Articles | Volume 15, issue 6
https://doi.org/10.5194/os-15-1439-2019
https://doi.org/10.5194/os-15-1439-2019
Research article
 | 
07 Nov 2019
Research article |  | 07 Nov 2019

Internal tide energy flux over a ridge measured by a co-located ocean glider and moored acoustic Doppler current profiler

Rob A. Hall, Barbara Berx, and Gillian M. Damerell

Related authors

The modelled climatic response to the 18.6-year lunar nodal cycle and its role in decadal temperature trends
Manoj Joshi, Robert A. Hall, David P. Stevens, and Ed Hawkins
Earth Syst. Dynam., 14, 443–455, https://doi.org/10.5194/esd-14-443-2023,https://doi.org/10.5194/esd-14-443-2023, 2023
Short summary
Turbulent kinetic energy dissipation rate and associated fluxes in the western tropical Atlantic estimated from ocean glider observations
Peter M. F. Sheehan, Gillian M. Damerell, Philip J. Leadbitter, Karen J. Heywood, and Rob A. Hall
Ocean Sci., 19, 77–92, https://doi.org/10.5194/os-19-77-2023,https://doi.org/10.5194/os-19-77-2023, 2023
Short summary
Glider observations of thermohaline staircases in the tropical North Atlantic using an automated classifier
Callum Rollo, Karen J. Heywood, and Rob A. Hall
Geosci. Instrum. Method. Data Syst., 11, 359–373, https://doi.org/10.5194/gi-11-359-2022,https://doi.org/10.5194/gi-11-359-2022, 2022
Short summary
Shelf sea tidal currents and mixing fronts determined from ocean glider observations
Peter M. F. Sheehan, Barbara Berx, Alejandro Gallego, Rob A. Hall, Karen J. Heywood, Sarah L. Hughes, and Bastien Y. Queste
Ocean Sci., 14, 225–236, https://doi.org/10.5194/os-14-225-2018,https://doi.org/10.5194/os-14-225-2018, 2018
Short summary

Cited articles

Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A., Klymak, J. M., Pinkel, R., Sun, O., Rainville, L., Musgrave, R., Beitzel, T., Fu, K.-H., and Lu, C.-W.: Energy flux and dissipation in Luzon Strait: Two tales of two ridges, J. Phys. Oceanogr., 41, 2211–2222, https://doi.org/10.1175/JPO-D-11-073.1, 2011. a, b
Althaus, A. M., Kunze, E., and Sanford, T. B.: Internal tide radiation from Mendocino Escarpment, J. Phys. Oceanogr., 33, 1510–1527, 2003. a
Baines, P. G.: On internal tide generation models, Deep-Sea Res., 29, 307–338, 1982. a
Berx, B., Hindson, J., and Smith, H.: Moored data from NWZ-E monitoring site in the Faroe-Shetland Channel, Marine Scotland, UK, https://doi.org/10.7489/12217-1, 2019. a
Blumberg, A. F. and Mellor, G. L.: A description of a three-dimensional coastal ocean circulation model, in: Three-Dimensional Coastal Ocean Models, Vol. 4, edited by: Heaps, N. S., American Geophysical Union, Washington, DC, 1–16, 1987. a
Download
Short summary
Internal tides are subsurface waves generated by tidal flows over ocean ridges. When they break they create turbulence that drives an upward flux of nutrients from the deep ocean to the nutrient-poor photic zone. Measuring internal tides is problematic because oceanographic moorings are often fished-out by commercial trawlers. We show that autonomous ocean gliders and acoustic Doppler current profilers can be used together to accurately measure the amount of energy carried by internal tides.