Articles | Volume 12, issue 5
https://doi.org/10.5194/os-12-1049-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-12-1049-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Seasonal variability of the Ekman transport and pumping in the upwelling system off central-northern Chile (∼ 30° S) based on a high-resolution atmospheric regional model (WRF)
Luis Bravo
CORRESPONDING AUTHOR
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo,
Chile
Departamento de Biología, Facultad de Ciencias del Mar,
Universidad Católica del Norte, Coquimbo, Chile
Millennium Nucleus for Ecology and Sustainable Management of Oceanic
Islands (ESMOI), Coquimbo, Chile
Marcel Ramos
CORRESPONDING AUTHOR
Departamento de Biología, Facultad de Ciencias del Mar,
Universidad Católica del Norte, Coquimbo, Chile
Millennium Nucleus for Ecology and Sustainable Management of Oceanic
Islands (ESMOI), Coquimbo, Chile
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo,
Chile
Centro de Innovación Acuícola Aquapacífico, Coquimbo,
Chile
Orlando Astudillo
Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo,
Chile
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales
(LEGOS), Toulouse, France
Boris Dewitte
Laboratoire d'Etudes en Géophysique et Océanographie Spatiales
(LEGOS), Toulouse, France
Millennium Nucleus for Ecology and Sustainable Management of Oceanic
Islands (ESMOI), Coquimbo, Chile
Katerina Goubanova
Centre Européen de Recherche et de Formation Avancée en Calcul
Scientifique (CERFACS), Toulouse, France
Related authors
Marcela Cornejo D'Ottone, Luis Bravo, Marcel Ramos, Oscar Pizarro, Johannes Karstensen, Mauricio Gallegos, Marco Correa-Ramirez, Nelson Silva, Laura Farias, and Lee Karp-Boss
Biogeosciences, 13, 2971–2979, https://doi.org/10.5194/bg-13-2971-2016, https://doi.org/10.5194/bg-13-2971-2016, 2016
Práxedes Muñoz, Lorena Rebolledo, Laurent Dezileau, Antonio Maldonado, Christoph Mayr, Paola Cárdenas, Carina B. Lange, Katherine Lalangui, Gloria Sanchez, Marco Salamanca, Karen Araya, Ignacio Jara, Gabriel Easton, and Marcel Ramos
Biogeosciences, 17, 5763–5785, https://doi.org/10.5194/bg-17-5763-2020, https://doi.org/10.5194/bg-17-5763-2020, 2020
Short summary
Short summary
We analyze marine sedimentary records to study temporal changes in oxygen and productivity in marine waters of central Chile. We observed increasing oxygenation and decreasing productivity from 6000 kyr ago to the modern era that seem to respond to El Niño–Southern Oscillation activity. In the past centuries, deoxygenation and higher productivity are re-established, mainly in the northern zones of Chile and Peru. Meanwhile, in north-central Chile the deoxygenation trend is maintained.
Marine Bretagnon, Aurélien Paulmier, Véronique Garçon, Boris Dewitte, Séréna Illig, Nathalie Leblond, Laurent Coppola, Fernando Campos, Federico Velazco, Christos Panagiotopoulos, Andreas Oschlies, J. Martin Hernandez-Ayon, Helmut Maske, Oscar Vergara, Ivonne Montes, Philippe Martinez, Edgardo Carrasco, Jacques Grelet, Olivier Desprez-De-Gesincourt, Christophe Maes, and Lionel Scouarnec
Biogeosciences, 15, 5093–5111, https://doi.org/10.5194/bg-15-5093-2018, https://doi.org/10.5194/bg-15-5093-2018, 2018
Short summary
Short summary
In oxygen minimum zone, the fate of the organic matter is a key question as the low oxygen condition would preserve the OM and thus enhance the biological carbon pump while the high microbial activity would foster the remineralisation and the greenhouse gases emission. To investigate this paradigm, sediment traps were deployed off Peru. We pointed out the influence of the oxygenation as well as the organic matter quantity and quality on the carbon transfer efficiency in the oxygen minimum zone.
