Articles | Volume 15, issue 4
https://doi.org/10.5194/os-15-1111-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-1111-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New insight into 3-D mesoscale eddy properties from CMEMS operational models in the western Mediterranean
Marine Technologies, Operational and Coastal Oceanography, IMEDEA, Esporles, Mallorca, Spain
Applied Physics Laboratory, University of Washington, Seattle, WA, USA
Simón Ruiz
Marine Technologies, Operational and Coastal Oceanography, IMEDEA, Esporles, Mallorca, Spain
Romain Bourdalle-Badie
Mercator Océan, 8–10 Rue Hermès, 31520, Ramonville-Saint-Agne, France
Guillaume Reffray
Mercator Océan, 8–10 Rue Hermès, 31520, Ramonville-Saint-Agne, France
Marcos García-Sotillo
Puertos del Estado, Madrid, Spain
Ananda Pascual
Marine Technologies, Operational and Coastal Oceanography, IMEDEA, Esporles, Mallorca, Spain
Related authors
Cori Pegliasco, Antoine Delepoulle, Evan Mason, Rosemary Morrow, Yannice Faugère, and Gérald Dibarboure
Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, https://doi.org/10.5194/essd-14-1087-2022, 2022
Short summary
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
Bàrbara Barceló-Llull, Evan Mason, Arthur Capet, and Ananda Pascual
Ocean Sci., 12, 1003–1011, https://doi.org/10.5194/os-12-1003-2016, https://doi.org/10.5194/os-12-1003-2016, 2016
Short summary
Short summary
Vertical velocity in the ocean makes an important contribution to the modulation of marine ecosystems through its impact on fluxes of nutrients and phytoplankton. Here, we estimate full 3-D current velocity fields from an observation-based data product. The 3-D currents are used to force a set of particle-tracking (Lagrangian) experiments. The Lagrangian results show that vertical motions induce local increases in nitrate uptake reaching up to 30 %.
Amélie Loubet, Simon J. van Gennip, Romain Bourdallé-Badie, and Marie Drevillon
State Planet Discuss., https://doi.org/10.5194/sp-2024-31, https://doi.org/10.5194/sp-2024-31, 2024
Preprint under review for SP
Short summary
Short summary
Marine Heatwaves (MHWs) are intensifying due to climate change. In 2023, the Copernicus Marine forecast system tracked a significant MHW event in the North Tropical Atlantic. Here we show this event was unprecedented, at the surface and at depth. It peaked in the northeast in May, spreading southwest to reach the Caribbean by fall. In the east and centre, the MHW remained within the surface layers, while in the Caribbean, it reached deeper levels due to warm waters advected by equatorial eddies.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Noémie Lalau, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet, 4-osr8, 12, https://doi.org/10.5194/sp-4-osr8-12-2024, https://doi.org/10.5194/sp-4-osr8-12-2024, 2024
Short summary
Short summary
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean basins is investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both seasonal and interannual timescales.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Antonio Sánchez-Román, M. Isabelle Pujol, Yannice Faugère, and Ananda Pascual
Ocean Sci., 19, 793–809, https://doi.org/10.5194/os-19-793-2023, https://doi.org/10.5194/os-19-793-2023, 2023
Short summary
Short summary
This paper assesses the performance of the latest version (DT2021) of global gridded altimetry products distributed through the CMEMS and C3S Copernicus programs on the retrieval of sea level in the coastal zone of the European seas with respect to the previous DT2018 version. This comparison is made using an external independent dataset. DT2021 sea level products better solve the signal in the coastal band.
Cori Pegliasco, Antoine Delepoulle, Evan Mason, Rosemary Morrow, Yannice Faugère, and Gérald Dibarboure
Earth Syst. Sci. Data, 14, 1087–1107, https://doi.org/10.5194/essd-14-1087-2022, https://doi.org/10.5194/essd-14-1087-2022, 2022
Short summary
Short summary
The new global Mesoscale Eddy Trajectory Atlases (META3.1exp) provide eddy identification and trajectories from altimetry maps. These atlases comprise an improvement to and continuation of the historical META2.0 product. Changes in the detection parameters and tracking were tested by comparing the eddies from the different datasets. In particular, the eddy contours available in META3.1exp are an asset for multi-disciplinary studies.
Roxane Tzortzis, Andrea M. Doglioli, Stéphanie Barrillon, Anne A. Petrenko, Francesco d'Ovidio, Lloyd Izard, Melilotus Thyssen, Ananda Pascual, Bàrbara Barceló-Llull, Frédéric Cyr, Marc Tedetti, Nagib Bhairy, Pierre Garreau, Franck Dumas, and Gérald Gregori
Biogeosciences, 18, 6455–6477, https://doi.org/10.5194/bg-18-6455-2021, https://doi.org/10.5194/bg-18-6455-2021, 2021
Short summary
Short summary
This work analyzes an original high-resolution data set collected in the Mediterranean Sea. The major result is the impact of a fine-scale frontal structure on the distribution of phytoplankton groups, in an area of moderate energy with oligotrophic conditions. Our results provide an in situ confirmation of the findings obtained by previous modeling studies and remote sensing about the structuring effect of the fine-scale ocean dynamics on the structure of the phytoplankton community.
Théo Brivoal, Guillaume Samson, Hervé Giordani, Romain Bourdallé-Badie, Florian Lemarié, and Gurvan Madec
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-78, https://doi.org/10.5194/os-2020-78, 2020
Preprint withdrawn
Short summary
Short summary
We investigate the interactions between near-surface winds and oceanic surface currents on the north-east atlantic region using a simplified lower atmosphere model coupled with an ocean model. we show that the upper ocean kinetic energy is significantly reduced due to these interactions, but in a smaller amplitude than if the wind feedback is ignored. We also show that wind-current interactions affect the deeper ocean by modifying its vertical structure and consequently the pressure field.
