Articles | Volume 10, issue 6
https://doi.org/10.5194/os-10-907-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-907-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
On the glacial and interglacial thermohaline circulation and the associated transports of heat and freshwater
M. Ballarotta
CORRESPONDING AUTHOR
Department of Physical Geography and Quaternary Geology, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
S. Falahat
Department of Meteorology/Oceanography, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
L. Brodeau
Department of Meteorology/Oceanography, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Department of Meteorology/Oceanography, Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
Related authors
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2024-2345, https://doi.org/10.5194/egusphere-2024-2345, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Clément Ubelmann, Loren Carrere, Chloé Durand, Gérald Dibarboure, Yannice Faugère, Maxime Ballarotta, Frédéric Briol, and Florent Lyard
Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, https://doi.org/10.5194/os-18-469-2022, 2022
Short summary
Short summary
The signature of internal tides has become an important component for high-resolution altimetry over oceans. Several studies have proposed some solutions to resolve part of these internal tides based on the altimetry record. Following these studies, we propose here a new inversion approach aimed to mitigate aliasing with other dynamics. After a description of the methodology, the solution for the main tidal components has been successfully validated against independent observations.
Guillaume Taburet, Antonio Sanchez-Roman, Maxime Ballarotta, Marie-Isabelle Pujol, Jean-François Legeais, Florent Fournier, Yannice Faugere, and Gerald Dibarboure
Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, https://doi.org/10.5194/os-15-1207-2019, 2019
Short summary
Short summary
This paper deals with sea level altimetery products. These geophysical data are distributed as along-track and gridded data through Copernicus programs CMEMS and C3S. We present in detail a new reprocessing of the data (DT2018) from 1993 to 2017. The main changes and their impacts since the last version (DT2014) are carefully discussed. This comparison is made using an independent dataset. DT2018 sea level products are improved at the global and regional scale, especially in coastal areas.
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
M. Ballarotta, F. Roquet, S. Falahat, Q. Zhang, and G. Madec
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-3597-2015, https://doi.org/10.5194/cpd-11-3597-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We investigate the impact of the ocean geothermal heating (OGH) on a glacial ocean state using numerical simulations. We found that the OGH is a significant forcing of the abyssal ocean and thermohaline circulation. Applying the OGH warms the Antarctic Bottom Water by ~0.4°C and strengthens the deep circulation by 15% to 30%. The geothermally heated waters are advected from the Indo-Pacific to the North Atlantic basin, indirectly favouring the deep convection in the North Atlantic.
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past, 9, 2669–2686, https://doi.org/10.5194/cp-9-2669-2013, https://doi.org/10.5194/cp-9-2669-2013, 2013
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-297-2013, https://doi.org/10.5194/cpd-9-297-2013, 2013
Revised manuscript has not been submitted
Maxime Ballarotta, Clément Ubelmann, Valentin Bellemin-Laponnaz, Florian Le Guillou, Guillaume Meda, Cécile Anadon, Alice Laloue, Antoine Delepoulle, Yannice Faugère, Marie-Isabelle Pujol, Ronan Fablet, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2024-2345, https://doi.org/10.5194/egusphere-2024-2345, 2024
Short summary
Short summary
The Surface Water and Ocean Topography (SWOT) mission provides unprecedented swath altimetry data. This study examines SWOT's impact on mapping systems, showing a moderate effect with the current nadir altimetry constellation and a stronger impact with a reduced one. Integrating SWOT with dynamic mapping techniques improves the resolution of satellite-derived products, offering promising solutions for studying and monitoring sea-level variability at finer scales.
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023, https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Short summary
Altimetry provides sea surface height (SSH) data along one-dimensional tracks. For many applications, the tracks are interpolated in space and time to provide gridded SSH maps. The operational SSH gridded products filter out the small-scale signals measured on the tracks. This paper evaluates the performances of a recently implemented dynamical method to retrieve the small-scale signals from real SSH data. We show a net improvement in the quality of SSH maps when compared to independent data.
