Articles | Volume 13, issue 5
https://doi.org/10.5194/os-13-661-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-13-661-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach
Giorgio Manno
Department of Civil, Environmental, Aerospace, Materials
Engineering – University of Palermo, Viale delle Scienze,
Ed. 8, 90128 Palermo (PA), Italy
Department of Civil, Environmental, Aerospace, Materials
Engineering – University of Palermo, Viale delle Scienze,
Ed. 8, 90128 Palermo (PA), Italy
Giuseppe Ciraolo
Department of Civil, Environmental, Aerospace, Materials
Engineering – University of Palermo, Viale delle Scienze,
Ed. 8, 90128 Palermo (PA), Italy
Related authors
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Emma Reyes, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Vanessa Cardin, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Maria J. Fernandes, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Pablo Lorente, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Adèle Révelard, Catalina Reyes-Suárez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Alejandro Orfila
Ocean Sci., 18, 797–837, https://doi.org/10.5194/os-18-797-2022, https://doi.org/10.5194/os-18-797-2022, 2022
Short summary
Short summary
This work reviews the existing advanced and emerging scientific and societal applications using HFR data, developed to address the major challenges identified in Mediterranean coastal waters organized around three main topics: maritime safety, extreme hazards and environmental transport processes. It also includes a discussion and preliminary assessment of the capabilities of existing HFR applications, finally providing a set of recommendations towards setting out future prospects.
Pablo Lorente, Eva Aguiar, Michele Bendoni, Maristella Berta, Carlo Brandini, Alejandro Cáceres-Euse, Fulvio Capodici, Daniela Cianelli, Giuseppe Ciraolo, Lorenzo Corgnati, Vlado Dadić, Bartolomeo Doronzo, Aldo Drago, Dylan Dumas, Pierpaolo Falco, Maria Fattorini, Adam Gauci, Roberto Gómez, Annalisa Griffa, Charles-Antoine Guérin, Ismael Hernández-Carrasco, Jaime Hernández-Lasheras, Matjaž Ličer, Marcello G. Magaldi, Carlo Mantovani, Hrvoje Mihanović, Anne Molcard, Baptiste Mourre, Alejandro Orfila, Adèle Révelard, Emma Reyes, Jorge Sánchez, Simona Saviano, Roberta Sciascia, Stefano Taddei, Joaquín Tintoré, Yaron Toledo, Laura Ursella, Marco Uttieri, Ivica Vilibić, Enrico Zambianchi, and Vanessa Cardin
Ocean Sci., 18, 761–795, https://doi.org/10.5194/os-18-761-2022, https://doi.org/10.5194/os-18-761-2022, 2022
Short summary
Short summary
High-frequency radar (HFR) is a land-based remote sensing technology that can provide maps of the surface circulation over broad coastal areas, along with wave and wind information. The main goal of this work is to showcase the current status of the Mediterranean HFR network as well as present and future applications of this sensor for societal benefit such as search and rescue operations, safe vessel navigation, tracking of marine pollutants, and the monitoring of extreme events.
Cited articles
Anfuso, G., Pranzini, E., and Vitale, G.: An integrated approach to coastal erosion problems in northern Tuscany (Italy): littoral morphological evolution and cell distribution, Geomorphology, 129, 204–214, 2011.
Anfuso, G., Bowman, D., Danese, C., and Pranzini, E.: Transect based analysis versus area based analysis to quantify shoreline displacement: spatial resolution issues, Environ. Monit. Sssess., 188, 1–14, 2016.
Boak, E. H. and Turner, I. L.: Shoreline definition and detection: a review, J. Coastal Res., 21, 688–703, 2005.
Booij, N., Ris, R., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, J. Geophys. Res., 104, 7649–7666, 1999.
Bush, D. M., Neal, W. J., Young, R. S., and Pilkey, O. H.: Utilization of geoindicators for rapid assessment of coastal-hazard risk and mitigation, Ocean Coast. Manage., 42, 647–670, 1999.
Cooper, J., Anfuso, G., and Del Río, L.: Bad beach management: European perspectives, Geol. S. Am. S., 460, 167–179, 2009.
Dolan, R., Hayden, B. P., May, P., and May, S.: The reliability of shoreline change measurements from aerial photographs, Shore and Beach, 48, 22–29, 1980.
Dolan, R., Fenster, M. S., and Holme, S. J.: Temporal analysis of shoreline recession and accretion, J. Coastal Res., 7, 723–744, 1991.
Douglas, B. C. and Crowell, M.: Long-term shoreline position prediction and error propagation, J. Coastal Res., 16, 145–152, 2000.
Fletcher, C., Rooney, J., Barbee, M., Lim, S.-C., and Richmond, B.: Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii, J. Coastal Res., SI 38, 106–124, 2003.
Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., and Rooney, J. J.: The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii, J. Coastal Res., 23, 87–105, 2007.
Griggs, G. B.: The impacts of coastal armoring, Shore and Beach, 73, 13–22, 2005.
Holman, R. A. and Sallenger, A.: Setup and swash on a natural beach, J. Geophys. Res., 90, 945–953, 1985.
