Articles | Volume 14, issue 5
https://doi.org/10.5194/os-14-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-14-1093-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1∕12° high-resolution system
Jean-Michel Lellouche
CORRESPONDING AUTHOR
Mercator Ocean, Ramonville Saint Agne, France
Eric Greiner
Collecte Localisation Satellites, Ramonville Saint Agne, France
Olivier Le Galloudec
Mercator Ocean, Ramonville Saint Agne, France
Gilles Garric
Mercator Ocean, Ramonville Saint Agne, France
Charly Regnier
Mercator Ocean, Ramonville Saint Agne, France
Marie Drevillon
Mercator Ocean, Ramonville Saint Agne, France
Mounir Benkiran
Mercator Ocean, Ramonville Saint Agne, France
Charles-Emmanuel Testut
Mercator Ocean, Ramonville Saint Agne, France
Romain Bourdalle-Badie
Mercator Ocean, Ramonville Saint Agne, France
Florent Gasparin
Mercator Ocean, Ramonville Saint Agne, France
Olga Hernandez
Mercator Ocean, Ramonville Saint Agne, France
Bruno Levier
Mercator Ocean, Ramonville Saint Agne, France
Yann Drillet
Mercator Ocean, Ramonville Saint Agne, France
Elisabeth Remy
Mercator Ocean, Ramonville Saint Agne, France
Pierre-Yves Le Traon
Mercator Ocean, Ramonville Saint Agne, France
IFREMER, 29280, Plouzané, France
Related authors
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
Y. Drillet, J. M. Lellouche, B. Levier, M. Drévillon, O. Le Galloudec, G. Reffray, C. Regnier, E. Greiner, and M. Clavier
Ocean Sci., 10, 1013–1029, https://doi.org/10.5194/os-10-1013-2014, https://doi.org/10.5194/os-10-1013-2014, 2014
Adam M. Cook, Youyu Lu, Xianmin Hu, David Brickman, David Hebert, Chantelle Layton, and Gilles Garric
State Planet Discuss., https://doi.org/10.5194/sp-2024-14, https://doi.org/10.5194/sp-2024-14, 2024
Preprint under review for SP
Short summary
Short summary
Ocean bottom temperatures from a global ocean reanalysis product are found to be consistent with in situ observations on Scotian Shelf. Statistical analysis reveals positive relationship between changes in lobster catch rate and ocean bottom temperature off the southwest coast of Nova Scotia during 2008–2023. A standardized lobster catch rate index with influence of bottom temperature included is more consistent with available stock biomass compared to the index without such influence.
Yann Drillet, Matthew Martin, Yasumasa Miyazawa, Mike Bell, Eric Chassignet, and Stefania Ciliberti
State Planet Discuss., https://doi.org/10.5194/sp-2024-38, https://doi.org/10.5194/sp-2024-38, 2024
Preprint under review for SP
Short summary
Short summary
This article describes the various stages of research and development that have been carried out over the last few decades to produce an operational reference service for global ocean monitoring and forecasting.
Michael J. Bell, Yann Drillet, Matthew Martin, Andreas Schiller, and Stefania Ciliberti
State Planet Discuss., https://doi.org/10.5194/sp-2024-41, https://doi.org/10.5194/sp-2024-41, 2024
Revised manuscript accepted for SP
Short summary
Short summary
We describe, at an elementary level, the spatially varying properties of the ocean that physical ocean models represent, the principles they use to evolve these properties with time, the physical phenomena that they simulate, and some of the roles these phenomena play within the Earth system. We also describe, in some technical detail, the methods and approximations that the models use and the difficulties that limit their accuracy or reliability.
Amélie Loubet, Simon J. van Gennip, Romain Bourdallé-Badie, and Marie Drevillon
State Planet Discuss., https://doi.org/10.5194/sp-2024-31, https://doi.org/10.5194/sp-2024-31, 2024
Preprint under review for SP
Short summary
Short summary
Marine Heatwaves (MHWs) are intensifying due to climate change. In 2023, the Copernicus Marine forecast system tracked a significant MHW event in the North Tropical Atlantic. Here we show this event was unprecedented, at the surface and at depth. It peaked in the northeast in May, spreading southwest to reach the Caribbean by fall. In the east and centre, the MHW remained within the surface layers, while in the Caribbean, it reached deeper levels due to warm waters advected by equatorial eddies.
Antonio Sánchez-Román, Flora Gues, Romain Bourdalle-Badie, Marie-Isabelle Pujol, Ananda Pascual, and Marie Drévillon
State Planet, 4-osr8, 4, https://doi.org/10.5194/sp-4-osr8-4-2024, https://doi.org/10.5194/sp-4-osr8-4-2024, 2024
Short summary
Short summary
This study investigates the changing pattern of the Gulf Stream over the last 3 decades as observed in the altimetric record (1993–2022). Changes in the Gulf Stream path have an effect on its speed (and associated energy) and also on waters transported towards the subpolar North Atlantic, impacting Europe's climate. The observed shifts in the paths seem to be linked to variability in the North Atlantic Ocean during winter that may play an important role.
Álvaro de Pascual Collar, Roland Aznar, Bruno Levier, and Marcos García Sotillo
State Planet, 4-osr8, 5, https://doi.org/10.5194/sp-4-osr8-5-2024, https://doi.org/10.5194/sp-4-osr8-5-2024, 2024
Short summary
Short summary
The Iberia–Biscay–Ireland region in the North Atlantic has diverse ocean currents impacting upper and deeper layers. These currents are vital for heat transport, species dispersion, and sediment and pollutant movement. Monitoring them is crucial for informed decision-making in ocean-related activities, including the blue economy sector. This study introduces an indicator to track these currents, covering main ones like the Azores, Canary, Portugal, and poleward slope currents.
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Noémie Lalau, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet, 4-osr8, 12, https://doi.org/10.5194/sp-4-osr8-12-2024, https://doi.org/10.5194/sp-4-osr8-12-2024, 2024
Short summary
Short summary
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean basins is investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both seasonal and interannual timescales.