Dipanjan Dey, Aitor Aldama Campino, and Kristofer Döös
Hydrol. Earth Syst. Sci., 27, 481–493, https://doi.org/10.5194/hess-27-481-2023, https://doi.org/10.5194/hess-27-481-2023, 2023
Short summary
Short summary
One of the most striking and robust features of climate change is the acceleration of the atmospheric water cycle branch. Earlier studies were able to provide a quantification of the global atmospheric water cycle, but they missed addressing the atmospheric water transport connectivity within and between ocean basins and land. These shortcomings were overcome in the present study and presented a complete synthesised and quantitative view of the atmospheric water cycle.
Maxime Ballarotta, Clément Ubelmann, Pierre Veillard, Pierre Prandi, Hélène Etienne, Sandrine Mulet, Yannice Faugère, Gérald Dibarboure, Rosemary Morrow, and Nicolas Picot
Earth Syst. Sci. Data, 15, 295–315, https://doi.org/10.5194/essd-15-295-2023, https://doi.org/10.5194/essd-15-295-2023, 2023
Short summary
Short summary
We present a new gridded sea surface height and current dataset produced by combining observations from nadir altimeters and drifting buoys. This product is based on a multiscale and multivariate mapping approach that offers the possibility to improve the physical content of gridded products by combining the data from various platforms and resolving a broader spectrum of ocean surface dynamic than in the current operational mapping system. A quality assessment of this new product is presented.
Clément Ubelmann, Loren Carrere, Chloé Durand, Gérald Dibarboure, Yannice Faugère, Maxime Ballarotta, Frédéric Briol, and Florent Lyard
Ocean Sci., 18, 469–481, https://doi.org/10.5194/os-18-469-2022, https://doi.org/10.5194/os-18-469-2022, 2022
Short summary
Short summary
The signature of internal tides has become an important component for high-resolution altimetry over oceans. Several studies have proposed some solutions to resolve part of these internal tides based on the altimetry record. Following these studies, we propose here a new inversion approach aimed to mitigate aliasing with other dynamics. After a description of the methodology, the solution for the main tidal components has been successfully validated against independent observations.
Guillaume Taburet, Antonio Sanchez-Roman, Maxime Ballarotta, Marie-Isabelle Pujol, Jean-François Legeais, Florent Fournier, Yannice Faugere, and Gerald Dibarboure
Ocean Sci., 15, 1207–1224, https://doi.org/10.5194/os-15-1207-2019, https://doi.org/10.5194/os-15-1207-2019, 2019
Short summary
Short summary
This paper deals with sea level altimetery products. These geophysical data are distributed as along-track and gridded data through Copernicus programs CMEMS and C3S. We present in detail a new reprocessing of the data (DT2018) from 1993 to 2017. The main changes and their impacts since the last version (DT2014) are carefully discussed. This comparison is made using an independent dataset. DT2018 sea level products are improved at the global and regional scale, especially in coastal areas.
Maxime Ballarotta, Clément Ubelmann, Marie-Isabelle Pujol, Guillaume Taburet, Florent Fournier, Jean-François Legeais, Yannice Faugère, Antoine Delepoulle, Dudley Chelton, Gérald Dibarboure, and Nicolas Picot
Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, https://doi.org/10.5194/os-15-1091-2019, 2019
Short summary
Short summary
This study investigates the resolving capabilities of the DUACS gridded products delivered through the CMEMS catalogue. Our method is based on the noise-to-signal ratio approach. While altimeter along-track data resolve scales on the order of a few tens of kilometers, we found that the merging of these along-track data into continuous maps in time and space leads to effective resolution ranging from ~ 800 km wavelength at the Equator to 100 km wavelength at high latitude.
