
Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK
Gillian M. Damerell
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
Related authors
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023, https://doi.org/10.5194/os-19-77-2023, 2023
Short summary
Short summary
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by small-scale ocean turbulence, in the western tropical Atlantic Ocean via two methods. We find good agreement between the results of both. A region of elevated mixing is found between 200 and 500 m, and we calculate the associated heat and salt fluxes. We find that double-diffusive mixing in salt fingers, a common feature of the tropical oceans, drives larger heat and salt fluxes than the turbulent mixing.
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.
Peter M. F. Sheehan, Barbara Berx, Alejandro Gallego, Rob A. Hall, Karen J. Heywood, Sarah L. Hughes, and Bastien Y. Queste
Ocean Sci., 14, 225–236, https://doi.org/10.5194/os-14-225-2018, https://doi.org/10.5194/os-14-225-2018, 2018
Short summary
Short summary
We calculate tidal velocities using observations of ocean currents collected by an underwater glider. We use these velocities to investigate the location of sharp boundaries between water masses in shallow seas. Narrow currents along these boundaries are important transport pathways around shallow seas for pollutants and organisms. Tides are an important control on boundary location in summer, but seawater salt concentration can also influence boundary location, especially in winter.
Ria Oelerich, Karen J. Heywood, Gillian M. Damerell, Marcel du Plessis, Louise C. Biddle, and Sebastiaan Swart
Ocean Sci., 19, 1465–1482, https://doi.org/10.5194/os-19-1465-2023, https://doi.org/10.5194/os-19-1465-2023, 2023
Short summary
Short summary
At the southern boundary of the Antarctic Circumpolar Current, relatively warm waters encounter the colder waters surrounding Antarctica. Observations from underwater vehicles and altimetry show that medium-sized cold-core eddies influence the southern boundary's barrier properties by strengthening the slopes of constant density lines across it and amplifying its associated jet. As a result, the ability of exchanging properties, such as heat, across the southern boundary is reduced.
Michael Mayer, Takamasa Tsubouchi, Susanna Winkelbauer, Karin Margretha H. Larsen, Barbara Berx, Andreas Macrander, Doroteaciro Iovino, Steingrímur Jónsson, and Richard Renshaw
State Planet, 1-osr7, 14, https://doi.org/10.5194/sp-1-osr7-14-2023, https://doi.org/10.5194/sp-1-osr7-14-2023, 2023
Short summary
Short summary
This paper compares oceanic fluxes across the Greenland–Scotland Ridge (GSR) from ocean reanalyses to largely independent observational data. Reanalyses tend to underestimate the inflow of warm waters of subtropical Atlantic origin and hence oceanic heat transport across the GSR. Investigation of a strong negative heat transport anomaly around 2018 highlights the interplay of variability on different timescales and the need for long-term monitoring of the GSR to detect forced climate signals.
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023, https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Short summary
The 18.6-year lunar nodal cycle arises from variations in the angle of the Moon's orbital plane and affects ocean tides. In this work we use a climate model to examine the effect of this cycle on the ocean, surface, and atmosphere. The timing of anomalies is consistent with the so-called slowdown in global warming and has implications for when global temperatures will exceed 1.5 ℃ above pre-industrial levels. Regional anomalies have implications for seasonal climate areas such as Europe.
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023, https://doi.org/10.5194/os-19-77-2023, 2023
Short summary
Short summary
We calculate the rate of turbulent kinetic energy dissipation, i.e. the mixing driven by small-scale ocean turbulence, in the western tropical Atlantic Ocean via two methods. We find good agreement between the results of both. A region of elevated mixing is found between 200 and 500 m, and we calculate the associated heat and salt fluxes. We find that double-diffusive mixing in salt fingers, a common feature of the tropical oceans, drives larger heat and salt fluxes than the turbulent mixing.
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022, https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Short summary
Using an underwater buoyancy-powered autonomous glider, we collected profiles of temperature and salinity from the ocean north-east of Barbados. Most of the temperature and salinity profiles contained staircase-like structures of alternating constant values and large gradients. We wrote an algorithm to identify these staircases. We hypothesise that these staircases are prevented from forming where background gradients in temperature and salinity are too great.