Tatiana Matveeva, Daria Gushchina, and Boris Dewitte
Geosci. Model Dev., 11, 2373–2392, https://doi.org/10.5194/gmd-11-2373-2018, https://doi.org/10.5194/gmd-11-2373-2018, 2018
Short summary
Short summary
Predicting El Niño both in current condition and for the next century is a key societal need. Intraseasonal atmosphere variability (ITV) plays an important role in triggering of El Niño; the El Niño/ITV relationship may change in future climate. The purpose of this study is to select the models that are most skilful in simulation of the ITV/El Niño relationship and thus promising for investigation of the El Niño mechanism under global climate change. Five models of CMIP5 project were selected.
Mónica Bello, Marcel Ramos, René Garreaud, Luis Bravo, and Martin Thiel
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-32, https://doi.org/10.5194/os-2018-32, 2018
Preprint withdrawn
Short summary
Short summary
Here we present results of an intensive physical oceanography study near 30° S focused on the description of the seasonal and the synoptic variability of diurnal currents. The study, highlights the greatest variability of the diurnal currents which are highly influenced by the diurnal wind forcing, also modulated by a synoptic-scale circulation pattern. Our results show that the highest diurnal current variability suggesting a strong coupling between diurnal wind forcing and inertial oscillations.
Michelle I. Graco, Sara Purca, Boris Dewitte, Carmen G. Castro, Octavio Morón, Jesús Ledesma, Georgina Flores, and Dimitri Gutiérrez
Biogeosciences, 14, 4601–4617, https://doi.org/10.5194/bg-14-4601-2017, https://doi.org/10.5194/bg-14-4601-2017, 2017
Short summary
Short summary
The Peruvian coastal upwelling ecosystem is a natural laboratory to study climatic variability and climate change. We examined the variability in the OMZ in the last decades in connection with the equatorial Pacific strong 1997–1998 El Niño event and the influence of central Pacific El Niño events and enhanced equatorial Kelvin wave activity since 2000. The data reveal two contrasting regimes and a long-term trend corresponding to a deepening of the oxygen-deficient waters and warming.
Oscar Vergara, Boris Dewitte, Ivonne Montes, Veronique Garçon, Marcel Ramos, Aurélien Paulmier, and Oscar Pizarro
Biogeosciences, 13, 4389–4410, https://doi.org/10.5194/bg-13-4389-2016, https://doi.org/10.5194/bg-13-4389-2016, 2016
Short summary
Short summary
The Southeast Pacific hosts one of the most extensive oxygen minimum zone (OMZ), yet the dynamics behind it remain unveiled. We use a high-resolution coupled physical–biogeochemical model to document the seasonal cycle of dissolved oxygen within the OMZ in both the coastal zone and the offshore ocean. The OMZ seasonal variability is driven by the seasonal fluctuations of the dissolved oxygen eddy flux, with a peak in Austral winter (fall) at the northern (southern) boundary and near the coast.
Marcela Cornejo D'Ottone, Luis Bravo, Marcel Ramos, Oscar Pizarro, Johannes Karstensen, Mauricio Gallegos, Marco Correa-Ramirez, Nelson Silva, Laura Farias, and Lee Karp-Boss
Biogeosciences, 13, 2971–2979, https://doi.org/10.5194/bg-13-2971-2016, https://doi.org/10.5194/bg-13-2971-2016, 2016
I. Hernández-Carrasco, J. Sudre, V. Garçon, H. Yahia, C. Garbe, A. Paulmier, B. Dewitte, S. Illig, I. Dadou, M. González-Dávila, and J. M. Santana-Casiano
Biogeosciences, 12, 5229–5245, https://doi.org/10.5194/bg-12-5229-2015, https://doi.org/10.5194/bg-12-5229-2015, 2015
Short summary
Short summary
We have reconstructed maps of air-sea CO2 fluxes at high resolution (4 km) in the offshore Benguela region using sea surface temperature and ocean colour data and CarbonTracker CO2 fluxes data at low resolution (110 km).
The inferred representation of pCO2 improves the description provided by CarbonTracker, enhancing small-scale variability.
We find that the resolution, as well as the inferred pCO2 data itself, is closer to in situ measurements of pCO2.