Robinson Hordoir, Lars Axell, Anders Höglund, Christian Dieterich, Filippa Fransner, Matthias Gröger, Ye Liu, Per Pemberton, Semjon Schimanke, Helen Andersson, Patrik Ljungemyr, Petter Nygren, Saeed Falahat, Adam Nord, Anette Jönsson, Iréne Lake, Kristofer Döös, Magnus Hieronymus, Heiner Dietze, Ulrike Löptien, Ivan Kuznetsov, Antti Westerlund, Laura Tuomi, and Jari Haapala
Geosci. Model Dev., 12, 363–386, https://doi.org/10.5194/gmd-12-363-2019, https://doi.org/10.5194/gmd-12-363-2019, 2019
Short summary
Short summary
Nemo-Nordic is a regional ocean model based on a community code (NEMO). It covers the Baltic and the North Sea area and is used as a forecast model by the Swedish Meteorological and Hydrological Institute. It is also used as a research tool by scientists of several countries to study, for example, the effects of climate change on the Baltic and North seas. Using such a model permits us to understand key processes in this coastal ecosystem and how such processes will change in a future climate.
Kristofer Döös, Bror Jönsson, and Joakim Kjellsson
Geosci. Model Dev., 10, 1733–1749, https://doi.org/10.5194/gmd-10-1733-2017, https://doi.org/10.5194/gmd-10-1733-2017, 2017
Short summary
Short summary
The TRACMASS trajectory code with corresponding schemes has been improved and become more accurate and user friendly over the years. An outcome of the present study is that we strongly recommend the use of the
time-dependentTRACMASS scheme. We would also like to dissuade the use of the more primitive
stepwise-stationaryscheme, since the velocity fields remain stationary for longer periods, creating abrupt discontinuities in the velocity fields and yielding inaccurate solutions.
M. Ballarotta, F. Roquet, S. Falahat, Q. Zhang, and G. Madec
Clim. Past Discuss., https://doi.org/10.5194/cpd-11-3597-2015, https://doi.org/10.5194/cpd-11-3597-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We investigate the impact of the ocean geothermal heating (OGH) on a glacial ocean state using numerical simulations. We found that the OGH is a significant forcing of the abyssal ocean and thermohaline circulation. Applying the OGH warms the Antarctic Bottom Water by ~0.4°C and strengthens the deep circulation by 15% to 30%. The geothermally heated waters are advected from the Indo-Pacific to the North Atlantic basin, indirectly favouring the deep convection in the North Atlantic.
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past, 9, 2669–2686, https://doi.org/10.5194/cp-9-2669-2013, https://doi.org/10.5194/cp-9-2669-2013, 2013
M. Ballarotta, L. Brodeau, J. Brandefelt, P. Lundberg, and K. Döös
Clim. Past Discuss., https://doi.org/10.5194/cpd-9-297-2013, https://doi.org/10.5194/cpd-9-297-2013, 2013
Revised manuscript has not been submitted
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: All Geographic Regions | Phenomena: Temperature, Salinity and Density Fields
Technical note: Harmonising metocean model data via standard web services within small research groups
Mechanisms of Atlantic Meridional Overturning Circulation variability simulated by the NEMO model
Meridional transport of salt in the global ocean from an eddy-resolving model
A model for predicting changes in the electrical conductivity, practical salinity, and absolute salinity of seawater due to variations in relative chemical composition
Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean
Richard P. Signell and Elena Camossi
Ocean Sci., 12, 633–645, https://doi.org/10.5194/os-12-633-2016, https://doi.org/10.5194/os-12-633-2016, 2016
Short summary
Short summary
A collection of tools and techniques are described which allow small research groups to deliver and utilise standardised web services for ocean and meteorological model data. This allows users to search for data across multiple data providers, preview the data and access data in a consistent way, resulting in more efficient and effective use of these data.
