Articles | Volume 14, issue 2
https://doi.org/10.5194/os-14-187-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-187-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations
Marcel Kleinherenbrink
CORRESPONDING AUTHOR
Department of Geoscience and Remote Sensing, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
Riccardo Riva
Department of Geoscience and Remote Sensing, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
Thomas Frederikse
Department of Geoscience and Remote Sensing, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
Related authors
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
Short summary
This study constrains the post-glacial rebound signal in Scandinavia and northern Europe via the combined inversion of prior forward model information with GPS-measured vertical land motion data and GRACE gravity data. The best-fit model for vertical motion rates has a χ2 value of ~ 1 and a maximum uncertainty of 0.3–0.4 mm yr−1. An advantage of inverse models relative to forward models is their ability to estimate formal uncertainties associated with the post-glacial rebound process.
Marcel Kleinherenbrink, Riccardo Riva, and Yu Sun
Ocean Sci., 12, 1179–1203, https://doi.org/10.5194/os-12-1179-2016, https://doi.org/10.5194/os-12-1179-2016, 2016
Short summary
Short summary
Satellite altimetry measures changes in sea level, while satellite gravimetry measures mass changes, and one can infer steric sea level from Argo temperature and salinity profiles. For the first time, it is shown that in most cases the mass and steric components match the total sea level measured by altimetry on a sub-basin scale in terms of trend, annual amplitude and interannual variability. We also find that the choice of gravity field filter is essential to close the budget.
Mattia Poinelli, Michael Schodlok, Eric Larour, Miren Vizcaino, and Riccardo Riva
The Cryosphere, 17, 2261–2283, https://doi.org/10.5194/tc-17-2261-2023, https://doi.org/10.5194/tc-17-2261-2023, 2023
Short summary
Short summary
Rifts are fractures on ice shelves that connect the ice on top to the ocean below. The impact of rifts on ocean circulation below Antarctic ice shelves has been largely unexplored as ocean models are commonly run at resolutions that are too coarse to resolve the presence of rifts. Our model simulations show that a kilometer-wide rift near the ice-shelf front modulates heat intrusion beneath the ice and inhibits basal melt. These processes are therefore worthy of further investigation.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020, https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
Short summary
The solid Earth is still deforming because of the effect of past ice sheets through glacial isostatic adjustment (GIA). Satellite gravity observations by the Gravity Recovery and Climate Experiment (GRACE) mission are sensitive to those signals but are superimposed on the redistribution effect of water masses by the hydrological cycle. We propose a method separating the two signals, providing new constraints for forward GIA models and estimating the global water cycle's patterns and magnitude.
Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019, https://doi.org/10.5194/se-10-1971-2019, 2019
Short summary
Short summary
Due to ice sheets and glaciers losing mass, and because continents get wetter and drier, a lot of water is redistributed over the Earth's surface. The Earth is not completely rigid but deforms under these changes in the load on top. This deformation affects sea-level observations. With the GRACE satellite mission, we can measure this redistribution of water, and we compute the resulting deformation. We use this computed deformation to improve the accuracy of sea-level observations.
Carine G. van der Boog, Julie D. Pietrzak, Henk A. Dijkstra, Nils Brüggemann, René M. van Westen, Rebecca K. James, Tjeerd J. Bouma, Riccardo E. M. Riva, D. Cornelis Slobbe, Roland Klees, Marcel Zijlema, and Caroline A. Katsman
Ocean Sci., 15, 1419–1437, https://doi.org/10.5194/os-15-1419-2019, https://doi.org/10.5194/os-15-1419-2019, 2019
Short summary
Short summary
We use a model of the Caribbean Sea to study how coastal upwelling along Venezuela impacts the evolution of energetic anticyclonic eddies. We show that the anticyclones grow by the advection of the cold upwelling filaments. These filaments increase the density gradient and vertical shear of the anticyclones. Furthermore, we show that stronger upwelling results in stronger eddies, while model simulations with weaker upwelling contain weaker eddies.
Surendra Adhikari, Erik R. Ivins, Thomas Frederikse, Felix W. Landerer, and Lambert Caron
Earth Syst. Sci. Data, 11, 629–646, https://doi.org/10.5194/essd-11-629-2019, https://doi.org/10.5194/essd-11-629-2019, 2019
Short summary
Short summary
We compute monthly solutions of changes in relative sea level, geoid height, and vertical bedrock displacement and uncertainties therein for the period April 2002–August 2016. These are based on the Release-06 GRACE Level-2 Stokes coefficients distributed by three premier data processing centers: CSR, GFZ, and JPL. Solutions are provided with and without Earth's rotational feedback included and in both the center-of-mass and center-of-figure reference frames.