Related subject area
Approach: Numerical Models | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Air-Sea Fluxes
Simulating the spread of disinfection by-products and anthropogenic bromoform emissions from ballast water discharge in Southeast Asia
Numerical tools to estimate the flux of a gas across the air–water interface and assess the heterogeneity of its forcing functions
Sensitivity study of the generation of mesoscale eddies in a numerical model of Hawaii islands
A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas
Josefine Maas, Susann Tegtmeier, Birgit Quack, Arne Biastoch, Jonathan V. Durgadoo, Siren Rühs, Stephan Gollasch, and Matej David
Ocean Sci., 15, 891–904, https://doi.org/10.5194/os-15-891-2019, https://doi.org/10.5194/os-15-891-2019, 2019
Short summary
Short summary
In a large-scale analysis, the spread of disinfection by-products from oxidative ballast water treatment is investigated, with a focus on Southeast Asia where major ports are located. Halogenated compounds such as bromoform (CHBr3) are produced in the ballast water and, once emitted into the environment, can participate in ozone depletion. Anthropogenic bromoform is rapidly emitted into the atmosphere and can locally double around large ports. A large-scale impact cannot be found.
V. M. N. C. S. Vieira, F. Martins, J. Silva, and R. Santos
Ocean Sci., 9, 355–375, https://doi.org/10.5194/os-9-355-2013, https://doi.org/10.5194/os-9-355-2013, 2013
M. Kersalé, A. M. Doglioli, and A. A. Petrenko
Ocean Sci., 7, 277–291, https://doi.org/10.5194/os-7-277-2011, https://doi.org/10.5194/os-7-277-2011, 2011
M. T. Johnson
Ocean Sci., 6, 913–932, https://doi.org/10.5194/os-6-913-2010, https://doi.org/10.5194/os-6-913-2010, 2010
Cited articles
Aguirre, C., Pizarro, O., Strub, P. T., Garreaud, R., and Barth, J. A.: Seasonal dynamics of the near-surface alongshore flow off central Chile, J. Geophys. Res., 117, C01006, https://doi.org/10.1029/2011JC007379, 2012.
Archer, C. L. and Jacobson, M. Z.: The Santa Cruz Eddy. Part II: Mechanisms of Formation, Mon. Weather Rev., 133, 2387–2405, 2005.
Bakun, A.: Coastal upwelling indices, west coast of North America, 1946–1971, US Dep. Commer., NOAA Tech. Rep., NMFS SSRF-671, 103 pp., 1973.
Bakun, A. and Nelson, C.: The seasonal cycle of wind stress curl in subtropical Eastern boundary current regions, J. Phys. Oceanogr., 21, 1815–1834, 1991.
Bane, J. M., Levine, M. D., Samelson, R. M., Haines, S. M., Meaux, M. F., Perlin, N., Kosro, P. M., and Boyd, T.: Atmospheric forcing of the Oregon coastal ocean during the 2001 upwelling Season, J. Geophys. Res., 110, C10S02, https://doi.org/10.1029/2004JC002653, 2005.
Beljaars, A. C. M.: The parameterization of surface fluxes in large-scale models under free convection, Q. J. Roy. Meteorol. Soc., 121, 255–270, 1994.
Bretherton, C. S. and Park, S.: A new moist turbulence parameterization in the Community Atmosphere Model, J. Climate, 22, 3422–3448, 2009.
Burk, S. D. and Thompson, W. T.: The summertime low-level jet and marine boundary layer structure along the California coast, Mon. Weather Rev., 124, 668–686, 1996.
Cambon, G., Goubanova, K., Marchesiello, P., Dewitte, B., Illig, S., and Echevin, V.: Assessing the impact of downscaled winds on a regional ocean model simulation of the Humboldt system, Ocean Model., 65, 11–24, 2013.
Capet, X. J., Marchesiello, P., and McWilliams, J. C.: Upwelling response to coastal wind profiles, Geophys. Res. Lett., 31, L13311, https://doi.org/10.1029/2004GL020123, 2004.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Summertime coupling between sea surface temperature and wind stress in the California Current System, J. Phys. Oceanogr., 37, 495–517, 2007.
Dyer, A. J. and Hicks, B. B.: Flux–gradient relationships in the constant flux layer, Q. J. Roy. Meteorol. Soc., 96, 715–721, 1970
Edwards, K. A., Rogerson, A. M., Winant, C. D., and Rogers, D. P.: Adjustment of the marine atmospheric boundary layer to a coastal cape, J. Atmos. Sci., 58, 1511–1528, 2001.