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Jonathan Baker, Clément Bricaud, Romain Bourdalle-Badie, Lluis Castrillo, Lijing Cheng, Frederic Chevallier, Daniele Ciani, Alvaro de Pascual-Collar, Vincenzo De Toma, Marie Drevillon, Claudia Fanelli, Gilles Garric, Marion Gehlen, Rianne Giesen, Kevin Hodges, Doroteaciro Iovino, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Thomas Lavergne, Simona Masina, Ronan McAdam, Audrey Minière, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Ad Stoffelen, Sulian Thual, Simon Van Gennip, Pierre Veillard, Chunxue Yang, and Hao Zuo
State Planet, 4-osr8, 1, https://doi.org/10.5194/sp-4-osr8-1-2024, https://doi.org/10.5194/sp-4-osr8-1-2024, 2024
Karina von Schuckmann, Lorena Moreira, Mathilde Cancet, Flora Gues, Emmanuelle Autret, Ali Aydogdu, Lluis Castrillo, Daniele Ciani, Andrea Cipollone, Emanuela Clementi, Gianpiero Cossarini, Alvaro de Pascual-Collar, Vincenzo De Toma, Marion Gehlen, Rianne Giesen, Marie Drevillon, Claudia Fanelli, Kevin Hodges, Simon Jandt-Scheelke, Eric Jansen, Melanie Juza, Ioanna Karagali, Priidik Lagemaa, Vidar Lien, Leonardo Lima, Vladyslav Lyubartsev, Ilja Maljutenko, Simona Masina, Ronan McAdam, Pietro Miraglio, Helen Morrison, Tabea Rebekka Panteleit, Andrea Pisano, Marie-Isabelle Pujol, Urmas Raudsepp, Roshin Raj, Ad Stoffelen, Simon Van Gennip, Pierre Veillard, and Chunxue Yang
State Planet, 4-osr8, 2, https://doi.org/10.5194/sp-4-osr8-2-2024, https://doi.org/10.5194/sp-4-osr8-2-2024, 2024
Antonio Novellino, Pierre-Yves Le Traon, and Andy Moore
State Planet Discuss., https://doi.org/10.5194/sp-2024-23, https://doi.org/10.5194/sp-2024-23, 2024
Preprint under review for SP
Short summary
Short summary
This paper discusses the vital role of observations in ocean predictions and forecasting, highlighting the need for effective access, management, and integration of data to improve models and decision-making. The paper also explores opportunities for standardizing protocols and the potential of citizen-based, cost-effective data collection methods.
Ségolène Berthou, John Siddorn, Vivian Fraser-Leonhardt, Pierre-Yves Le Traon, and Ibrahim Hoteit
State Planet Discuss., https://doi.org/10.5194/sp-2024-28, https://doi.org/10.5194/sp-2024-28, 2024
Revised manuscript under review for SP
Short summary
Short summary
Ocean forecasting is traditionally done independently from atmospheric, wave, or river modeling. We discuss the benefits and challenges of bringing all these modelling systems together for ocean forecasting.
Li Zhai, Youyu Lu, Haiyan Wang, Gilles Garric, and Simon Van Gennip
State Planet Discuss., https://doi.org/10.5194/sp-2024-17, https://doi.org/10.5194/sp-2024-17, 2024
Preprint under review for SP
Short summary
Short summary
Statistics of Marine Heatwaves and Cold Spells in the water column of Northwest Atlantic during 1993–2023 are derived for the first time using a global ocean reanalysis product. On Scotian Shelf temperature and parameters of extreme events present layered structures in the water column, long-term trends and sharp increases around 2012. Quantification of extreme warm (cold) conditions in 2012 (1998) supports previous studies on the impacts of these conditions on several marine life species.
Liying Wan, Marcos Garcia Sotillo, Mike Bell, Yann Drillet, Roland Aznar, and Stefania Ciliberti
State Planet Discuss., https://doi.org/10.5194/sp-2024-21, https://doi.org/10.5194/sp-2024-21, 2024
Revised manuscript accepted for SP
Short summary
Short summary
Operational ocean forecasting systems integrate advanced numerical modelling, aimed at resolving ocean dynamics and processes from global to coastal scale, and robust computational suites that are devoted to run models, orchestrating different data pre- and post-processing blocks, with the ultimate goal of providing high quality and reliable ocean forecasts. The main phases of its workflow are: pre-processing, modelling component(s) run, and post-processing.
Marcos G. Sotillo, Marie Drevillon, and Fabrice Hernandez
State Planet Discuss., https://doi.org/10.5194/sp-2024-33, https://doi.org/10.5194/sp-2024-33, 2024
Preprint under review for SP
Short summary
Short summary
Operational forecasting systems requires best practices for assessing the quality of ocean products. The Authors discusses on the role of observing network for performing validation of ocean models, identifying current gaps, but also emphasizing the need of new metrics. An analysis on the level of maturity of validation processes from global to regional systems is provided. A rich variety of approaches exists. Example of Copernicus Marine product quality organization is provided.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Mounir Benkiran, Pierre-Yves Le Traon, Elisabeth Rémy, and Yann Drillet
EGUsphere, https://doi.org/10.5194/egusphere-2024-420, https://doi.org/10.5194/egusphere-2024-420, 2024
Preprint archived
Short summary
Short summary
The assimilation of altimetry data corrects and improves the forecast of a global ocean forecasting system. Until now, the use of altimetry observations from nadir altimeters has had a major impact on the quality of ocean forecasts. Our study shows that the use of observations from swath altimeters will have a greater impact than the quality of these forecasts and will better constrain mesoscale structures.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Mounir Benkiran, Pierre-Yves Le Traon, and Gérald Dibarboure
Ocean Sci., 18, 609–625, https://doi.org/10.5194/os-18-609-2022, https://doi.org/10.5194/os-18-609-2022, 2022
Short summary
Short summary
The SSH analysis and 7 d forecast error will be globally reduced by almost 50 %. Surface current forecast errors should be equivalent to today’s surface current analysis errors or alternatively will be improved (variance error reduction) by 30 % at the surface and 50 % for 300 m depth.
The resolution capabilities will be drastically improved and will be closer to 100 km wavelength as opposed to today where they are above 250 km (on average).