Elodie Gutknecht, Guillaume Reffray, Alexandre Mignot, Tomasz Dabrowski, and Marcos G. Sotillo
Ocean Sci., 15, 1489–1516, https://doi.org/10.5194/os-15-1489-2019, https://doi.org/10.5194/os-15-1489-2019, 2019
Short summary
Short summary
As part of the Copernicus Marine Environment Monitoring Service, an operational ocean forecasting system monitors the ocean dynamics and marine ecosystems of the European waters. This paper assesses the performance of the key biogeochemical variables (oxygen, nutrients, Chl a, primary production) using a 7-year pre-operational qualification simulation (2010–2016). The simulation can be used to better understand the current state, the changes and the health of European marine ecosystems.
Pablo Lorente, Marcos García-Sotillo, Arancha Amo-Baladrón, Roland Aznar, Bruno Levier, José C. Sánchez-Garrido, Simone Sammartino, Álvaro de Pascual-Collar, Guillaume Reffray, Cristina Toledano, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 967–996, https://doi.org/10.5194/os-15-967-2019, https://doi.org/10.5194/os-15-967-2019, 2019
Álvaro de Pascual-Collar, Marcos G. Sotillo, Bruno Levier, Roland Aznar, Pablo Lorente, Arancha Amo-Baladrón, and Enrique Álvarez-Fanjul
Ocean Sci., 15, 565–582, https://doi.org/10.5194/os-15-565-2019, https://doi.org/10.5194/os-15-565-2019, 2019
Short summary
Short summary
The Mediterranean Outflow Water (MOW) is a dense water mass originated in the Gibraltar Straight. The CMEMS IBI ocean reanalysis is used to provide a detailed view of the circulation and mixing processes of MOW near the Iberian and African Continental slopes. This work emphasizes the relevance of the complex bathymetric features defining the circulation and variability processes of MOW in this region.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane LawChune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-165, https://doi.org/10.5194/os-2018-165, 2019
Publication in OS not foreseen
Short summary
Short summary
This paper highlight the adjustment of the wave physics in order to improve the surface stress and thus the ocean/wave coupling dedicated to Iberian Biscay and Ireland domain. The validation with altimeters wave data during the year 2014 has shown a slight improvement of the significant wave height. Statistical analysis of the results of the new and old versions of the wave model MFWAM is examined for the three main ocean regions of the IBI domain.
Romain Rainaud, Lotfi Aouf, Alice Dalphinet, Marcos Garcia Sotillo, Enrique Alvarez-Fanjul, Guillaume Reffray, Bruno Levier, Stéphane Law-Chune, Pablo Lorente, and Cristina Toledano
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-167, https://doi.org/10.5194/os-2018-167, 2019
Publication in OS not foreseen
Short summary
Short summary
This work highlights the relevance of coupling wave model with ocean model in order to improve key surface ocean parameters and in general to better describe the ocean circulation at small and large scale.
The results focus on the Iberian Biscay and Ireland ocean region with fine grid resolution of 2.5 km for the ocean model. The main conclusion is the improvement of wave physics induces a better ocean mixing at the upper layer and a positive impact for sea surface height in storm events.
Yuri Cotroneo, Giuseppe Aulicino, Simon Ruiz, Antonio Sánchez Román, Marc Torner Tomàs, Ananda Pascual, Giannetta Fusco, Emma Heslop, Joaquín Tintoré, and Giorgio Budillon
Earth Syst. Sci. Data, 11, 147–161, https://doi.org/10.5194/essd-11-147-2019, https://doi.org/10.5194/essd-11-147-2019, 2019
Short summary
Short summary
We present data collected from the first three glider surveys in the Algerian Basin conducted during the ABACUS project. After collection, data passed a quality control procedure and were then made available through an unrestricted repository. The main objective of our project is monitoring the basin circulation of the Mediterranean Sea. Temperature and salinity data collected in the first 975 m of the water column allowed us to identify the main water masses and describe their characteristics.
Charles Troupin, Ananda Pascual, Simon Ruiz, Antonio Olita, Benjamin Casas, Félix Margirier, Pierre-Marie Poulain, Giulio Notarstefano, Marc Torner, Juan Gabriel Fernández, Miquel Àngel Rújula, Cristian Muñoz, Eva Alou, Inmaculada Ruiz, Antonio Tovar-Sánchez, John T. Allen, Amala Mahadevan, and Joaquín Tintoré
Earth Syst. Sci. Data, 11, 129–145, https://doi.org/10.5194/essd-11-129-2019, https://doi.org/10.5194/essd-11-129-2019, 2019
Short summary
Short summary
The AlborEX (the Alboran Sea Experiment) consisted of an experiment in the Alboran Sea (western Mediterranean Sea) that took place between 25 and 31 May 2014, and use a wide range of oceanographic sensors. The dataset provides information on mesoscale and sub-mesoscale processes taking place in a frontal area. This paper presents the measurements obtained from these sensors and describes their particularities: scale, spatial and temporal resolutions, measured variables, etc.
