Articles | Volume 14, issue 3
https://doi.org/10.5194/os-14-503-2018
https://doi.org/10.5194/os-14-503-2018
Research article
 | Highlight paper
 | 
22 Jun 2018
Research article | Highlight paper |  | 22 Jun 2018

Acoustic mapping of mixed layer depth

Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt

Related authors

Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024,https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
The distribution and abundance of planktonic foraminifera under summer sea-ice in the Arctic Ocean
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091,https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Observations of strong turbulence and mixing impacting water exchange between two basins in the Baltic Sea
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023,https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Hydraulic suppression of basal glacier melt in sill fjords
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023,https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021,https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary

Related subject area

Approach: Remote Sensing | Depth range: Mixed Layer | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
Retrieving the availability of light in the ocean utilising spectral signatures of vibrational Raman scattering in hyper-spectral satellite measurements
T. Dinter, V. V. Rozanov, J. P. Burrows, and A. Bracher
Ocean Sci., 11, 373–389, https://doi.org/10.5194/os-11-373-2015,https://doi.org/10.5194/os-11-373-2015, 2015

Cited articles

Ali, M. M. and Sharma, R.: Estimation of mixed layer depth in the equatorial Indian Ocean using Geosat altimeter data, Marine Geodesy, 17, 63–72, https://doi.org/10.1080/15210609409379710, 1994. 
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnol. Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997. 
Benoit-Bird, K. J. and Lawson, G. L.: Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques, Annu. Rev. Mar. Sci., 8, 463–490, https://doi.org/10.1146/annurev-marine-122414-034001, 2016. 
Biescas, B., Ruddick, B. R., Nedimovic, M. R., Sallarès, V., Bornstein, G., and Mojica, J. F.: Recovery of temperature, salinity, and potential density from ocean reflectivity, J. Geophys. Res.-Oceans, 119, 3171–3184, https://doi.org/10.1002/2013JC009662, 2014. 
Bissett, W. P., Meyers, M. B., Walsh, J. J., and Müller-Karger, F. E.: The effects of temporal variability of mixed layer depth on primary productivity around Bermuda, J. Geophys. Res.-Oceans, 99, 7539–7553, https://doi.org/10.1029/93JC03154, 1994. 
Download
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.