Thomas Frederikse and Theo Gerkema
Ocean Sci., 14, 1491–1501, https://doi.org/10.5194/os-14-1491-2018, https://doi.org/10.5194/os-14-1491-2018, 2018
Karen M. Simon, Riccardo E. M. Riva, Marcel Kleinherenbrink, and Thomas Frederikse
Solid Earth, 9, 777–795, https://doi.org/10.5194/se-9-777-2018, https://doi.org/10.5194/se-9-777-2018, 2018
Short summary
Short summary
This study constrains the post-glacial rebound signal in Scandinavia and northern Europe via the combined inversion of prior forward model information with GPS-measured vertical land motion data and GRACE gravity data. The best-fit model for vertical motion rates has a χ2 value of ~ 1 and a maximum uncertainty of 0.3–0.4 mm yr−1. An advantage of inverse models relative to forward models is their ability to estimate formal uncertainties associated with the post-glacial rebound process.
Katja Frieler, Stefan Lange, Franziska Piontek, Christopher P. O. Reyer, Jacob Schewe, Lila Warszawski, Fang Zhao, Louise Chini, Sebastien Denvil, Kerry Emanuel, Tobias Geiger, Kate Halladay, George Hurtt, Matthias Mengel, Daisuke Murakami, Sebastian Ostberg, Alexander Popp, Riccardo Riva, Miodrag Stevanovic, Tatsuo Suzuki, Jan Volkholz, Eleanor Burke, Philippe Ciais, Kristie Ebi, Tyler D. Eddy, Joshua Elliott, Eric Galbraith, Simon N. Gosling, Fred Hattermann, Thomas Hickler, Jochen Hinkel, Christian Hof, Veronika Huber, Jonas Jägermeyr, Valentina Krysanova, Rafael Marcé, Hannes Müller Schmied, Ioanna Mouratiadou, Don Pierson, Derek P. Tittensor, Robert Vautard, Michelle van Vliet, Matthias F. Biber, Richard A. Betts, Benjamin Leon Bodirsky, Delphine Deryng, Steve Frolking, Chris D. Jones, Heike K. Lotze, Hermann Lotze-Campen, Ritvik Sahajpal, Kirsten Thonicke, Hanqin Tian, and Yoshiki Yamagata
Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, https://doi.org/10.5194/gmd-10-4321-2017, 2017
Short summary
Short summary
This paper describes the simulation scenario design for the next phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which is designed to facilitate a contribution to the scientific basis for the IPCC Special Report on the impacts of 1.5 °C global warming. ISIMIP brings together over 80 climate-impact models, covering impacts on hydrology, biomes, forests, heat-related mortality, permafrost, tropical cyclones, fisheries, agiculture, energy, and coastal infrastructure.
Riccardo E. M. Riva, Thomas Frederikse, Matt A. King, Ben Marzeion, and Michiel R. van den Broeke
The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, https://doi.org/10.5194/tc-11-1327-2017, 2017
Short summary
Short summary
The reduction of ice masses stored on land has made an important contribution to sea-level rise over the last century, as well as changed the Earth's shape. We model the solid-earth response to ice mass changes and find significant vertical deformation signals over large continental areas. We show how deformation rates have varied strongly throughout the last century, which affects the interpretation and extrapolation of recent observations of vertical land motion and sea-level change.
Marcel Kleinherenbrink, Riccardo Riva, and Yu Sun
Ocean Sci., 12, 1179–1203, https://doi.org/10.5194/os-12-1179-2016, https://doi.org/10.5194/os-12-1179-2016, 2016
Short summary
Short summary
Satellite altimetry measures changes in sea level, while satellite gravimetry measures mass changes, and one can infer steric sea level from Argo temperature and salinity profiles. For the first time, it is shown that in most cases the mass and steric components match the total sea level measured by altimetry on a sub-basin scale in terms of trend, annual amplitude and interannual variability. We also find that the choice of gravity field filter is essential to close the budget.