Jean-Michel Lellouche, Eric Greiner, Olivier Le Galloudec, Gilles Garric, Charly Regnier, Marie Drevillon, Mounir Benkiran, Charles-Emmanuel Testut, Romain Bourdalle-Badie, Florent Gasparin, Olga Hernandez, Bruno Levier, Yann Drillet, Elisabeth Remy, and Pierre-Yves Le Traon
Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, https://doi.org/10.5194/os-14-1093-2018, 2018
Short summary
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
Antonio Sánchez-Román, Simón Ruiz, Ananda Pascual, Baptiste Mourre, and Stéphanie Guinehut
Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, https://doi.org/10.5194/os-13-223-2017, 2017
Short summary
Short summary
In this work we investigate the capability of the Argo array in the Mediterranean Sea to capture mesoscale circulation structures (diameter of around 150 km). To do that we conduct several experiments to simulate different spatial sampling configurations of the Argo array in the basin. Results show that the actual Argo array in the Mediterranean (2° × 2°) might be enlarged until a spatial resolution of nearly 75 × 75 km (450 floats) in order to capture the mesoscale signal.
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Short summary
We examine the impact in a coupled model of increasing atmosphere and ocean horizontal resolution and the frequency of coupling between the atmosphere and ocean. We demonstrate that increasing the ocean resolution from 1/4 degree to 1/12 degree has a major impact on ocean circulation and global heat transports. The results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.
Bàrbara Barceló-Llull, Evan Mason, Arthur Capet, and Ananda Pascual
Ocean Sci., 12, 1003–1011, https://doi.org/10.5194/os-12-1003-2016, https://doi.org/10.5194/os-12-1003-2016, 2016
Short summary
Short summary
Vertical velocity in the ocean makes an important contribution to the modulation of marine ecosystems through its impact on fluxes of nutrients and phytoplankton. Here, we estimate full 3-D current velocity fields from an observation-based data product. The 3-D currents are used to force a set of particle-tracking (Lagrangian) experiments. The Lagrangian results show that vertical motions induce local increases in nitrate uptake reaching up to 30 %.
Elodie Gutknecht, Guillaume Reffray, Marion Gehlen, Iis Triyulianti, Dessy Berlianty, and Philippe Gaspar
Geosci. Model Dev., 9, 1523–1543, https://doi.org/10.5194/gmd-9-1523-2016, https://doi.org/10.5194/gmd-9-1523-2016, 2016
Short summary
Short summary
An operational ocean forecasting system was developed to monitor the state of the Indonesian seas in terms of circulation, biogeochemistry and fisheries (INDESO project). Here we describe the skill assessment of the physical-biogeochemical coupled model configuration. Model results reproduce the main characteristics of biogeochemical tracer distributions in space and time: phasing of chlorophyll bloom, nutrient and oxygen distributions, water mass transformation across the archipelago.
Marcos García Sotillo, Emilio Garcia-Ladona, Alejandro Orfila, Pablo Rodríguez-Rubio, José Cristobal Maraver, Daniel Conti, Elena Padorno, José Antonio Jiménez, Este Capó, Fernando Pérez, Juan Manuel Sayol, Francisco Javier de los Santos, Arancha Amo, Ana Rietz, Charles Troupin, Joaquín Tintore, and Enrique Álvarez-Fanjul
Earth Syst. Sci. Data, 8, 141–149, https://doi.org/10.5194/essd-8-141-2016, https://doi.org/10.5194/essd-8-141-2016, 2016
Short summary
Short summary
An intensive drifter deployment was carried out in the Strait of Gibraltar: 35 satellite tracked drifters were released, coordinating to this aim 4 boats, covering an area of about 680 NM2 in 6 hours. This MEDESS-GIB Experiment is the most important exercise in the Mediterranean in terms of number of drifters released. The MEDESS-GIB dataset provides a complete Lagrangian view of the surface inflow of Atlantic waters through the Strait of Gibraltar and its later evolution along the Alboran Sea.
Benoît Tranchant, Guillaume Reffray, Eric Greiner, Dwiyoga Nugroho, Ariane Koch-Larrouy, and Philippe Gaspar
Geosci. Model Dev., 9, 1037–1064, https://doi.org/10.5194/gmd-9-1037-2016, https://doi.org/10.5194/gmd-9-1037-2016, 2016
F. Dupont, S. Higginson, R. Bourdallé-Badie, Y. Lu, F. Roy, G. C. Smith, J.-F. Lemieux, G. Garric, and F. Davidson
Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, https://doi.org/10.5194/gmd-8-1577-2015, 2015
Short summary
Short summary
1/12th degree resolution runs of Arctic--Atlantic were compared for the period 2003-2009. We found good representation of sea surface height and of its statistics; model temperature and salinity in general agreement with in situ measurements, but upper ocean properties in Beaufort Sea are challenging; distribution of concentration and volume of sea ice is improved when slowing down the ice and further improvements require better initial conditions and modifications to mixing.
G. Reffray, R. Bourdalle-Badie, and C. Calone
Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, https://doi.org/10.5194/gmd-8-69-2015, 2015
M.-H. Rio, A. Pascual, P.-M. Poulain, M. Menna, B. Barceló, and J. Tintoré
Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, https://doi.org/10.5194/os-10-731-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
A. M. Treguier, J. Deshayes, J. Le Sommer, C. Lique, G. Madec, T. Penduff, J.-M. Molines, B. Barnier, R. Bourdalle-Badie, and C. Talandier
Ocean Sci., 10, 243–255, https://doi.org/10.5194/os-10-243-2014, https://doi.org/10.5194/os-10-243-2014, 2014
Related subject area
Approach: Operational Oceanography | Depth range: All Depths | Geographical range: Mediterranean Sea | Phenomena: Temperature, Salinity and Density Fields
Forecast skill score assessment of a relocatable ocean prediction system, using a simplified objective analysis method
The RADMED monitoring programme as a tool for MSFD implementation: towards an ecosystem-based approach
Variability of water mass properties in the Strait of Sicily in summer period of 1998–2013
Reiner Onken
Ocean Sci., 13, 925–945, https://doi.org/10.5194/os-13-925-2017, https://doi.org/10.5194/os-13-925-2017, 2017
Short summary
Short summary
An ocean prediction model was driven by observations via
assimilation. The best forecast was obtained using a smoothing scale
of 12.5 km and a time window of 24 h for data selection. Mostly,
the forecasts were better than that of a run without assimilation, the
skill score increased with increasing forecast range, and the score
for temperature was higher than the score for salinity. It is shown
that a vast number of data can be managed by the applied method
without data reduction.