V. N. Stepanov and K. Haines
Ocean Sci., 10, 645–656, https://doi.org/10.5194/os-10-645-2014, https://doi.org/10.5194/os-10-645-2014, 2014
A. M. Treguier, J. Deshayes, J. Le Sommer, C. Lique, G. Madec, T. Penduff, J.-M. Molines, B. Barnier, R. Bourdalle-Badie, and C. Talandier
Ocean Sci., 10, 243–255, https://doi.org/10.5194/os-10-243-2014, https://doi.org/10.5194/os-10-243-2014, 2014
R. Pawlowicz
Ocean Sci., 6, 361–378, https://doi.org/10.5194/os-6-361-2010, https://doi.org/10.5194/os-6-361-2010, 2010
G. J. van Oldenborgh, L. A. te Raa, H. A. Dijkstra, and S. Y. Philip
Ocean Sci., 5, 293–301, https://doi.org/10.5194/os-5-293-2009, https://doi.org/10.5194/os-5-293-2009, 2009
Cited articles
Adkins, J. F. and Schrag, D. P.: Pore fluid constraints on deep ocean temperature and salinity during the Last Glacial Maximum, Geophys. Res. Lett., 28, 771–774, https://doi.org/10.1029/2000GL011597, 2001.
Adkins, J. F., Mcintyre, K., and Schrag, D. P.: The Salinity, Temperature, and δ18O of the Glacial Deep Ocean, Science, 298, 1769–1773, https://doi.org/10.1126/science.1076252, 2002.
Ballarotta, M., Brodeau, L., Brandefelt, J., Lundberg, P., and Döös, K.: Last Glacial Maximum world ocean simulations at eddy-permitting and coarse resolutions: do eddies contribute to a better consistency between models and palaeoproxies?, Clim. Past, 9, 2669–2686, https://doi.org/10.5194/cp-9-2669-2013, 2013a.
Ballarotta, M., Brodeau, L., Brandefelt, J., Lundberg, P., and Döös, K.: A Last Glacial Maximum world-ocean simulation at eddy-permitting resolution – Part 1: Experimental design and basic evaluation, Clim. Past Discuss., 9, 297–328, https://doi.org/10.5194/cpd-9-297-2013, 2013b.
Barnier, B., Madec, G., Penduff, T., Molines, J. M., Tréguier, A. M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006.
Barnier, B., Brodeau, L., LeSommer, J., Molines, J.-M., Penduff, T., Theetten, S., Tréguier, A.-M., Madec, G., Biastoch, A., Böning, C., Dengg, J., Gulev, S., Bourdallé, B. R., Chanut, J., Garric, G., Coward, A., de Cuevas, B., New, A., Haines, K., Smith, G. C., Drijfhout, S., Hazeleger, W., Severijns, C., and Myers, P.: Eddy-permitting Ocean Circulation Hindcasts Of Past Decades, CLIVAR Exchanges, 12, 8–10, 2007.
Blanke, B., Arhan, M., and Speich, S.: Salinity changes along the upper limb of the Atlantic thermohaline circulation, Geophys. Res. Lett., 33, L06609, https://doi.org/10.1029/2005GL024938, 2006.
Bryan, F. O., Danabasoglu, G. Nakashiki, N., Yoshida, Y., Kim, D. H., Tsutsui, J., and Doney, S. C.: Response of the North Atlantic Thermohaline Circulation and Ventilation to Increasing Carbon Dioxide in CCSM3, J. Climate, 19, 2382–2397, https://doi.org/10.1175/JCLI3757.1, 2006.
Brandefelt, J. and Otto-Bliesner, B. L.: Equilibration and variability in a Last Glacial Maximum climate simulation with CCSM3, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL040364, 2009.
Brodeau, L. Barnier, B., Tréguier, A. M., Penduff, T., and Gulev, S.: An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Model., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010.
Broecker, W. S.: The great ocean conveyor, Oceanography, 4, 79–89, 1991.
Butzin, M., Prange, M., and Lohmann, G.: Radiocarbon simulations for the glacial ocean: The effects of wind stress, Southern Ocean sea ice and Heinrich events, Earth Planet. Sc. Lett., 235, 45–61, https://doi.org/10.1016/j.epsl.2005.03.003, 2005.