Enriquez, A. G. and Friehe, C. A.: Effects of Wind Stress and Wind Stress Curl Variability on Coastal Upwelling, J. Phys. Oceanogr., 25, 1651–1671, 1996.
Estrade, P., Marchesiello, P., Colin de Verdiere, A., and Roy, C.: Cross-shelf structure of coastal upwelling: A two-dimensional expansion of Ekman's theory and a mechanism for inner shelf upwelling shut down, J. Mar. Res., 66, 589–616, 2008.
Garreaud, R. and Muñoz, R.: The low-level jet off the subtropical west coast of South America: Structure and variability, Mon. Weather Rev., 133, 2246–2261, 2005.
Garreaud, R., Rutllant, J., Muñoz, R., Rahn, D., Ramos, M., and Figueroa, D.: VOCALS-CUpEx: The Chilean Upwelling Experiment, Atmos. Chem. Phys., 11, 2015–2029, https://doi.org/10.5194/acp-11-2015-2011, 2011.
Gill, A. E.: Atmosphere–ocean dynamics, International Geophysics Series, 30, 403 pp., 1982.
Haack, T., Burk, S. D., Dorman, C., and Rogers, D.: Supercritical Flow Interaction within the Cape Blanco–Cape Mendocino Orographic Complex, Mon. Weather Rev., 129, 688–708, 2001.
Halpern, D.: Measurements of near-surface wind stress over an upwelling region near the Oregon coast, J. Phys. Oceanogr., 6, 108–112, 1976.
Halpern, D.: Offshore Ekman transport and Ekman pumping off Peru during the 1997–1998 El Niño, Geophys. Res. Lett., 29, 1075, https://doi.org/10.1029/2001GL014097, 2002.
Hayes, S. P., McPhaden, M. J., and Wallace, J. M.: The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: weekly to monthly variability, J. Climate, 2, 1500–1506, 1989.
Hong, S. Y. and Lim, J. O.: The WRF single – moment 6 – class microphysics scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006.
Hormazabal, S., Shaffer, G., and Leth, O.: Coastal transition zone off Chile, J. Geophys. Res., 109, C01021, https://doi.org/10.1029/2003JC001956, 2004.
Horvath, K., Koracin, D., Vellore, R., Jiang, J., and Belu, R.: Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models, J. Geophys. Res., 117, D11111, https://doi.org/10.1029/2012JD017432, 2012.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008
Jacox, M. G. and Edwards, C. A.: Upwelling source depth in the presence of nearshore wind stress curl, J. Geophys. Res., 117, C05008, https://doi.org/10.1029/2011JC007856, 2012.
Janjic, Z. I.: Comments on “Development and evaluation of a convection scheme for use in climate models”, J. Atmos. Sci., 57, 3686–3686, 2000.
Jin, X., Dong, C., Kurian, J., McWilliams, J. C., Chelton, D. B., and Li, Z.: SST-Wind Interaction in Coastal Upwelling: Oceanic Simulation with Empirical Coupling, J. Phys. Oceanogr. 39, 2957–2970, 2009.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, L., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, D.C. M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Re- analysis Project, B. Am. Meteor. Soc., 77, 437–471, 1996.
Koračin, D., Dorman, C. E., and Dever, E. P.: Coastal Perturbations of Marine-Layer Winds, Wind Stress, and Wind Stress Curl along California and Baja California in June 1999, J. Phys. Oceanogr., 34, 1152–1173, 2004.
Lo, J. C.-F., Yang, Z.-L., and Pielke, R. A. S.: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model, J. Geophys. Res., 113, D09112, https://doi.org/10.1029/2007jd009216, 2008.
Marchesiello, P. and Estrade, P.: Upwelling limitation by geostrophic onshore flow, J. Mar. Res., 68, 37–62, 2010.
Marchesiello P., Lefevre, L., Vega, A., Couvelard, X., and Menkes, C.: Coastal upwelling, circulation and heat balance around New Caledonia's barrier reef, Mar. Poll. Bull., 61, 432–448, 2010.
Mellor, G. L.: Numerical simulation and analysis of the mean coastal circulation off California, Cont. Shelf Res., 6, 689–713, 1986.
Moraga-Opazo, J., Valle-Levinson, A., Ramos, M., and Pizarro-Koch, M.: Upwelling-Triggered near-geostrophic recirculation in an equatorward facing embayment, Cont. Shelf Res., 31, 1991–1999, 2011.