J. L. López-Jurado, R. Balbín, F. Alemany, B. Amengual, A. Aparicio-González, M. L. Fernández de Puelles, M. C. García-Martínez, M. Gazá, J. Jansá, A. Morillas-Kieffer, F. Moyá, R. Santiago, M. Serra, and M. Vargas-Yáñez
Ocean Sci., 11, 897–908, https://doi.org/10.5194/os-11-897-2015, https://doi.org/10.5194/os-11-897-2015, 2015
Short summary
Short summary
The IEO-RADMED monitoring program is already conducting many of the evaluations required under the Marine Strategy Framework Directive (MFSD) along the Spanish Mediterranean coast. The different aspects of the ecosystem that are regularly sampled under this monitoring program are the physical environment and the chemical and biological variables of the water column, together with the planktonic communities, biomass and structure.
A. Bonanno, F. Placenti, G. Basilone, R. Mifsud, S. Genovese, B. Patti, M. Di Bitetto, S. Aronica, M. Barra, G. Giacalone, R. Ferreri, I. Fontana, G. Buscaino, G. Tranchida, E. Quinci, and S. Mazzola
Ocean Sci., 10, 759–770, https://doi.org/10.5194/os-10-759-2014, https://doi.org/10.5194/os-10-759-2014, 2014
Cited articles
Allen, J. T., Smeed, D., Tintoré, J., and Ruiz, S.: Mesoscale subduction at
the Almeria-Oran front: Part 1: Ageostrophic flow, J. Mar. Syst., 30,
263–285, https://doi.org/10.1016/S0924-7963(01)00062-8, 2001. a
Amante, C. and Eakins, B. W.: ETOPO1 Global Relief Model converted to PanMap
layer format, Tech. rep., NOAA-Natl. Geophys. Data Center PANGAEA,
https://doi.org/10.1594/PANGAEA.769615, 2009. a
Aulicino, G., Cotroneo, Y., Ruiz, S., Sánchez-Román, A., Pascual, A.,
Fusco, G., Tintoré, J., and Budillon, G.: Monitoring the Algerian Basin
through glider observations, satellite altimetry and numerical simulations
along a SARAL/AltiKa track, J. Mar. Syst., 179, 55–71,
https://doi.org/10.1016/j.jmarsys.2017.11.006, 2018. a
Aznar, R., Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B.,
Amo-Baladrón, A., Reffray, G., and Alvarez Fanjul, E.: Strengths and
weaknesses of the CMEMS forecasted and reanalyzed solutions for the
Iberia-Biscay-Ireland (IBI) waters, J. Mar. Syst., 159, 1–14,
https://doi.org/10.1016/j.jmarsys.2016.02.007, 2016. a
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A. M.,
Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M. E., McClean, J. L., and De Cuevas, B.: Impact of partial steps and
momentum advection schemes in a global ocean circulation model at
eddy-permitting resolution, Ocean Dynam., 56, 543–567,
https://doi.org/10.1007/s10236-006-0082-1, 2006. a
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner,
J., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S.,
Pharaoh, A., Trimmer, J., Von Rosenberg, J., Wallace, G., and Weatherall, P.:
Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution:
SRTM30_PLUS, Journal of Marine Geodesy, 32, 355–371,
https://doi.org/10.1080/01490410903297766, 2009. a, b
Bergamasco, A. and Malanotte-Rizzoli, P.: The circulation of the Mediterranean
Sea: a historical review of experimental investigations, Adv. Oceanogr.
Limnol., 1, 11–28, https://doi.org/10.1080/19475721.2010.491656, 2011. a
Bethoux, J. P. and Gentili, B.: Functioning of the Mediterranean Sea: past and
present changes related to freshwater input and climate changes, J. Mar.
Syst., 20, 33–47, https://doi.org/10.1016/S0924-7963(98)00069-4, 1999. a
Bosse, A., Testor, P., Mortier, L., Prieur, L., Taillandier, V., d'Ortenzio,
F., and Coppola, L.: Spreading of Levantine Intermediate Waters by
submesoscale coherent vortices in the northwestern Mediterranean Sea as
observed with gliders, J. Geophys. Res.-Oceans, 120, 1599–1622, https://doi.org/10.1002/2014JC010263, 2015. a
Candela, J., Winant, C., and Ruiz, A.: Tides in the Strait of Gibraltar, J.