Joris Pianezze, Jonathan Beuvier, Cindy Lebeaupin Brossier, Guillaume Samson, Ghislain Faure, and Gilles Garric
Nat. Hazards Earth Syst. Sci., 22, 1301–1324, https://doi.org/10.5194/nhess-22-1301-2022, https://doi.org/10.5194/nhess-22-1301-2022, 2022
Short summary
Short summary
Most numerical weather and oceanic prediction systems do not consider ocean–atmosphere feedback during forecast, and this can lead to significant forecast errors, notably in cases of severe situations. A new high-resolution coupled ocean–atmosphere system is presented in this paper. This forecast-oriented system, based on current regional operational systems and evaluated using satellite and in situ observations, shows that the coupling improves both atmospheric and oceanic forecasts.
Florent Garnier, Sara Fleury, Gilles Garric, Jérôme Bouffard, Michel Tsamados, Antoine Laforge, Marion Bocquet, Renée Mie Fredensborg Hansen, and Frédérique Remy
The Cryosphere, 15, 5483–5512, https://doi.org/10.5194/tc-15-5483-2021, https://doi.org/10.5194/tc-15-5483-2021, 2021
Short summary
Short summary
Snow depth data are essential to monitor the impacts of climate change on sea ice volume variations and their impacts on the climate system. For that purpose, we present and assess the altimetric snow depth product, computed in both hemispheres from CryoSat-2 and SARAL satellite data. The use of these data instead of the common climatology reduces the sea ice thickness by about 30 cm over the 2013–2019 period. These data are also crucial to argue for the launch of the CRISTAL satellite mission.
Théo Brivoal, Guillaume Samson, Hervé Giordani, Romain Bourdallé-Badie, Florian Lemarié, and Gurvan Madec
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-78, https://doi.org/10.5194/os-2020-78, 2020
Preprint withdrawn
Short summary
Short summary
We investigate the interactions between near-surface winds and oceanic surface currents on the north-east atlantic region using a simplified lower atmosphere model coupled with an ocean model. we show that the upper ocean kinetic energy is significantly reduced due to these interactions, but in a smaller amplitude than if the wind feedback is ignored. We also show that wind-current interactions affect the deeper ocean by modifying its vertical structure and consequently the pressure field.
Evan Mason, Simón Ruiz, Romain Bourdalle-Badie, Guillaume Reffray, Marcos García-Sotillo, and Ananda Pascual
Ocean Sci., 15, 1111–1131, https://doi.org/10.5194/os-15-1111-2019, https://doi.org/10.5194/os-15-1111-2019, 2019
Short summary
Short summary
The Copernicus Marine Service (CMEMS) provides oceanographic products and services. Using a mesoscale eddy tracker, we evaluate the performance of three CMEMS model products in the western Mediterranean. Performance testing provides valuable feedback to the model developers. The eddy tracker allows us to construct 3-D eddy composites for each model in the Alboran Sea gyres. Comparison of the composites with data from Argo floats highlights the importance of data assimilation for these models.
Benoît Tranchant, Elisabeth Remy, Eric Greiner, and Olivier Legalloudec
Ocean Sci., 15, 543–563, https://doi.org/10.5194/os-15-543-2019, https://doi.org/10.5194/os-15-543-2019, 2019
Short summary
Short summary
This work deals with the use of sea surface salinity measurements from space in the context of operational oceanography. The salinity plays an important role in the ocean–atmosphere coupling, especially when an El Niño event occurs in the tropical Pacific. However, it is still difficult to use such data in ocean models due to a large extent to large-scales biases. This study shows that from recent data with a suitable bias correction scheme, it is possible to improve our forecast skill.
Ann-Sophie Tissier, Jean-Michel Brankart, Charles-Emmanuel Testut, Giovanni Ruggiero, Emmanuel Cosme, and Pierre Brasseur
Ocean Sci., 15, 443–457, https://doi.org/10.5194/os-15-443-2019, https://doi.org/10.5194/os-15-443-2019, 2019
Short summary
Short summary
To better exploit the observational information available for all scales in data assimilation systems, we investigate a new method to introduce scale separation in the algorithm. It consists in carrying out the analysis with spectral localisation for the large scales and spatial localisation for the residual scales. The performance is then checked explicitly and separately for all scales. Results show that accuracy can be improved for the large scales while preserving reliability at all scales.
Vassilios D. Vervatis, Pierre De Mey-Frémaux, Nadia Ayoub, Sarantis Sofianos, Charles-Emmanuel Testut, Marios Kailas, John Karagiorgos, and Malek Ghantous
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-31, https://doi.org/10.5194/gmd-2019-31, 2019
Revised manuscript not accepted
Short summary
Short summary
Our contributions were specifically targeted at the generation of ensembles, in particular (but not solely) for high-resolution ocean configurations including regional and coastal physics and biogeochemistry. The most important paradigm of this work was to adopt a balanced approach building ocean biogeochemical model ensembles and testing their relevance against observational networks monitoring upper-ocean properties, in the sense of nonzero joint probabilities.
Antonio Bonaduce, Mounir Benkiran, Elisabeth Remy, Pierre Yves Le Traon, and Gilles Garric
Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018, https://doi.org/10.5194/os-14-1405-2018, 2018
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
Helene T. Hewitt, Malcolm J. Roberts, Pat Hyder, Tim Graham, Jamie Rae, Stephen E. Belcher, Romain Bourdallé-Badie, Dan Copsey, Andrew Coward, Catherine Guiavarch, Chris Harris, Richard Hill, Joël J.-M. Hirschi, Gurvan Madec, Matthew S. Mizielinski, Erica Neininger, Adrian L. New, Jean-Christophe Rioual, Bablu Sinha, David Storkey, Ann Shelly, Livia Thorpe, and Richard A. Wood
Geosci. Model Dev., 9, 3655–3670, https://doi.org/10.5194/gmd-9-3655-2016, https://doi.org/10.5194/gmd-9-3655-2016, 2016
Short summary
Short summary
We examine the impact in a coupled model of increasing atmosphere and ocean horizontal resolution and the frequency of coupling between the atmosphere and ocean. We demonstrate that increasing the ocean resolution from 1/4 degree to 1/12 degree has a major impact on ocean circulation and global heat transports. The results add to the body of evidence suggesting that ocean resolution is an important consideration when developing coupled models for weather and climate applications.