B. C. Gunter, O. Didova, R. E. M. Riva, S. R. M. Ligtenberg, J. T. M. Lenaerts, M. A. King, M. R. van den Broeke, and T. Urban
The Cryosphere, 8, 743–760, https://doi.org/10.5194/tc-8-743-2014, https://doi.org/10.5194/tc-8-743-2014, 2014
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Sea Level
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
GEM: a dynamic tracking model for mesoscale eddies in the ocean
El Niño, La Niña, and the global sea level budget
DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years
Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis
Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a
Technical Note: Watershed strategy for oceanic mesoscale eddy splitting
Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project
Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level
From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography
Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
Qiu-Yang Li, Liang Sun, and Sheng-Fu Lin
Ocean Sci., 12, 1249–1267, https://doi.org/10.5194/os-12-1249-2016, https://doi.org/10.5194/os-12-1249-2016, 2016
Short summary
Short summary
The Genealogical Evolution Model (GEM) is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern with a two-dimensional vector. All of the computational steps are linear and do not include iteration. It is very fast and is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
Christopher G. Piecuch and Katherine J. Quinn
Ocean Sci., 12, 1165–1177, https://doi.org/10.5194/os-12-1165-2016, https://doi.org/10.5194/os-12-1165-2016, 2016
Short summary
Short summary
We use satellite and in situ data to elucidate global-mean sea level (GMSL) changes related to El Niño-Southern Oscillation (ENSO) over 2005–2015. Steric and mass effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize mass contributions. Results exemplify the usefulness of the Global Ocean Observing System for understanding the Earth's radiation imbalance and hydrological cycle.
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
Q. Y. Li and L. Sun
Ocean Sci., 11, 269–273, https://doi.org/10.5194/os-11-269-2015, https://doi.org/10.5194/os-11-269-2015, 2015
Short summary
Short summary
This study established a splitting strategy that could separate multinuclear eddies into mononuclear eddies. As the values of eddy parameters (e.g. SLA, geostrophic potential vorticity, Okubo–Weiss parameter) are similar to basins in a map, the natural divisions of the basins are the watersheds between them. It can also be applied to automatic identification of troughs and ridges from weather charts. We denoted it the Universal Splitting Technology for Circulations (USTC) method.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
P. Y. Le Traon
Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, https://doi.org/10.5194/os-9-901-2013, 2013
D. P. Chambers and J. A. Bonin
Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, https://doi.org/10.5194/os-8-859-2012, 2012
Cited articles
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (19932010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015.
Andres, M., Gawarkiewicz, G. G., and Toole, J. M.: Interannual sea level variability in the western North Atlantic: Regional forcing and remote response, Geophys. Res. Lett., 40, 5915–5919, 2013.
Blewitt, G., Kreemer, C., Hammond, W. C., and Gazeaux, J.: MIDAS robust trend estimator for accurate GPS station velocities without step detection, J. Geophys. Res.-Sol. Ea., 121, 2054–2068, https://doi.org/10.1002/2015JB012552, 2016.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L.: Fast error analysis of continuous GNSS observations with missing data, J. Geodesy, 87, 351–360, 2013a.
Bos, M. S., Williams, S. D. P., Araújo, I. B., and Bastos, L.: The effect of temporal correlated noise on the sea level rate and acceleration uncertainty, Geophys. J. Int., 196, 1423–1430, 2013b.
Bouin, M. N. and Wöppelmann, G.: Land motion estimates from GPS at tide gauges: a geophysical evaluation, Geophys. J. Int., 180, 193–209, 2010.
Calafat, F. M., Chambers, D. P., and Tsimplis, M. N.: Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: The role of atmospheric forcing, J. Geophys. Res.-Oceans, 118, 1287–1301, 2013.
Carrère, L. and Lyard, F.: Modelling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations, Geophys. Res. Lett., 30, 1275, https://doi.org/10.1029/2002GL016473, 2003.
Cazenave, A., Dominh, K., Ponchaut, F., Soudarin, L., Cretaux, J. F., and Le Provost, C.: Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophys. Res. Lett., 26, 2077–2080, 1999.
Desai, S., Wahr, J., and Beckley, B.: Revisiting the pole tide for and from satellite altimetry, J. Geodesy, 89, 1233–1243, 2015.
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res.-Oceans, 105, 19477–19498, 2000.
Farrell, W. E. and Clark, J. A.: On postglacial sea level, Geophys. J. Int., 46, 647–667, 1976.
Frederikse, T., Riva, R., Kleinherenbrink, M., Wada, Y., Broeke, M., and Marzeion, B.: Closing the sea level budget on a regional scale: Trends and variability on the Northwestern European continental shelf, Geophys. Res. Lett., 43, 10864–10872, https://doi.org/10.1002/2016GL070750, 2016.
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore, A. W., Ostini, L., Petrie, E., Roggero, M., Teferle, F. N., Olivares, G., and Webb, F. H.: Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment, J. Geophys. Res.-Sol. Ea., 118, 2397–2407, 2013.
Gutenberg, B.: Changes in sea level, postglacial uplift, and mobility of the Earth's interior, Bull. Geol. Soc. Am., 52, 721–772, 1941.