Geophys. Res., 95, 7313–7335, https://doi.org/10.1029/JC095iC05p07313, 1990. a
Capó, E., Orfila, A., Mason, E., and Ruiz, S.: Energy Conversion Routes in
the Western Mediterranean Sea Estimated from Eddy–Mean Flow Interactions,
J. Phys. Oceanogr., 49, 247–267, https://doi.org/10.1175/JPO-D-18-0036.1, 2019. a, b
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. A., and Samelson, R. M.:
The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic
Chlorophyll, Science, 334, 328–332, https://doi.org/10.1126/science.1208897,
2011a. a
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011b. a, b, c
Costello, M. J., Cheung, A., and De Hauwere, N.: Surface Area and the Seabed
Area, Volume, Depth, Slope, and Topographic Variation for the World's Seas,
Oceans, and Countries, Environ. Sci. Technol., 44, 8821–8828,
https://doi.org/10.1021/es1012752, 2010. a
Cotroneo, Y., Aulicino, G., Ruiz, S., Pascual, A., Budillon, G., Fusco, G., and
Tintoré, J.: Glider and satellite high resolution monitoring of a mesoscale
eddy in the Algerian basin: Effects on the mixed layer depth and
biochemistry, J. Mar. Syst., 162, 73–88,
https://doi.org/10.1016/j.jmarsys.2015.12.004, 2016. a
Crosnier, L. and Delamarche, A.: CMEMS Markets and Users, oral presentation,
Copernicus Marine Service General Assembly, Brussels, 27 May 2019. a
Dai, A., Qian, T., Trenberth, K. E., and Milliman, J. D.: Changes in
Continental Freshwater Discharge from 1948 to 2004, J. Climate, 22,
2773–2792, https://doi.org/10.1175/2008JCLI2592.1, 2009. a
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational
data assimilation scheme, Ocean Modell., 22, 89–105,
https://doi.org/10.1016/j.ocemod.2008.01.004, 2008. a
Dombrowsky, E., Bertino, L., Brassington, G. B., Chassignet, E. P., Davidson,
F., Hurlburt, H. E., Kamachi, M., Lee, T., Martin, M. J., Mei, S., and
Tonani, M.: GODAE Systems in Operation, Oceanography, 22, 80–95,
https://doi.org/10.5670/oceanog.2009.68,
2009. a
Donlon, C. J., Martin, M. J., Stark, J. D., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Rem. Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a
Egbert, G. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean
Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., and Beuvier,
J.: Eddy properties in the western Mediterranean Sea from satellite
altimetry and a numerical simulation, J. Geophys. Res.-Oceans, 121, 3990–4006, https://doi.org/10.1002/2015JC011371, 2016. a
Fekete, B. M., Vorosmarty, C. J., and Grabs, W.: Global, Composite Runoff
Fields Based on Observed River Discharge and Simulated Water Balances, Tech.
Rep. 22, Global Runoff Data Center (World Meteorological Organization),
Koblenz, Germany, 1999. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a
Frenger, I., Gruber, N., Knutti, R., and Münnich, M.: Imprint of Southern
Ocean eddies on winds, clouds and rainfall, Nat. Geosci., 6, 608–612,
https://doi.org/10.1038/ngeo1863, 2013. a
Frenger, I., Münnich, M., Gruber, N., and Knutti, R.: Southern Ocean eddy
phenomenology, J. Geophys. Res.-Oceans, 120, 7413–7449,
https://doi.org/10.1002/2015JC011047, 2015. a, b, c
Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.:
ECCO Version 4 Release 3, Tech. rep., Jet Propulsion Laboratory,
https://doi.org/1721.1/110380,
2017. a
Gasparin, F., Greiner, E., Lellouche, J.-M., Legalloudec, O., Garric, G.,
Drillet, Y., Bourdallé-Badie, R., Traon, P.-Y. L., Rémy, E., and
Drévillon, M.: A large-scale view of oceanic variability from 2007 to 2015
in the global high resolution monitoring and forecasting system at Mercator
Océan, J. Mar. Syst., 187, 206–276, https://doi.org/10.1016/j.jmarsys.2018.06.015,
2018. a
Gaube, P., McGillicuddy, D. J., Chelton, D. B., and Behrenfeld, M. J.: Regional
variations in the influence of mesoscale eddies on near-surface chlorophyll,
J. Geophys. Res.-Oceans, 119, 8195–8220, https://doi.org/10.1002/2014JC010111, 2014. a, b
Harzallah, A., Alioua, M., and Li, L.: Mass exchange at the Strait of
Gibraltar in response to tidal and lower frequency forcing as simulated by a
Mediterranean Sea model, Tellus A, 66, 1–21,
https://doi.org/10.3402/tellusa.v66.23871, 2014. a
Hausmann, U. and Czaja, A.: The observed signature of mesoscale eddies in sea
surface temperature and the associated heat transport, Deep-Sea Res. Pt. I,
70, 60–72, https://doi.org/10.1016/j.dsr.2012.08.005, 2012. a
Hernandez, F., Blockley, F., Brassington, G. B., Davidson, F., Divakaran, P.,
Drévillon, M., Ishizaki, S., Garcia-Sotillo, M., Hogan, P. J., Lagemaa, P.,
Levier, B., Martin, M., Mehra, A., Mooers, C., Ferry, N., Ryan, A., Regnier,
C., Sellar, A., Smith, G. C., Sofianos, S., Spindler, T., Volpe, G., Wilkin,
J., Zaron, E. D., and Zhang, A.: Recent progress in performance evaluations
and near real-time assessment of operational ocean products, J. Oper.