Mathieu Hamon, Jonathan Beuvier, Samuel Somot, Jean-Michel Lellouche, Eric Greiner, Gabriel Jordà, Marie-Noëlle Bouin, Thomas Arsouze, Karine Béranger, Florence Sevault, Clotilde Dubois, Marie Drevillon, and Yann Drillet
Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, https://doi.org/10.5194/os-12-577-2016, 2016
Short summary
Short summary
The paper describes MEDRYS, a MEDiterranean sea ReanalYsiS at high resolution for the period 1992–2013. The NEMOMED12 ocean model is forced at the surface by a new high resolution atmospheric forcing dataset (ALDERA). Altimeter data, satellite SST and temperature and salinity vertical profiles are jointly assimilated. The ability of the reanalysis to represent the sea surface high-frequency variability, water mass characteristics and transports through the Strait of Gibraltar is shown.
V. Turpin, E. Remy, and P. Y. Le Traon
Ocean Sci., 12, 257–274, https://doi.org/10.5194/os-12-257-2016, https://doi.org/10.5194/os-12-257-2016, 2016
Short summary
Short summary
Argo profiling floats are continuously sampling the world ocean, providing temperature and salinity profiles of up to 2000 m depths. This article addresses the impact of the current Argo array on real-time ocean analyses and forecasts. One-year observing system experiments were carried out with the 0.25° global Mercator Ocean monitoring and forecasting system. The improvement due to the assimilation of the Argo profiles is estimated globally and regionally, showing a significant positive impact.
F. Ninove, P.-Y. Le Traon, E. Remy, and S. Guinehut
Ocean Sci., 12, 1–7, https://doi.org/10.5194/os-12-1-2016, https://doi.org/10.5194/os-12-1-2016, 2016
Short summary
Short summary
Argo floats are one of the main components of the in situ observation network in the ocean. Nowadays, more than 3500 profiling floats are sampling the world ocean. In this study, they are used to characterize spatial scales of temperature and salinity variations from the surface down to 1500m. The scales appear to be anisotropic and vary from about 100km at high latitudes to 700km in the Indian and Pacific equatorial and tropical regions.
F. Dupont, S. Higginson, R. Bourdallé-Badie, Y. Lu, F. Roy, G. C. Smith, J.-F. Lemieux, G. Garric, and F. Davidson
Geosci. Model Dev., 8, 1577–1594, https://doi.org/10.5194/gmd-8-1577-2015, https://doi.org/10.5194/gmd-8-1577-2015, 2015
Short summary
Short summary
1/12th degree resolution runs of Arctic--Atlantic were compared for the period 2003-2009. We found good representation of sea surface height and of its statistics; model temperature and salinity in general agreement with in situ measurements, but upper ocean properties in Beaufort Sea are challenging; distribution of concentration and volume of sea ice is improved when slowing down the ice and further improvements require better initial conditions and modifications to mixing.
G. Reffray, R. Bourdalle-Badie, and C. Calone
Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, https://doi.org/10.5194/gmd-8-69-2015, 2015
Y. Drillet, J. M. Lellouche, B. Levier, M. Drévillon, O. Le Galloudec, G. Reffray, C. Regnier, E. Greiner, and M. Clavier
Ocean Sci., 10, 1013–1029, https://doi.org/10.5194/os-10-1013-2014, https://doi.org/10.5194/os-10-1013-2014, 2014
A. M. Treguier, J. Deshayes, J. Le Sommer, C. Lique, G. Madec, T. Penduff, J.-M. Molines, B. Barnier, R. Bourdalle-Badie, and C. Talandier
Ocean Sci., 10, 243–255, https://doi.org/10.5194/os-10-243-2014, https://doi.org/10.5194/os-10-243-2014, 2014
Related subject area
Approach: Operational Oceanography | Depth range: All Depths | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
Developing European operational oceanography for Blue Growth, climate change adaptation and mitigation, and ecosystem-based management
Research priorities in support of ocean monitoring and forecasting at the Met Office
NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration
Evaluation of global monitoring and forecasting systems at Mercator Océan
High resolution 3-D temperature and salinity fields derived from in situ and satellite observations
Towards a regional ocean forecasting system for the IBI (Iberia-Biscay-Ireland area): developments and improvements within the ECOOP project framework
Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10
Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines
Jun She, Icarus Allen, Erik Buch, Alessandro Crise, Johnny A. Johannessen, Pierre-Yves Le Traon, Urmas Lips, Glenn Nolan, Nadia Pinardi, Jan H. Reißmann, John Siddorn, Emil Stanev, and Henning Wehde
Ocean Sci., 12, 953–976, https://doi.org/10.5194/os-12-953-2016, https://doi.org/10.5194/os-12-953-2016, 2016
Short summary
Short summary
This white paper addresses key scientific challenges and research priorities for the development of operational oceanography in Europe for the next 5–10 years. Knowledge gaps and deficiencies are identified in relation to common scientific challenges in four EuroGOOS knowledge areas: European ocean observations, modelling and forecasting technology, coastal operational oceanography, and operational ecology.
J. R. Siddorn, S. A. Good, C. M. Harris, H. W. Lewis, J. Maksymczuk, M. J. Martin, and A. Saulter
Ocean Sci., 12, 217–231, https://doi.org/10.5194/os-12-217-2016, https://doi.org/10.5194/os-12-217-2016, 2016
Short summary
Short summary
The Met Office provides a range of services in the marine environment. To support these services, and to ensure they evolve to meet the demands of users and are based on the best available science, a number of scientific challenges need to be addressed. The paper summarises the key challenges, and highlights some priorities for the ocean monitoring and forecasting research group at the Met Office.