Holthuijsen, L., Booij, N., and Ris, R.: A spectral wave model for the coastal zone, in: Ocean Wave Measurement and Analysis, edited by: Magoon, O. T. and Hemsley, J. M., ASCE, 630–641, 1993.
Hunt, I. A.: Design of sea-walls and breakwaters, T. Am. Soc. Civ. Eng., 126, 542–570, 1959.
ISPRA (Italian National Institute for Environmental Protection and Research): http://dati.isprambiente.it/id/website/ronRmn/html, last access: 1 September 2017.
Lo Re, C., Manno, G., Viviano, A., and Foti, E.: Field run-up measurements: calibration of a physically based lagrangian shoreline model, Coastal Engineering Proceedings, 1, 1–14, 2012a.
Lo Re, C., Musumeci, R. E., and Foti, E.: A shoreline boundary condition for a highly nonlinear Boussinesq model for breaking waves, Coast. Eng., 60, 41–52, 2012b.
Manca, E., Pascucci, V., Deluca, M., Cossu, A., and Andreucci, S.: Shoreline evolution related to coastal development of a managed beach in Alghero, Sardinia, Italy, Ocean Coast. Manage., 85, 65–76, 2013.
Manno, G., Lo Re, C., and Ciraolo, G.: Shoreline detection in gentle slope Mediterranean beach, Proceedings of the : 5th International Short Conference on Applied Coastal Research (SCACR), 6–9 June, 2011, Aachen, Germany, 2011.
Manno, G., Anfuso, G., Messina, E., Williams, A. T., Suffo, M., and Liguori, V.: Decadal evolution of coastline armouring along the Mediterranean Andalusia littoral (South of Spain), Ocean Coast. Manage., 124, 84–99, 2016.
Monteforte, M., Lo Re, C., and Ferreri, G.: Wave energy assessment in Sicily (Italy), Renew. Energ., 78, 276–287, 2015.
Moore, L. J.: Shoreline mapping techniques, J. Coastal Res., 16, 111–124, 2000.
Moore, L. J., Ruggiero, P., and List, J. H.: Comparing mean high water and high water line shorelines: should proxy-datum offsets be incorporated into shoreline change analysis?, J. Coastal Res., 22, 894–905, 2006.
Nielsen, P. and Hanslow, D. J.: Wave runup distributions on natural beaches, J. Coastal Res., 7, 1139–1152, 1991.
Pajak, M. J. and Leatherman, S.: The high water line as shoreline indicator, J. Coastal Res., 18, 329–337, 2002.
Phillips, M. R. and Jones, A. L.: Erosion and tourism infrastructure in the coastal zone: Problems, consequences and management, Tourism Manage., 27, 517–524, 2006.
Rangel Buitrago, N. G. and Anfuso, G.: Risk Assessment of Storms in Coastal Zones: Case Studies from Cartagena (Colombia) and Cadiz (Spain), Springer International Publishing, 2015.
Ris, R., Holthuijsen, L., and Booij, N.: A third-generation wave model for coastal regions: 2. Verification, J. Geophys. Res., 104, 7667–7681, 1999.
Robertson, W., Whitman, D., Zhang, K., and Leatherman, S. P.: Mapping shoreline position using airborne laser altimetry, J. Coastal Res., 20, 884–892, 2004.
Romine, B. M. and Fletcher, C. H.: A summary of historical shoreline changes on beaches of Kauai, Oahu, and Maui, Hawaii, J. Coastal Res., 29, 605–614, 2012.
Rooney, J., Fletcher, C., Barbee, M., Eversole, D., Lim, S.-C., Richmond, B., and Gibbs, A.: Dynamics of sandy shorelines in Maui, Hawaii: consequences and causes, Coastal Sediments 2003 Proceedings, Clearwater Beach, Florida, 2003.
Rusu, E.: Wave energy assessments in the Black Sea, J. Mar. Sci. Technol., 14, 359–372, 2009.
Stancheva, M., Rangel-Buitrago, N., Anfuso, G., Palazov, A., Stanchev, H., and Correa, I.: Expanding level of coastal armouring: case studies from different countries, J. Coastal Res., SI 64, 1815–1819, 2011.
Stockdon, H. F., Sallenger Jr, A. H., List, J. H., and Holman, R. A.: Estimation of shoreline position and change using airborne topographic lidar data, J. Coastal Res., 18, 502–513, 2002.
Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., and Ergul, A.: The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change, Tech. rep., US Geological Survey, 2009.
U.S. Army: Coastal Engineering Manual.Engineer Manual 1110-2-1100, US Army Corps of Engineers, Washington, DC, 2008.
Virdis, S. G., Oggiano, G., and Disperati, L.: A geomatics approach to multitemporal shoreline analysis in Western Mediterranean: the case of Platamona-Maritza beach (northwest Sardinia, Italy), J. Coastal Res., 28, 624–640, 2012.
Short summary
Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence.
Beach evolution analysis can be conducted using GIS methodologies, such as the well-known...