Oceanogr., 8, s221–s238, https://doi.org/10.1080/1755876X.2015.1050282, 2015. a
Herrmann, M. J., Bouffard, J., and Béranger, K.: Monitoring open-ocean deep
convection from space, Geophys. Res. Lett., 36, L03606, https://doi.org/10.1029/2008GL036422,
2009. a
Holte, J. and Talley, L.: A New Algorithm for Finding Mixed Layer Depths with
Applications to Argo Data and Subantarctic Mode Water Formation, J. Atmos. Ocean. Tech., 26, 1920–1939, https://doi.org/10.1175/2009JTECHO543.1, 2009. a, b
Houpert, L., Testor, P., Durrieu de Madron, X., Somot, S., dÓrtenzio, F.,
Estournel, C., and Lavigne, H.: Seasonal cycle of the mixed layer, the
seasonal thermocline and the upper-ocean heat storage rate in the
Mediterranean Sea derived from observations, Prog. Oceanogr., 132,
333–352, https://doi.org/10.1016/j.pocean.2014.11.004, 2015. a
Kurian, J., Colas, F., Capet, X. J., McWilliams, J. C., and Chelton, D. B.:
Eddy properties in the California Current System, J. Geophys. Res.-Oceans,
116, C08027, https://doi.org/10.1029/2010JC006895, 2011. a, b
Leaman, K. D. and Schott, F. A.: Hydrographic Structure of the Convection
Regime in the Gulf of Lions: Winter 1987, J. Phys. Oceanogr., 21, 575–598,
https://doi.org/10.1175/1520-0485(1991)021<0575:HSOTCR>2.0.CO;2, 1991. a
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C., Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin, F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.: Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system, Ocean Sci., 14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018. a
Le Traon, P.-Y., Reppucci, A., Alvarez Fanjul, E., Aouf, L., Behrens, A.,
Belmonte, M., Bentamy, A., Bertino, L., Brando, V. E., Kreiner, M., Benkiran,
M., Buongiorno Nardelli, B., Carval, T., Ciliberti, S. Claustre, H.,
Clementi, E., Coppini, G., Cossarini, G., Alonso-Muñoyerro, M., Dibarboure,
G., Dinessen, F., Drevillon, M., Drillet, Y., Faugere, Y., Fernández, V.,
Fleming, A., García-Hermosa, M. I., Sotillo, M., Garric, G., Gasparin, F.,
Gehlen, M., Grégoire, M., Guinehut, S., Hamon, M., Harris, C., Hernandez,
F., Buus-Hinkler, J., Høyer, J. L., Karvonen, J., Kay, S., King, R.,
Lavergne, T., Lemieux-Dudon, B., Lima, L., Mao, C., Martin, M. J., Masina,
S., Melet, A., Nolan, G., Pascual, A., Pistoia, J., Palazov, A. V., Piolle,
J.-F., Pujol, M. I., Pequignet, A.-C., Peneva, E., Pérez-Gómez, Loic
Petit de la Villeon, B., Pinardi, N., Pisano, A., Pouliquen, S., Reid, R. A.,
Remy, E., Santoleri, R., Siddorn, J., She, J., Staneva, J., Stoffelen, A.,
Tonani, M., Vandenbulcke, L., von Schuckmann, K., Volpe, G., Wettre, C., and
Zacharioudaki, A.: From observation to information and users: the Copernicus
Marine Service perspective, Front. Mar. Sci., 6, 234,
https://doi.org/10.3389/fmars.2019.00234, 2019. a
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E.,
Baranova, O. K., Zweng, M. M., Paver, C., Reagan, J. R., Johnson, D. R.,
Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, Volume 1:
Temperature, in: techreport 73, edited by: Levitus, S. and Mishonov, A., Technical, NOAA
Atlas NESDIS, https://doi.org/10.7289/V5F769GT,
2013. a
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 1616–7341,
https://doi.org/10.1007/s10236-006-0086-x, 2006. a
Madec, G.: NEMO Ocean Engine (Note du Pole de Modélisation), Tech. Rep. 27,
Institut Pierre-Simon Laplace (IPSL), iSSN 1288-1619, 2008. a
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013. a, b
Mason, E. and Pascual, A.: Multiscale variability in the Balearic Sea: an
altimetric perspective, J. Geophys. Res.-Oceans, 118, 3007–3025,
https://doi.org/10.1002/jgrc.20234, 2013. a
Mason, E., Pascual, A., and McWilliams, J. C.: A New Sea Surface Height Based
Code for Oceanic Mesoscale Eddy Tracking, J. Atmos. Ocean. Tech., 31,
1181–1188, https://doi.org/10.1175/JTECH-D-14-00019.1, 2014 (data available at: https://bitbucket.org/emason/py-eddy-tracker/src/default/). a, b
McGillicuddy, D. J.: Mechanisms of Physical-Biological-Biogeochemical
Interaction at the Oceanic Mesoscale, Annu. Rev. Marine Sci., 8, 125–159,
https://doi.org/10.1146/annurev-marine-010814-015606, 2016. a
Millot, C.: Circulation in the Western Mediterranean Sea, J. Mar. Syst., 20,
423–442, https://doi.org/10.1016/S0924-7963(98)00078-5, 1999. a
Naranjo, C., García-Lafuente, J., Sannino, C., and Sanchez-Garrido, J. C.:
How much do tides affect the circulation of the Mediterranean Sea? From
local processes in the Strait of Gibraltar to basin-scale effects, Prog.