Yanxin Wang, Karen J. Heywood, David P. Stevens, and Gillian M. Damerell
Ocean Sci., 18, 839–855, https://doi.org/10.5194/os-18-839-2022, https://doi.org/10.5194/os-18-839-2022, 2022
Short summary
Short summary
It is important that climate models give accurate projections of future extremes in summer and winter sea surface temperature because these affect many features of the global climate system. Our results demonstrate that some models would give large errors if used for future projections of these features, and models with more detailed representation of vertical structure in the ocean tend to have a better representation of sea surface temperature, particularly in summer.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Svein Østerhus, Rebecca Woodgate, Héðinn Valdimarsson, Bill Turrell, Laura de Steur, Detlef Quadfasel, Steffen M. Olsen, Martin Moritz, Craig M. Lee, Karin Margretha H. Larsen, Steingrímur Jónsson, Clare Johnson, Kerstin Jochumsen, Bogi Hansen, Beth Curry, Stuart Cunningham, and Barbara Berx
Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, https://doi.org/10.5194/os-15-379-2019, 2019
Short summary
Short summary
Two decades of observations of the Arctic Mediterranean (AM) exchanges show that the exchanges have been stable in terms of volume transport during a period when many other components of the global climate system have changed. The total AM import is found to be 9.1 Sv and has a seasonal variation in amplitude close to 1 Sv, and maximum import in October. Roughly one-third of the imported water leaves the AM as surface outflow.
Peter M. F. Sheehan, Barbara Berx, Alejandro Gallego, Rob A. Hall, Karen J. Heywood, Sarah L. Hughes, and Bastien Y. Queste
Ocean Sci., 14, 225–236, https://doi.org/10.5194/os-14-225-2018, https://doi.org/10.5194/os-14-225-2018, 2018
Short summary
Short summary
We calculate tidal velocities using observations of ocean currents collected by an underwater glider. We use these velocities to investigate the location of sharp boundaries between water masses in shallow seas. Narrow currents along these boundaries are important transport pathways around shallow seas for pollutants and organisms. Tides are an important control on boundary location in summer, but seawater salt concentration can also influence boundary location, especially in winter.
Bogi Hansen, Turið Poulsen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Svein Østerhus, Elin Darelius, Barbara Berx, Detlef Quadfasel, and Kerstin Jochumsen
Ocean Sci., 13, 873–888, https://doi.org/10.5194/os-13-873-2017, https://doi.org/10.5194/os-13-873-2017, 2017
Short summary
Short summary
On its way towards the Arctic, an important branch of warm Atlantic water passes through the Faroese Channels, but, in spite of more than a century of investigations, the detailed flow pattern through this channel system has not been resolved. This has strong implications for estimates of oceanic heat transport towards the Arctic. Here, we combine observations from various sources, which together paint a coherent picture of the Atlantic water flow and heat transport through this channel system.
Barbara Berx and Mark R. Payne
Earth Syst. Sci. Data, 9, 259–266, https://doi.org/10.5194/essd-9-259-2017, https://doi.org/10.5194/essd-9-259-2017, 2017
Short summary
Short summary
We present a freely available Sub-Polar Gyre Index, consistent with previous calculation methods, for the use of the wider community in their analyses. The paper describes the methodology and interpretation and includes some sensitivity analysis.