C. Maraldi, J. Chanut, B. Levier, N. Ayoub, P. De Mey, G. Reffray, F. Lyard, S. Cailleau, M. Drévillon, E. A. Fanjul, M. G. Sotillo, P. Marsaleix, and the Mercator Research and Development Team
Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, https://doi.org/10.5194/os-9-745-2013, 2013
J.-M. Lellouche, O. Le Galloudec, M. Drévillon, C. Régnier, E. Greiner, G. Garric, N. Ferry, C. Desportes, C.-E. Testut, C. Bricaud, R. Bourdallé-Badie, B. Tranchant, M. Benkiran, Y. Drillet, A. Daudin, and C. De Nicola
Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013, https://doi.org/10.5194/os-9-57-2013, 2013
S. Guinehut, A.-L. Dhomps, G. Larnicol, and P.-Y. Le Traon
Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, https://doi.org/10.5194/os-8-845-2012, 2012
S. Cailleau, J. Chanut, J.-M. Lellouche, B. Levier, C. Maraldi, G. Reffray, and M. G. Sotillo
Ocean Sci., 8, 143–159, https://doi.org/10.5194/os-8-143-2012, https://doi.org/10.5194/os-8-143-2012, 2012
D. G. Wright, R. Pawlowicz, T. J. McDougall, R. Feistel, and G. M. Marion
Ocean Sci., 7, 1–26, https://doi.org/10.5194/os-7-1-2011, https://doi.org/10.5194/os-7-1-2011, 2011
D. G. Wright, R. Feistel, J. H. Reissmann, K. Miyagawa, D. R. Jackett, W. Wagner, U. Overhoff, C. Guder, A. Feistel, and G. M. Marion
Ocean Sci., 6, 695–718, https://doi.org/10.5194/os-6-695-2010, https://doi.org/10.5194/os-6-695-2010, 2010
Cited articles
Adcroft, A., Hill, C., and Marshall, J.: Representation of topography by
shaved cells in a height coordinate ocean model, Mon. Wea. Rev., 125,
2293–2315, 1997.
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-minute global relief model:
procedures, data sources and analysis, NOAA Technical Memorandum NESDIS
NGDC-24, Marine Geology and Geophysics Division, Boulder, Colorado, 25 pp.,
https://doi.org/10.1594/PANGAEA.769615, 2009.
Arakawa, A. and Lamb, V. R.: A potential enstrophy and energy conserving
scheme for the shallow water equations, Mon. Weather. Rev., 109, 18–36,
1981.
Artana, C., Lellouche, J.-M., Park, Y.-H., Garric, G., Koenig, Z.,
Sennéchael, N., Ferrari, R., Piola, A. R., Saraceno, M., and Provost, C.:
Fronts of the Malvinas Current System: surface and subsurface expressions
revealed by satellite altimetry, Argo floats, and Mercator operational model
outputs, J. Geophys. Res.-Oceans, 123, 378–398, https://doi.org/10.1029/2018JC013887,
2018.
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le
Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global circulation model at eddy permitting
resolution, Ocean Dynam., 56, 543–567, 2006.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B.,
Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S. H., Ladner, R.,
Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace,
G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc
Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, 2009.
Benkiran, M. and Greiner, E.: Impact of the Incremental Analysis Updates on
a Real-Time System of the North Atlantic Ocean, J. Atmos. Ocean. Tech., 25,
2055–2073, 2008.
Bidlot, J.-R.: Impact of ocean surface currents on the ECMWF forecasting
system for atmosphere circulation and ocean waves, GlobCurrent Preliminary
User Consultation Meeting, available at: http://globcurrent.ifremer.fr/component/k2/itemlist/category/118?Itemid=960 (last access: 20 September 2018),
Brest, 7–9 March 2012.
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic-Ocean
simulated by a general-circulation model with 2 different mixed-layer
physics, J. Phys. Oceanogr., 23, 1363–1388, 1993.
Brasseur, P. and Verron J.: The SEEK filter method for data assimilation in
oceanography: a synthesis, J. Ocean Dynamics, 56, 650–661,
https://doi.org/10.1007/s10236-006-0080-3, 2006.
Brasseur, P., Bahurel, P., Bertino, L., Birol, F., Brankart, J.-M., Ferry,
N., Losa, S., Remy, E., Schröter, J., Skachro, S., Testut, C.-E., Tranchant,
B., Van Leeuwen, P.-J., and Verron, J.: Data assimilation for marine
monitoring and prediction: The MERCATOR operational assimilation systems and
the MERSEA developments, Q. J. Roy. Meteor. Soc., 131, 3561–3582, https://doi.org/10.1256/qj.05.142, 2006.
Brodeau, L., Barnier, B., Treguier, A. M., Penduff, T., and Gulev, S.: An
ERA40-based atmospheric forcing for global ocean circulation models, Ocean Model., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010.
Bruinsma, S., Lemoine, J.-M., Biancale, R., and Vales, N.: CNES/GRGS 10-day
gravity field models (release 02) and their evaluation, Adv. Space Res., 45, 587–601, https://doi.org/10.1016/j.asr.2009.10.012, 2010.
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H., Llovel, W.,
Forsberg, R., von Schuckmann, K., and Wada, Y.: Evaluation of the global
mean sea level budget between 1993 and 2014, Surv. Geophys., 38, 309–327, https://doi.org/10.1007/s10712-016-9381-3, 2017.
Chelton, D. B., Wentz, F. J., Gentemann, C. L., De Szoeke, R. A., and
Schlax, M. G.: Satellite microwave SST observations of transequatorial
tropical instability waves, Geophys. Res. Lett., 27, 1239–1242, 2000.
Chen, J. L., Wilson, C. R., Tapley, B. D., Famiglietti, J. S., and Rodell,
M.: Seasonal global mean sea level change from satellite altimeter, GRACE,
and geophysical models, J. Geodesy, 79, 532–539,
https://doi.org/10.1007/s00190-005-0005-9, 2005.