Oceanogr., 127, 108–116, https://doi.org/10.1016/j.pocean.2014.06.005, 2014. a
Pascual, A., Pujol, M.-I., Larnicol, G., Le Traon, P.-Y., and Rio, M.-H.:
Mesoscale mapping capabilities of multisatellite altimeter missions: First
results with real data in the Mediterranean Sea, J. Mar. Syst., 65,
190–211, https://doi.org/10.1016/j.jmarsys.2004.12.004, 2007. a
Pascual, A., Ruiz, S., Olita, A., Troupin, C., Claret, M., Casas, B., Mourre,
B., Poulain, P.-M., Tovar-Sanchez, A., Capet, A., Mason, E., Allen, J. T.,
Mahadevan, A., and Tintoré, J.: A Multiplatform Experiment to Unravel
Meso- and Submesoscale Processes in an Intense Front (AlborEx), Front. Mar.
Sci., 4, 39, https://doi.org/10.3389/fmars.2017.00039, 2017. a
Pessini, F., Olita, A., Cotroneo, Y., and Perilli, A.: Mesoscale eddies in the Algerian Basin: do they differ as a function of their formation site?, Ocean Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, 2018. a
Puillat, I., Taupier-Letage, I., and Millot, C.: Algerian Eddies lifetime
can near 3 years, J. Mar. Syst., 31, 245–259,
https://doi.org/10.1016/S0924-7963(01)00056-2, 2002. a
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, 2016. a
Renault, L., Oguz, T., Pascual, A., Vizoso, G., and Tintoré, J.: Surface
circulation in the Alborán Sea (western Mediterranean) inferred from
remotely sensed data, J. Geophys. Res.-Oceans, 117, C08009,
https://doi.org/10.1029/2011JC007659, 2012. a
Rio, M.-H., Pascual, A., Poulain, P.-M., Menna, M., Barceló, B., and Tintoré, J.: Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data, Ocean Sci., 10, 731–744, https://doi.org/10.5194/os-10-731-2014, 2014. a, b
Robinson, A. R. and Golnaraghi, M.: The Physical and Dynamical Oceanography of
the Mediterranean Sea, vol. 419, Springer,
https://doi.org/10.1007/978-94-011-0870-6_12, 1994. a
Ruiz, J., Echevarría, F., Font, J., Ruiz, S., Garcia, E., Blanco, M. J.,
Jiménez-Goméz, F., Prieto, L., Gonzáles-Alaminos, A., Garcia, C. M.,
Cipollini, P., Snaith, H., Bartual, A., Reul, A., and Rodríguez, V.:
Surface distribution of chlorophyll, particles and gelbstoff in the Atlantic
jet of the Alborán Sea: from submesoscale to subinertial scales of
variability, J. Mar. Syst., 29, 277–292,
https://doi.org/10.1016/S0924-7963(01)00020-3, 2001. a
Ruiz, S., Mason, E., Sánchez-Roman, A., and Pascual, A.: Understanding meso
and submesoscale ocean interactions to improve Mediterranean CMEMS
products, Tech. rep., IMEDEA, https://doi.org/10.13140/RG.2.2.10199.32164, 2018. a
Sánchez-Román, A., Ruiz, S., Pascual, A., Mourre, B., and Guinehut, S.: On the mesoscale monitoring capability of Argo floats in the Mediterranean Sea, Ocean Sci., 13, 223–234, https://doi.org/10.5194/os-13-223-2017, 2017. a
Smith, W. H. F. and Sandwell, D. T.: Global sea floor topography from satellite
altimetry and ship depth soundings, Science, 277, 1956–1962,
https://doi.org/10.1126/science.277.5334.1956, 1997. a
Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Reffray, G.,
Amo-Baladrón, A., Benkiran, M., and Alvarez Fanjul, E.: The MyOcean IBI
Ocean Forecast and Reanalysis Systems: operational products and roadmap to
the future Copernicus Service, J. Oper. Oceanogr., 8, 63–79,
https://doi.org/10.1080/1755876X.2015.1014663, 2015. a
Testor, P., Send, U., Gascard, J.-C., Millot, C., Taupier-Letage, I., and
Béranger, K.: The mean circulation of the southwestern Mediterranean Sea:
Algerian Gyres, J. Geophys. Res.-Oceans, 110, C11017,
https://doi.org/10.1029/2004JC002861, 2005. a
Tintoré, J., La Violette, P. E., Blade, I., and Cruzado, A.: A Study of an
Intense Density Front in the Eastern Alboran Sea: The Almeria–Oran Front,
J. Phys. Oceanogr., 18, 1384–1397,
https://doi.org/10.1175/1520-0485(1988)018<1384:ASOAID>2.0.CO;2, 1988. a
Tonani, M., Balmaseda, M., Bertino, L., Blockley, E., Brassington, G. B.,
Davidson, F., Drillet, Y., Hogan, P. J., Kuragano, T., Lee, T., Mehra, A.,
Paranathara, F., Tanajura, C. A. S., and Wang, H.: Status and future of
global and regional ocean prediction systems, J. Oper. Oceanogr., 8,
201–220, https://doi.org/10.1080/1755876X.2015.1049892, 2015. a
Vargas-Yáñez, M., Plaza, F., Garcia-Lafuente, J. M., Sarhan, T., Vargas,
J. M., and Vélez-Belchí, P.: About the seasonal variability of the
Alboran Sea circulation, J. Mar. Syst., 35, 229–248,
https://doi.org/10.1016/S0924-7963(02)00128-8, 2002. a
Villas-Bôas, A. B., Sato, O. T., Chaigneau, A., and Castelaõ, G. P.: The