Muñoz, R. and Garreaud, R.: Dynamics of the low-level jet off the subtropical west coast of South America, Mon. Weather Rev., 133, 3661–3677, 2005.
Nelson, C. S.: Wind stress and wind-stress curl over the California Current, NOAA Tech. Rep., NMFS SSRF-714, US Dept. of Commerce, 87 pp., 1977.
Paulson, C. A.: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteor., 9, 857–861, 1970.
Perlin, N., Skyllingstad, E., Samelson, R., and Barbour, P.: Numerical simulation of air-sea coupling during coastal upwelling, J. Phys. Oceanogr., 37, 2081–2093, 2007.
Perlin, N., Skyllingstad, E. D., and Samelson, R. M.: Coastal atmospheric circulation around an idealized cape during wind-driven upwelling studied from a coupled ocean-atmosphere model, Mon. Weather Rev., 139, 809–829, 2011.
Pickett, M. and Paduan, J. D.: Ekman transport and pumping in the California Current based on the US Navy's high-resolution atmospheric model (COAMPS), J. Geophys. Res., 108, C103327, https://doi.org/10.1029/2003JC001902, 2003.
Rahn, D. and Garreaud, R.: A synoptic climatology of the near-surface wind along the west coast of South America, Int. J. Climatol., 34, 3628–3647, https://doi.org/10.1002/joc.3724, 2013.
Rahn, D. A., Garreaud, R., and Rutllant, J.: The low-level atmospheric circulation near Tongoy Bay/point Lengua de Vaca (Chilean coast 30° S), Mon. Weather Rev., 139, 3628–3647, 2011.
Renault, L., Dewitte, B., Falvey, M., Garreaud, R., Echevin, V., and Bonjean, F.: Impact of atmospheric coastal jet off central Chile on sea surface temperature from satellite observations (2000–2007), J. Geophys. Res., 114, C08006, https://doi.org/10.1029/2008JC005083, 2009.
Renault, L., Dewitte, B., Marchesiello, P., Illig, S., Echevin, V., Cambon, G., Ramos, M., Astudillo, O., Minnis, P., and Ayers, J. K.: Upwelling response to atmospheric coastal jets off central Chile: A modeling study of the October 2000 event, J. Geophys. Res., 117, C02030, https://doi.org/10.1029/2011JC007446, 2012.
Renault, L., Hall, H., and McWilliams, J. C.: Orographic shaping of US West Coast wind profiles during the upwelling season, Clim. Dynam., 46, 273–289, https://doi.org/10.1007/s00382-015-2583-4, 2015.
Rutllant, J. and Montecino, V.: Multiscale upwelling forcing cycles and biological response off north-central Chile, Rev. Chil. Hist. Nat., 75, 217–231, 2002.
Rutllant, J. A., Muñoz, R. C., and Garreaud, R. D.: Meteorological observations on the northern Chilean coast during VOCALS-REx, Atmos. Chem. Phys., 13, 3409–3422, https://doi.org/10.5194/acp-13-3409-2013, 2013.
Shaffer, G., Hormazabal, S., Pizarro, O., Djurfeldt, L., and Salinas, S.: Seasonal and interannual variability of currents and temperature over the slope off central Chile, J. Geophys. Res., 104, 29951–29961, 1999.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465–3485, 2008.
Small, R. J., deSzoeke, S. P., Xie, S. P., O'Neill, L., Seo, H., Song, Q., Cornillon, P., Spall, M., and Minobe, S.: Air-sea interaction over ocean fronts and eddies, Dynam. Atmos. Oceans, 45, 274–319, 2008.
Smith, R. L.: Upwelling, Oceanogr. Mar. Biol., 6, 11–46, 1968.
Stark, J. D., Donlon, C. J., Martin, M. J., and McCulloch, M. E.: OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system, Oceans 2007 IEEE Aberdeen, conference proceedings, Marine challenges: coastline to deep sea, Aberdeen, Scotland, IEEE, 2007.
Strub, P. T., Montecino, V., Rutllant, J., and Salinas, S.: Coastal ocean circulation off western south America, in: The Sea, The Global Coastal Ocean: Regional Studies and Syntheses, edited by: Robinson, A. R. and Brink, K. H., John Wiley, New York, 11, 273–314, 1998.