Chevallier, M., Smith, G. C., Lemieux, J.-F., Dupont, F., Forget, G., Fujii, Y., Hernandez, F., Msadek, R., Peterson, K. A., Storto, A., Toyoda, T.,
Valdivieso, M., Vernieres, G., Zuo, H., Balmaseda, M., Chang, Y.-S., Ferry, N.,
Garric, G., Haines, K., Keeley, S., Kovach, R. M., Kuragano, T., Masina, S., Tang, Y.,
Tsujino, H., and Wang, X.: Intercomparison of the Arctic sea ice cover in global
ocean-sea ice reanalyses from the ORA-IP project, Clim. Dynam., 49, 1107–1136,
https://doi.org/10.1007/s00382-016-2985-y, 2017.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J.-M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea
Level Change, in: Climate Change 2013: The Physical Science Basis,
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013.
Cravatte, S., Madec, G., Izumo, T., Menkes, C., and Bozec, A.: Progress in
the 3-D circulation of the eastern equatorial Pacific in a climate, Ocean
Model., 17, 28–48, 2007.
Dai, A. and Trenberth, K. E.: Estimates of freshwater discharge from
continents: latitudinal and seasonal variations, J. Hydrometeorol., 3,
660–687, 2002.
Dai, A., Qian, T., Trenberth, K., and Milliman, J. D.: Changes in Continental
Freshwater Discharge from 1948 to 2004, J. Climate, 22, 2773–2792,
2009.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.
De Lavergne, C., Madec, G., Le Sommer, J., Nurser, A. G., and
Naveira-Garabato, A. C.: On the consumption of Antarctic Bottom Water in the
abyssal ocean, J. Phys. Oceanogr., 46, 635–651,
https://doi.org/10.1175/JPO-D-14-0201.1, 2016.
Desroziers, G., Berre, L., Chapnik, B., and Polli, P.: Diagnosis of
observation, background and analysis-error statistics in observation space,
Q. J. Roy. Meteor. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108, 2005.
Drevillon, M., Greiner, E., Paradis, D., Payan, C., Lellouche, J. M.,
Reffray, G., Durand, E., Law-Chune, S., and Cailleau, S.: A strategy for
producing refined currents in the Equatorial Atlantic in the context of the
search of the AF447 wreckage, Ocean Dynam., 63, 63–82, https://doi.org/10.1007/s10236-012-0580-2, 2013.
Drillet, Y., Lellouche, J. M., Levier, B., Drévillon, M., Le Galloudec, O.,
Reffray, G., Regnier, C., Greiner, E., and Clavier, M.: Forecasting the
mixed-layer depth in the Northeast Atlantic: an ensemble approach, with
uncertainties based on data from operational ocean forecasting systems, Ocean
Sci., 10, 1013–1029, https://doi.org/10.5194/os-10-1013-2014, 2014.
Estournel, C., Testor, P., Damien, P., D'ortenzio, F., Marsaleix, P., Conan,
P., Kessouri, F., Durrieu de Madron, X., Coppola, L., Lellouche, J.-M.,
Belamari, S., Mortier, L., Ulses, C., Bouin, M.-N., and Prieur, L.: High
resolution modeling of dense water formation in the north-western
Mediterranean during winter 2012–2013: Processes and budget, J. Geophys.
Res., 121, 5367–5392, https://doi.org/10.1002/2016JC011935, 2016.
Fichefet, T. and Maqueda, M. A.: Sensitivity of a global sea ice model to
the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102,
12609–12646, 1997.
Gasparin, F., Greiner, E., Lellouche, J.-M., Legalloudec, O., Garric, G.,
Drillet, Y., Bourdalle-Badie, R., Le Traon, P.-Y., Remy, E., and Drevillon,
M.: A large-scale view of oceanic variability from 2007 to 2015 in the global
high resolution monitoring and forecasting system at Mercator-Ocean, J.
Marine Syst., 187, 260–276, https://doi.org/10.1016/j.jmarsys.2018.06.015, 2018.
Global Sea-Level Observing System (GLOSS): Implementation Plan – 2012,
UNESCO/IOC Technical Series No.100, Intergovernmental Oceanographic
Commission of the UNESCO, Paris, 48 pp., 2012.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res., 118, 6704–6716,
https://doi.org/10.1002/2013JC009067, 2013.
Gouretski, V. V. and Koltermann, K. P.: Woce global hydrographic climatology,
Technical Report 35/2004, Berichte des Bundesamtes für Seeschifffahrt und
Hydrographie, Hamburg, 52 pp., 2004.
Grasso, L. D.: The differentiation between grid spacing and resolution and
their application to numerical modelling, B. Am. Meteorol. Soc., 81, 579–580,
2000.
Greatbatch, R. J.: A note on the representation of steric sea level in models
that conserve volume rather than mass, J. Geophys. Res.-Oceans, 99,
12767–12771, https://doi.org/10.1029/94JC00847, 1994.
Greiner, E., Benkiran, M., Blayo, E., and Dibarboure, G.: MERA-11 general
scientific paper, 1992–2002 PSY1V2 reanalysis, reference MOO-MR-431-37-MER
Mercator-Ocean, Toulouse, France, 71 pp., 2006.
Grodsky, S. A., Lumpkin, R., and Carton, J. A.: Spurious trends in global
surface drifter currents, Geophys. Res. Lett., 38, L10606, https://doi.org/10.1029/2011GL047393, 2011.
Hilburn, K. A.: The passive microwave water cycle product, Technical Report
number 072409, Remote Sensing Systems, Santa Rosa, CA, 30 pp., available at: http://www.remss.com (last access: 20 September 2018), 2009.
Hilburn, K. A, Smith, D. K., and Mears, C. A.: Annual Validation report: Rain,
Remote Sensing Systems, Santa Rosa, CA, 10 pp., available at: http://www.remss.com/ (last access:
20 September 2018, 2014.
Hoaglin, D., Mosteller, F., and Tukey, J. W.: Understanding Robust and
Exploratory Data Analysis, Wiley Series in probability and mathematical
statistics, New York, USA, 1983.
Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for sea
ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.
Jackett, D. R. and Mcdougall, T. J.: Minimal Adjustment of Hydrographic
Profiles to Achieve Static Stability, J. Atmos. Ocean. Technol., 12,
381–389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2, 1995.
Janowiak, J. E., Gruber, A., Kondragunta, C. R., Livezey, R. E., and Huffman, G. J.: A comparison of the NCEP-NCAR reanalysis precipitation and the GPCP
rain gauge-satellite combined dataset with observational error
considerations, J. Climate, 11, 2960–2979, 1998.
