Articles | Volume 12, issue 6
https://doi.org/10.5194/os-12-1249-2016
https://doi.org/10.5194/os-12-1249-2016
Research article
 | 
02 Dec 2016
Research article |  | 02 Dec 2016

GEM: a dynamic tracking model for mesoscale eddies in the ocean

Qiu-Yang Li, Liang Sun, and Sheng-Fu Lin

Related authors

Two typical merging events of oceanic mesoscale anticyclonic eddies
Zi-Fei Wang, Liang Sun, Qiu-Yang Li, and Hao Cheng
Ocean Sci., 15, 1545–1559, https://doi.org/10.5194/os-15-1545-2019,https://doi.org/10.5194/os-15-1545-2019, 2019
Short summary
Technical Note: Watershed strategy for oceanic mesoscale eddy splitting
Q. Y. Li and L. Sun
Ocean Sci., 11, 269–273, https://doi.org/10.5194/os-11-269-2015,https://doi.org/10.5194/os-11-269-2015, 2015
Short summary

Related subject area

Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Sea Level
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018,https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018,https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
El Niño, La Niña, and the global sea level budget
Christopher G. Piecuch and Katherine J. Quinn
Ocean Sci., 12, 1165–1177, https://doi.org/10.5194/os-12-1165-2016,https://doi.org/10.5194/os-12-1165-2016, 2016
Short summary
DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016,https://doi.org/10.5194/os-12-1067-2016, 2016
Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016,https://doi.org/10.5194/os-12-825-2016, 2016
Short summary

Cited articles

Batchelor, G. K.: An introduction to fluid dynamics, Cambridge university press, 615 pp., 2000.
Bennett, A. F. and White, W. B.: Eddy heat flux in the subtropical North Pacific, J. Phys. Oceanogr., 16, 728–740, 1986.
Capet, A., Mason, E., Rossi, V., Troupin, C., Faugère, Y., Pujol, I., and Pascual, A.: Implications of refined altimetry on estimates of mesoscale activity and eddy-driven offshore transport in the Eastern Boundary Upwelling Systems, Geophys. Res. Lett., 41, 7602–7610, https://doi.org/10.1002/2014GL061770, 2014.
Carrere, L., Faugère, Y., and Ablain, M.: Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis, Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, 2016.
Chaigneau, A., Gizolme, A., and Grados, C.: Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns, Progr. Oceanogr, 79, 106–119, 2008.
Short summary
The Genealogical Evolution Model (GEM) is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern with a two-dimensional vector. All of the computational steps are linear and do not include iteration. It is very fast and is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.