signature of mesoscale eddies on the air-sea turbulent heat fluxes in the
South Atlantic Ocean, Geophys. Res. Lett., 42, 1856–1862,
https://doi.org/10.1002/2015GL063105, 2015. a
von Schukmann, K., Le Traon, P.-Y., Alvarez Fanjul, E., Axell, L., Balmaseda,
M., Breivik, L.-A., Brewin, J. W., Bricaud, C., Drevillon, M., Drillet, Y.,
Dubois, C., Embury, O., Etienne, H., García Sotillo, M., Garric, G.,
Gasparin, F., Gutknecht, E., Guinehut, S., Hernandez, F., Juza, M., Karlson,
B., Korres, G., Legeais, J.-F., Levier, B., Lien, V., Morrow, R.,
Notarstefano, G., Parent, L., Pascual, A., Pérez-Gómez, B., Perruche, C.,
Pinardi, N., Pisano, A., Poulain, P.-M., Pujol, I. M., Raj, R. P., Raudsepp,
U., Hervé Roquet, H., Samuelsen, A., Sathyendranath, S., She, J.,
Simoncelli, S., Solidoro, C., Tinker, J., Tintoré, J., Viktorsson, L.,
Ablain, M., Almroth-Rosell, E., Bonaduce, A., Clementi, E., Cossarini, G.,
Dagneaux, Q., Desportes, C., Dye, S., Fratianni, C., Good, S., Greiner, E.,
Gourrion, J., Hamon, M., Holt, J., Hyder, P., Kennedy, J., Manzano-Muñoz,
F., Melet, A., Meyssignac, B., Mulet, S., Buongiorno Nardelli, B., O'Dea,
E., Olason, E., Paulmier, A., Pérez-González, I., Reid, R., Racault,
M.-F., Raitsos, D. E., Ramos, A., Sykes, P., Szekely, T., and
Nathalie Verbrugge, N.: The Copernicus Marine Environment Monitoring Service
Ocean State Report, J. Oper. Oceanogr., 9, s235–s320,
https://doi.org/10.1080/1755876X.2016.1273446,
2016.
a
von Schuckmann, K., Traon, P.-Y. L., Smith, N., Pascual, A., Brasseur, P.,
Fennel, K., Djavidnia, S., Aaboe, S., Fanjul, E. A., Autret, E., Axell, L.,
Aznar, R., Benincasa, M., Bentamy, A., Boberg, F., Bourdallé-Badie, R.,
Nardelli, B. B., Brando, V. E., Bricaud, C., Breivik, L.-A., Brewin, R. J.,
Capet, A., Ceschin, A., Ciliberti, S., Cossarini, G., de Alfonso, M.,
de Pascual Collar, A., de Kloe, J., Deshayes, J., Desportes, C., Drévillon,
M., Drillet, Y., Droghei, R., Dubois, C., Embury, O., Etienne, H., Fratianni,
C., Lafuente, J. G., Sotillo, M. G., Garric, G., Gasparin, F., Gerin, R.,
Good, S., Gourrion, J., Grégoire, M., Greiner, E., Guinehut, S., Gutknecht,
E., Hernandez, F., Hernandez, O., Høyer, J., Jackson, L., Jandt, S.,
Josey, S., Juza, M., Kennedy, J., Kokkini, Z., Korres, G., Kõuts, M.,
Lagemaa, P., Lavergne, T., le Cann, B., Legeais, J.-F., Lemieux-Dudon, B.,
Levier, B., Lien, V., Maljutenko, I., Manzano, F., Marcos, M., Marinova, V.,
Masina, S., Mauri, E., Mayer, M., Melet, A., Mélin, F., Meyssignac, B.,
Monier, M., Müller, M., Mulet, S., Naranjo, C., Notarstefano, G., Paulmier,
A., Pérez Gomez, B., Gonzalez, I. P., Peneva, E., Perruche, C.,
Peterson, K. A., Pinardi, N., Pisano, A., Pardo, S., Poulain, P.-M., Raj,
R. P., Raudsepp, U., Ravdas, M., Reid, R., Rio, M.-H., Salon, S., Samuelsen,
A., Sammartino, M., Sammartino, S., Sandø, A. B., Santoleri, R.,
Sathyendranath, S., She, J., Simoncelli, S., Solidoro, C., Stoffelen, A.,
Storto, A., Szerkely, T., Tamm, S., Tietsche, S., Tinker, J., Tintore, J.,
Trindade, A., van Zanten, D., Vandenbulcke, L., Verhoef, A., Verbrugge, N.,
Viktorsson, L., von Schuckmann, K., Wakelin, S. L., Zacharioudaki, A., and
Zuo, H.: Copernicus Marine Service Ocean State Report, J. Oper. Oceanogr.,
11, S1–S142, https://doi.org/10.1080/1755876X.2018.1489208,
2018. a, b
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A. V.,
Boyer, T. P., Garcia, H. E., Baranova, O. K., Johnson, D. R., Seidov, D., and
Biddle, M. M.: World Ocean Atlas 2013, Volume 2: Salinity, in: techreport 74, edited by: Levitus, S., Mishonov, A., NOAA Atlas NESDIS,
available at: http://www.nodc.noaa.gov/OC5/indprod.html
(last access: 1 January 2017), 2013. a
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(13495 KB) - Full-text XML
- Corrigendum
-
Supplement
(5794 KB) - BibTeX
- EndNote
Short summary
The Copernicus Marine Service (CMEMS) provides oceanographic products and services. Using a mesoscale eddy tracker, we evaluate the performance of three CMEMS model products in the western Mediterranean. Performance testing provides valuable feedback to the model developers. The eddy tracker allows us to construct 3-D eddy composites for each model in the Alboran Sea gyres. Comparison of the composites with data from Argo floats highlights the importance of data assimilation for these models.
The Copernicus Marine Service (CMEMS) provides oceanographic products and services. Using a...