Janowiak, J. E., Bauer, P., Wang, W., Arkin, P. A., and Gottschalck, J.: An
evaluation of precipitation forecasts from operational models and reanalysis
including precipitations variations associated with MJO activity, Mon. Weather Rev., 138, 4542–4560, 2010.
Juza, M., Mourre, B., Lellouche, J.-M., Tonani, M., and Tintore, J.: From
basin to sub-basin scale assessment and intercomparison of numerical
simulations in the Western Mediterranean Sea, J. Marine Syst.,
149, 36–49, https://doi.org/10.1016/j.jmarsys.2015.04.010, 2015.
Kidd, C., Dawkins, E., and Huffman, G.: Comparison of Precipitation Derived
from the ECMWF Operational Forecast Model and Satellite Precipitation
Datasets, J. Hydrometeorol., 14, 1463–1482,
https://doi.org/10.1175/JHM-D-12-0182.1, 2013.
Kjerfve, B.: Tides of the Caribbean Sea, J. Geophys. Res., 86,
4243–4247, https://doi.org/10.1029/JC086iC05p04243, 1981.
Koch-Larrouy, A., Madec, G., Blanke, B., and Molcard, R.: Water mass
transformation along the Indonesian throughflow in an OGCM, Ocean Dynam., 58,
289–309, https://doi.org/10.1007/s10236-008-0155-4, 2008.
Koenig, Z., Provost, C., Villacieros-Robineau, N., Sennechael, N., Meyer,
A., Lellouche, J.-M., and Garric, G.: Atlantic waters inflow north of
Svalbard: Insights from IAOOS observations and Mercator Ocean global
operational system during N-ICE2015, J. Geophys. Res.-Oceans, 122,
1254–1273, https://doi.org/10.1002/2016JC012424, 2017.
Lagerloef, G., Schmitt, R., Schanze, J., and Kao, H. Y.: The Ocean and the
global water cycle, Oceanography, 23, 82–93,
https://doi.org/10.5670/oceanog.2010.07, 2010.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2009.
Lefevre, F., Sénant, E., and the Cal/Val team at CLS: BaDoMar: a tide gauge
database used for altimeter calibration, Workshop on Sea Level Variations
Towards an Operational European Sea Level Service, p. 63, 2005.
Lellouche, J.-M., Le Galloudec, O., Drévillon, M., Régnier, C., Greiner, E.,
Garric, G., Ferry, N., Desportes, C., Testut, C.-E., Bricaud, C.,
Bourdallé-Badie, R., Tranchant, B., Benkiran, M., Drillet, Y., Daudin, A.,
and De Nicola, C.: Evaluation of global monitoring and forecasting systems at
Mercator Océan, Ocean Sci., 9, 57–81, https://doi.org/10.5194/os-9-57-2013,
2013.
Lengaigne, M., Menkes, C., Aumont, O., Gorgues, T., Bopp, L., Andre, J. M.,
and Madec, G.: Influence of the oceanic biology on the tropical Pacific
climate in a coupled general circulation model, Clim. Dynam., 28, 503–507,
https://doi.org/10.1007/s00382-006-0200-2, 2007.
Levy, M., Estublier, A., and Madec, G.: Choice of an advection scheme for
biogeochemical models, Geophys. Res. Lett., 28, 3725–3728,
https://doi.org/10.1029/2001GL012947, 2001.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H.
E., Baranova, O. K., Zweng, M. M., Paver, C. R., Reagan, J. R., Johnson, D.
R., Hamilton, M., and Seidov, D.: World Ocean Atlas 2013, vol. 1:
Temperature, edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS, 73, 40 pp., 2013.
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole
singularity, Clim. Dynam., 12, 381–388, 1996.
Madec, G. and the NEMO team: NEMO ocean engine, Note du Pôle de
modélisation, Institut Pierre-Simon Laplace (IPSL), France, 1288–1619, 2008.
Marchesiello, P., Debreu, L., and Coulevard, X.: Spurious diapycnal mixing
in terrain-following coordinate models: The problem and a solution, Ocean Model., 26, 156–169, 2009.
Menemenlis, D., Fukumori, I., and Lee, T.: Atlantic to Mediterranean Sea
level difference driven by winds near Gibraltar Strait, J. Phys. Oceanogr.,
37, 359–376, 2007.
Pujol, M.-I., Faugére, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M.,
and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set
reprocessed over 20 years, Ocean Sci., 12, 1067–1090,
https://doi.org/10.5194/os-12-1067-2016, 2016.
Raynaud, L., Berre, L., and Desroziers, G.: Objective filtering of
ensemble-based background-error variances, Q. J. Roy. Meteor. Soc., 135, 1177–1199, 2009.
Renault, L., Molemaker, M. J., McWilliams, J. C., Shchepetkin, A. F.,
Lemarie, F., Chelton, D., Illig, S., and Hall, A.: Modulation of wind work by
oceanic current interaction with the atmosphere, J. Phys. Oceanogr., 46, 1685–1704, 2016.
Rio, M. H.: Use of altimeter and wind data to detect the anomalous loss of
SVP-type drifter's drogue, J. Atmos. Ocean Tech., 29, 1663–1674, https://doi.org/10.1175/JTECH-D-12-00008.1, 2012.
Rio, M.-H. and Etienne, H.: For Global Ocean Delayed Mode in-situ
Observations of Ocean Surface Currents, Copernicus Quality Information
Document CMEMS-INS-QUID-013-044, Copernicus in situ TAC, Issue 1.2, 1–24,
https://doi.org/10.13155/41256, 2017.
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean
dynamic topography computed from the combination of GRACE data, altimetry,
and in situ measurements, J. Geophys. Res., 116, C07018,
https://doi.org/10.1029/2010JC006505, 2011.
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides
new insight into geostrophic and Ekman currents, Geophys. Res. Lett., 41,
8918–8925, https://doi.org/10.1002/2014GL061773, 2014.