Sverdrup, H. U.: Wind-driven currents in a baroclinic ocean, with application to the equatorial currents of the eastern Pacific, P. Natl. Acad. Sci. USA, 33, 318–326, 1947.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Gayno, M. Ek, G., Wegiel, J., and Cuenca, R. H.: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, 11–15, 2004
Thiel, M., Macaya, E., Acuña, E., Arntz, W. E., Bastias, H., Brokordt, K., Camus, P. A., Castilla, J. C., Castro, L. R., Cortés, M., Dumont, C. P., Escribano, R., Fenández, M., Gajardo, J. A., Gaymer, C. F., Gómez, I., González, A. E., González, H., Haye, P. A., Illanes, J. C., Iriarte, J. L., Lancellotti, D. A., Luna-Jorquera, G., Luxoro, C., Manriquez, P. H., Marín, V., Muñoz, P., Navarrete, S. A., Perez, E., Poulin, E., Sellanes, J., Sepúlveda, H. H., Stotz, W., Tala, F., Thomas, A., Vargas, C. A., Vasquez, J. A., and Vega, J. M. A.: the Humboldt Current System of Northern-Central Chile Oceanographic Processes, Ecological Interactions, edited by: Gibson, R. N., Atkinson, R. J. A., and Gordon, J. D. M., Oceanogr. Mar. Biol., 45, 195–344, 2007.
Toniazzo, T., Sun, F., Mechoso, C. R., and Hall, A.: A regional modeling study of the diurnal cycle in the lower troposphere in the south-eastern tropical Pacific, Clim. Dynam., 41, 1899–1922, 2013.
Vazquez-Cuervo, J., Dewitte, B., Chin, T. M., Amstrong, E., Purca, S., and Alburqueque, E.: An analysis of SST gradient off the Peruvian coast; The impact of going to higher resolution, Remote Sens. Environ., 131, 76–84, 2013.
Venegas, S. A, Mysak, L. A., and Straub, D. N.: Atmosphere-Ocean Coupled Variability in the South Atlantic, J. Climate, 10, 2904–2920, 1997.
Wallace, J., Mitchell, T., and Deser, C.: The influence of sea-surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability, J. Climate, 2, 1492–1499, 1989.
Webb, E. K.: Profile relationships: The log-linear range, and extension to strong stability, Q. J. Roy. Meteor. Soc., 96, 67–90, 1970.
Winant, C. D., Dorman, C. E., Friehe, C. A., and Beardsley, R. C.: The marine layer off Northern California: an example of supercritical channel flow, J. Atmos. Sci., 45, 3588–3605, 1988.
Wood, R., Mechoso, C. R., Bretherton, C. S., Weller, R. A., Huebert, B., Straneo, F., Albrecht, B. A., Coe, H., Allen, G., Vaughan, G., Daum, P., Fairall, C., Chand, D., Gallardo Klenner, L., Garreaud, R., Grados, C., Covert, D. S., Bates, T. S., Krejci, R., Russell, L. M., de Szoeke, S., Brewer, A., Yuter, S. E., Springston, S. R., Chaigneau, A., Toniazzo, T., Minnis, P., Palikonda, R., Abel, S. J., Brown, W. O. J., Williams, S., Fochesatto, J., Brioude, J., and Bower, K. N.: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations, Atmos. Chem. Phys., 11, 627–654, https://doi.org/10.5194/acp-11-627-2011, 2011.
Xie, S. P.: Satellite observations of cool ocean-atmosphere interaction, B. Am. Meteorol. Soc., 85, 195–208, 2004.
Zhang, D. L. and Anthes, R. A.: A high–resolution model of the planetary boundary layer – sensitivity tests and comparisons with SESAME – 79 data, J. Appl. Meteor., 21, 1594–1609, 1982.
Short summary
We evaluated the seasonal variability in Ekman transport, pumping and their relative contribution to total upwelling along the central-northern Chile region (~30ºS) from a high-resolution atmospheric model simulation. The results showed that the relative contribution of Ekman transport and pumping to the vertical transport along the coast, considering the estimated wind drop-off length, indicated meridional alternation between both mechanisms, modulated by orography and the intricate coastline.
We evaluated the seasonal variability in Ekman transport, pumping and their relative...