B. Berx, B. Hansen, S. Østerhus, K. M. Larsen, T. Sherwin, and K. Jochumsen
Ocean Sci., 9, 639–654, https://doi.org/10.5194/os-9-639-2013, https://doi.org/10.5194/os-9-639-2013, 2013
Cited articles
Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A.,
Klymak, J. M., Pinkel, R., Sun, O., Rainville, L., Musgrave, R., Beitzel, T.,
Fu, K.-H., and Lu, C.-W.: Energy flux and dissipation in Luzon Strait: Two
tales of two ridges, J. Phys. Oceanogr., 41, 2211–2222,
https://doi.org/10.1175/JPO-D-11-073.1, 2011. a, b
Althaus, A. M., Kunze, E., and Sanford, T. B.: Internal tide radiation from
Mendocino Escarpment, J. Phys. Oceanogr., 33, 1510–1527,
2003. a
Baines, P. G.: On internal tide generation models, Deep-Sea Res., 29,
307–338, 1982. a
Berx, B., Hindson, J., and Smith, H.: Moored data from NWZ-E monitoring site in the Faroe-Shetland Channel, Marine Scotland, UK, https://doi.org/10.7489/12217-1, 2019. a
Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal
ocean circulation model, in: Three-Dimensional Coastal Ocean Models, Vol. 4,
edited by: Heaps, N. S., American Geophysical Union, Washington,
DC, 1–16, 1987. a
Boettger, D., Robertson, R., and Rainville, L.: Characterizing the semidiurnal
internal tide off Tasmania using glider data, J. Geophys. Res.-Oceans, 120, 3730–3746, https://doi.org/10.1002/2015JC010711, 2015. a
Emery, W. J. and Thomson, R. E.: Data Analysis Methods in Physical
Oceanography, Elsevier, Amsterdam, 2 Edn., 654 pp., 2001. a
Eriksen, C. C., Osse, T. J., Light, R. D., Wen, T., Lehman, T. W., Sabin,
P. J., Ballard, J. W., and Chiodi, A. M.: Seaglider: a long-range autonomous
underwater vehicle for oceanographic research, IEEE J. Oceanic
Eng., 26, 424–436, https://doi.org/10.1109/48.972073, 2001. a, b
Frajka-Williams, E., Eriksen, C. C., Rhines, P. B., and Harcourt, R. R.:
Determining vertical water velocities from Seaglider, J. Atmos. Ocean. Tech., 28, 1641–1656,
https://doi.org/10.1175/2011JTECHO830.1, 2011. a, b
Garau, B., Ruiz, S., Zhang, W. G., Pascual, A., Heslop, E., Kerfoot, J., and
Tintoré, J.: Thermal lag correction on Slocum CTD glider data, J. Atmos. Ocean. Tech., 28, 1065–1071,
https://doi.org/10.1175/JTECH-D-10-05030.1, 2011. a
Hall, R. A., Aslam, T., and Huvenne, V. A. I.: Partly standing internal tides
in a dendritic submarine canyon observed by an ocean glider, Deep-Sea
Res. Pt. I, 126, 73–84, https://doi.org/10.1016/j.dsr.2017.05.015,
2017a. a, b
Hall, R. A., Berx, B., and Inall, M. E.: Observing internal tides in high-risk
regions using co-located ocean gliders and moored ADCPs, Oceanography, 30,
51–52, https://doi.org/10.5670/oceanog.2017.220, 2017b. a, b, c
Hopkins, J. E., Stephenson, G. R., Green, J. A. M., Inall, M. E., and Palmer,
M. R.: Storms modify baroclinic energy fluxes in a seasonally stratified
shelf sea: Inertial-tidal interaction, J. Geophys. Res.-Oceans, 119, 6863–6883, https://doi.org/10.1002/2014JC010011, 2014. a
IOC, SCOR, and IAPSO: The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamics properties, in:
Intergovernmental Oceanographic Commission, Manuals and Guides, 56, p. 196,
UNESCO, 2010. a
Johnston, T. M. S. and Rudnick, D. L.: Trapped diurnal internal tides,
propagating semidiurnal internal tides, and mixing estimates in the
California Current System from sustained glider observations, 2006–2012,
Deep-Sea Res. Pt. II, 112, 61–78, https://doi.org/10.1016/j.dsr2.2014.03.009, 2015. a
Johnston, T. M. S., Rudnick, D. L., Alford, M. H., Pickering, A., and Simmons,
H. J.: Internal tide energy fluxes in the South China Sea from density and
velocity measurements by gliders, J. Geophys. Res.-Oceans,
118, 3939–3949, https://doi.org/10.1002/jgrc.20311, 2013. a
Johnston, T. M. S., Rudnick, D. L., and Kelly, S. M.: Standing internal tides