Hamlington, B. D., Thompson, P., Hammond, W. C., Blewitt, G., and Ray, R. D.: Assessing the impact of vertical land motion on twentieth century global mean sea level estimates, J. Geophys. Res.-Oceans, 121, 4980–4993, 2016.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.: New data systems and products at the permanent service for mean sea level, J. Coastal Res., 29, 493–504, 2013.
Hughes, C. W. and Meredith, M. P.: Coherent sea-level fluctuations along the global continental slope, Phil. Trans. R. Soc., 364, 885–901, 2006.
Masters, D., Nerem, R. S., Choe, C., Leuliette, E., Beckley, B., White, N., and Ablain, M.: Comparison of global mean sea level time series from TOPEX/Poseidon, Jason-1, and Jason-2, Mar. Geod., 35, 20–41, 2012.
Milne, G. A. and Mitrovica, J. X.: Postglacial sea-level change on a rotating Earth, Geophys. J. Int., 133, 1–19, 1998.
Mitchum, G. T.: Monitoring the stability of satellite altimeters with tide gauges, J. Atmos. Ocean. Tech., 15, 721–730, 1998.
Mitchum, G. T.: An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion, Mar. Geod., 23, 145–166, 2000.
Nerem, R. S. and Mitchum, G. T.: Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements, Geophys. Res. Lett., 29, 1934, https://doi.org/10.1029/2002GL015037, 2002.
Ostanciaux, É., Husson, L., Choblet, G., Robin, C., and Pedoja, K.: Present-day trends of vertical ground motion along the coast lines, Earth-Sci. Rev., 110, 74–92, 2012.
Petit, G. and Luzum, B.: IERS conventions (2010) (No. IERS-TN-36), Bureau international des poids et mesures sevres (France), 2010.
Pfeffer, J. and Allemand, P.: The key role of vertical land motions in coastal sea level variations: a global synthesis of multisatellite altimetry, tide gauge data and GPS measurements, Earth Planet. Sc. Lett., 439, 39–47, 2016.
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, 2016.
Ray, R. D., Beckley, B. D., and Lemoine, F. G.: Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements, Adv. Space Res., 45, 1510–1522, 2010.
Riva, R. E. M., Frederikse, T., King, M. A., Marzeion, B., and van den Broeke, M. R.: Brief communication: The global signature of post-1900 land ice wastage on vertical land motion, The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, 2017.
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program, Prog. Oceanogr., 82, 81–100, 2009.
Santamaría-Gómez, A., Gravelle, M., Collilieux, X., Guichard, M., Míguez, B. M., Tiphaneau, P., and Wöppelmann, G.: Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field, Global Planet. Change, 98, 6–17, 2012.
Santamaría-Gómez, A., Gravelle, M., and Wöppelmann, G.: Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data, J. Geodesy, 88, 207–222, 2014.
Santamaría-Gómez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G., and Wöppelmann, G.: Uncertainty of the 20th century sea-level rise due to vertical land motion errors, Earth Planet. Sc. Lett., 473, 24–32, 2017.
Scharroo, R., Leuliette, E. W., Lillibridge, J. L., Byrne, D., Naeije, M. C., and Mitchum, G. T.: RADS: Consistent multi-mission products, in: Proceedings of Symposium on 20 Years of Progress in Radar Altimetry, Vol. 20, 59–60, 2012.
Vinogradov, S. V. and Ponte, R. M.: Low-frequency variability in coastal sea level from tide gauges and altimetry, J. Geophys. Res.-Oceans, 116, C07006, https://doi.org/10.1029/2011JC007034, 2011.
Wahr, J., Nerem, R. S., and Bettadpur, S. V.: The pole tide and its effect on GRACE time-variable gravity measurements: Implications for estimates of surface mass variations, J. Geophys. Res.-Sol. Ea., 120, 4597–4615, 2015.
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., and Legresy, B.: Unabated global mean sea-level rise over the satellite altimeter era, Nat. Clim. Change, 5, 565–568, 2015.
Wilcox, R. R.: Introduction to Robust Estimation and Hypothesis Testing, Elsevier Academic Press, Burlington, Mass., 2005.
Williams, S. D. P.: CATS: GPS coordinate time series analysis software, GPS Solut., 12, 147–153, https://doi.org/10.1007/s10291-007-0086-4, 2008.
Wöppelmann, G., Miguez, B. M., Bouin, M. N., and Altamimi, Z.: Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide, Global Planet. Change, 57, 396–406, 2007.
Wöppelmann, G., Marcos, M., Santamaría-Gómez, A., Martín-Míguez, B., Bouin, M. N., and Gravelle, M.: Evidence for a differential sea level rise between hemispheres over the twentieth century, Geophys. Res. Lett., 41, 1639–1643, 2014.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, 64–92, 2016.
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM)....