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of
temperature, salinity, and steric height in the global ocean from the Argo
Program, Prog. Oceanogr., 82, 81–100,
https://doi.org/10.1016/j.pocean.2009.03.004, 2009.
Roquet, F., Charrassin, J. B., Marchand, S., Boehme, L., Fedak, M.,
Reverdin, G., and Guinet, C.: Delayed-Mode calibration of hydrographic data
obtained from animal-borne satellite relay data loggers, J. Atmos. Ocean. Tech., 28, 787–801, 2011.
Roullet, G. and Madec, G.: Salt conservation, free surface, and varying
levels: a new formulation for ocean general circulation models, J. Geophys.
Res., 105, 23927–23942, 2000.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res., 116, C00D06,
1–26, https://doi.org/10.1029/2011JC007084, 2011.
Scott, R., Ferry, N., Drevillon, M., Barron, C. N., Jourdain, N. C.,
Lellouche, J.-M., Metzger, E. J., Rio, M. H., and Smedstad, O. M.: Estimates
of surface drifter trajectories in the Equatorial Atlantic: a multi-model
ensemble approach, Ocean Dynam., 62, 1091–1109, https://doi.org/10.1007/s10236-012-0548-2, 2012.
Silva, T. A. M., Bigg, G. R., and Nicholls, K. W.: Contribution of giant
icebergs to the Southern Ocean freshwater flux, J. Geophys. Res., 111,
C03004, https://doi.org/10.1029/2004JC002843, 2006.
Smith, G. C., Roy, F., Reszka, M., Surcel Colan, D., He, Z., Deacu, D.,
Belanger, J.-M., Skachko, S., Liu, Y., Dupont, F., Lemieux, J-F., Beaudoin,
C., Tranchant, B., Drevillon, M., Garric, G.,Testut, C.-E., Lellouche,
J.-M., Pellerin, P., Ritchie, H., Lu, Y., Davidson, F., Buehner, M., Caya,
A., and Lajoie, M.: Sea ice forecast verification in the Canadian Global Ice
Ocean Prediction System, Q. J. Roy. Meteor. Soc., 142, 659–671, 2016.
Song, Y. T.: Estimation of interbasin transport using ocean bottom pressure:
Theory and model for Asian marginal seas, J. Geophys. Res., 111, C11S19,
https://doi.org/10.1029/2005JC003189, 2006.
Stephens, G. L., L'Ecuyer, T., Forbes, R., Gettlemen, A., Golaz, J. C.,
Bodas-Salcedo, A., Suzuki, K., Gabriel, P., and Haynes, J.: Dreary state
of precipitation in global models, J. Geophys. Res., 115, D24211,
https://doi.org/10.1029/2010JD014532, 2010.
Storto, A., Russo, I., and Masina, S.: Interannual response of global ocean
hindcasts to a satellite-based correction of precipitation fluxes, Ocean Sci.
Discuss., 9, 611–648, https://doi.org/10.5194/osd-9-611-2012, 2012.
Szekely, T., Gourrion, J., Pouliquen, S., and Reverdin, G.: CORA, Coriolis
Ocean Dataset for Reanalysis, SEANOE, https://doi.org/10.17882/46219, 2016.
Talagrand, O.: A posteriori evaluation and verification of analysis and
assimilation algorithms, Proc. of ECMWF Workshop on Diagnosis of Data
Assimilation System (Reading), 17–28, 1998.
Tranchant, B., Reffray, G., Greiner, E., Nugroho, D., Koch-Larrouy, A., and
Gaspar, P.: Evaluation of an operational ocean model configuration at
1∕12∘ spatial resolution for the Indonesian seas (NEMO2.3/INDO12) – Part 1: Ocean
physics, Geosci. Model Dev., 9, 1037–1064,
https://doi.org/10.5194/gmd-9-1037-2016, 2016.
Troccoli, A. and Kallberg, P.: Precipitation correction in the ERA-40
reanalysis, ERA-40 Project Report Series N∘ 13, 1–10, 2004.
J. Tournadre, J., Bouhier, N., Girard-Ardhuin, F., and Remy, F.: Antarctic
icebergs distributions 1992–2014, J. Geophys. Res., 121, 327–349,
https://doi.org/10.1002/2015JC011178, 2016.
Vinogradov, S. V. and Ponte, R. M.: Low frequency variability in coastal sea
level from tide gauges and altimetry, J. Geophys. Res., 116, C07006,
https://doi.org/10.1029/2011JC007034, 2011.
Willebrand, J., Barnier, B., Böning, C., Dieterich, C., Killworth,
P. D., Le Provost, C., Jia, Y., Molines, J. M., and New, A. L.:
Circulation characteristics in three eddy-permitting models of the North
Atlantic, Prog. Oceanogr., 48, 123–161, 2001.
Williams, J. and Hughes, C. W.: The coherence of small island sea level with
the wider ocean: a model study, Ocean Sci., 9, 111–119,
https://doi.org/10.5194/os-9-111-2013, 2013.
Winton, M., Hallberg, R., and Gnanadesikan, A.: Simulation of
Density-Driven Frictional Downslope Flow in Z-Coordinate Ocean Models, J.
Phys. Oceanogr., 28, 2163–2174, 1998.
Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R. A., Mishonov, A.,
Boyer, T. P., Garcia, H. E., Baranova, O. K., Paver, C. R., Johnson, D. R.,
Seidov, D., and Biddle, M.: World Ocean Atlas 2013, vol. 2: Salinity,
edited by: Levitus, S. and Mishonov, A., NOAA Atlas NESDIS, 74, 40 pp., 2013.
Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrud, L. H.: Uncertainties
in Arctic sea ice thickness and volume: new estimates and implications for
trends, The Cryosphere, 8, 705–720, https://doi.org/10.5194/tc-8-705-2014,
2014.
Short summary
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in operational oceanography will play a crucial role in addressing many environmental challenges and in the development of ocean-related economic activities. In this context, remarkable improvements have been achieved with the current Mercator Ocean system. 3-D water masses, sea level, sea ice and currents have been improved, and thus major oceanic variables are hard to distinguish from the data.
In the coming decades, a strong growth of the ocean economy is expected. Scientific advances in...