in the Tasman Sea observed by gliders, J. Phys. Oceanogr., 45,
2715–2737, https://doi.org/10.1175/JPO-D-15-0038.1, 2015. a
Kunze, E., Rosenfeld, L. K., Carter, G. S., and Gregg, M. C.: Internal waves in
Monterey Submarine Canyon, J. Phys. Oceanogr., 32,
1890–1913, 2002. a
Lee, C. M., Kunze, E., Sanford, T. B., Nash, J. D., Merrifield, M. A., and
Holloway, P. E.: Internal tides and turbulence along the 3000-m isobath of
the Hawaiian Ridge, J. Phys. Oceanogr., 36, 1165–1182, 2006. a
Pingree, R. D., Mardell, G. T., and New, A. L.: Propagation of internal tides
from the upper slopes of the Bay of Biscay, Nature, 321, 154–158, 1986. a
Queste, B. Y.: Hydrographic observations of oxygen and related physical
variables in the North Sea and Western Ross Sea Polynya, PhD thesis,
School of Environmental Sciences, University of East Anglia, 215 pp., 2014. a
Rainville, L., Lee, C. M., Rudnick, D. L., and Yang, K.-C.: Propagation of
internal tides generated near Luzon Strait: Observations from autonomous
gliders, J. Geophys. Res., 118, 4125–4138,
https://doi.org/10.1002/jgrc.20293, 2013. a
Rudnick, D. L. and Cole, S. T.: On sampling the ocean using underwater
gliders, J. Geophys. Res., 116, C08010,
https://doi.org/10.1029/2010JC006849, 2011. a
Rudnick, D. L., Johnston, T. M. S., and Sherman, J. T.: High-frequency
internal waves near the Luzion Strait observed by underwater gliders,
J. Geophys. Res., 118, 1–11, https://doi.org/10.1002/jgrc.20083, 2013. a
Sharples, J., Tweddle, J. F., Green, J. A. M., Palmer, M. R., Kim, Y.-N.,
Hickman, A. E., Holligan, P. M., Moore, C. M., Rippeth, T. P., Simpson,
J. H., and Krivtsov, V.: Spring-neap modulation of internal tide mixing and
vertical nitrate fluxes at a shelf edge, Limnol. Oceanogr., 52,
1735–1747, 2007. a
Sharples, J., Ellis, J. R., Nolan, G., and Scott, B. E.: Fishing and the
oceanography of stratified shelf seas, Prog. Oceanogr., 117,
130–139, https://doi.org/10.1016/j.pocean.2013.06.014, 2013. a
Stephenson, G. R., Green, J. A. M., and Inall, M. E.: Systematic bias in
baroclinic energy estimates in shelf seas, J. Phys. Oceanogr.,
46, 2851–2862, https://doi.org/10.1175/JPO-D-15-0215.1, 2016. a
Todd, R. E., Rudnick, D. L., Sherman, J. T., Owens, W. B., and George, L.:
Absolute velocity estimates from autonomous underwater gliders equipped with
Doppler current profilers, J. Atmos. Ocean. Tech.,
34, 309–333, https://doi.org/10.1175/JTECH-D-16-0156.1, 2017. a
Wynn, R. B., Wihsgott, J. U., Palmer, M. R., Lichtman, I. D., Miller, P., Goult, S., Nencioli, F., Loveday, B. R., Jones, S., Inall, M. E., Dumont, E., Venables, E., Jones, O., Risch, D., Hall, R. A., Cauchy, P., Pierpoint, C., Doran, J., Mowat, R., and Damerell, G. M.: MASSMO 4 project ocean glider and autonomous surface vehicle data, British Oceanographic Data Centre,
National Oceanography Centre, NERC, UK, https://doi.org/10.5285/9373933d-48c1-5a37-e053-6c86abc0e213, 2019. a
Zhao, Z., Alford, M. H., Lien, R.-C., Gregg, M. C., and Carter, G. S.:
Internal tides and mixing in a submarine canyon with time-varying
stratification, J. Phys. Oceanogr., 42, 2121–2142,
https://doi.org/10.1175/JPO-D-12-045.1, 2012. a
Short summary
Internal tides are subsurface waves generated by tidal flows over ocean ridges. When they break they create turbulence that drives an upward flux of nutrients from the deep ocean to the nutrient-poor photic zone. Measuring internal tides is problematic because oceanographic moorings are often
fished-outby commercial trawlers. We show that autonomous ocean gliders and acoustic Doppler current profilers can be used together to accurately measure the amount of energy carried by internal tides.
Internal tides are subsurface waves generated by tidal flows over ocean ridges. When they break...