Curry, W. B.: Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean, Paleoceanography, 20, 1–13, https://doi.org/10.1029/2004PA001021, 2005.
Döös, K., Meier, M., and Döscher, R.: The Baltic haline conveyor belt or the overturning circulation and mixing in the Baltic, Ambio, 33, 261–266, https://doi.org/10.1579/0044-7447-33.4.261, 2004.
Döös, K. and Webb, D.: The Deacon Cell and the other meridional cells of the Southern Ocean, J. Phys. Oceanogr., 24, 429–442, 1994.
Döös, K., Nilsson, J., Nycander, J., Brodeau, L., and Ballarotta, M.: The World Ocean Thermohaline Circulation, J. Phys. Oceanogr., 42, 1445–1460, https://doi.org/10.1175/JPO-D-11-0163.1, 2012.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O., Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., de Noblet, N., Duvel, J.-P., Ethé, C., Fairhead, L., Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013.
Evans, H. K. and Hall, I. R.: Deepwater circulation on Blake Outer Ridge (western North Atlantic) during the Holocene, Younger Dryas, and Last Glacial Maximum, Geochem. Geophy. Geosy., 9, Q03023, https://doi.org/10.1029/2007GC001771, 2008.
Fichefet, T. and Morales Maqueda, M. A.: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics, J. Geophys. Res., 102, 12609–12646, https://doi.org/10.1029/97JC00480, 1997.
Ferrari, R. and Ferreira, D.: What processes drive the ocean heat transport?, Ocean Model., 38, 171–1866, https://doi.org/10.1016/j.ocemod.2011.02.013, 2011.
Ganachaud, A. and Wunsch, C.: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data, Nature, 408, 453–457, 2000.
Gent, P. R. and McWilliams, J. C.: Isopycnal mixing in Ocean Circulation models, J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990.
Gherardi, J. M., Labeyrie, L., Nave, S., Francois, R., McManus, J. F., and Cortijo, E.: Glacial-interglacial circulation changes inferred from 231Pa / 230Th sedimentary record in the North Atlantic region, Paleoceanography, 24, 1–14, https://doi.org/10.1029/2008PA001696, 2009.
Grist, J. P., Josey, S. A., and Marsh, R.: Surface estimates of the Atlantic overturning in density space in an eddy-permitting ocean model, J. Geophys. Res., 117, C06012, https://doi.org/10.1029/2011JC007752, 2012.
Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz, S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K., Menemenlis, D., Mouchet, A., Müller, S. A., Sarmiento, J. L., and Takahashi, T.: Oceanic sources, sinks, and transport of atmospheric CO2, Global Biogeochem. Cy., 23, GB1005, https://doi.org/10.1029/2008GB003349, 2009.
Hazeleger, W.: EC-Earth: A Seamless Earth System Prediction Approach in Action, B. Am. Meteorol. Soc., 3, 1357–1363, https://doi.org/10.1175/2010BAMS2877.1, 2010.
Hesse, T., Butzin, M. Bickert, T., and Lohmann, G.: A model-data comparison of δ13C in the glacial Atlantic Ocean, Paleoceanography, 26, PA3220, https://doi.org/10.1029/2010PA002085, 2011.
Hirst, A., Jackett, D., and McDougall, T.: The meridional overturning cells of a world ocean model in neutral density coordinates, J. Phys. Oceanogr., 26, 775–791, 1996
Jackett, D. and McDougall, T. J.: Minimal adjustment of hydrostatic profiles to achieve static stability, J. Atmos. Ocean. Tech., 12, 381–389, https://doi.org/10.1175/1520-0426(1995)012<0381:MAOHPT>2.0.CO;2, 2003.
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.: Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic, Geochem. Geophy. Geosys., 3, https://doi.org/10.1029/2001GC000283, 2002.
Keigwin, L. D.: Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic, Paleoceanography, 19, PA4012, https://doi.org/10.1029/2004PA001029, 2004.
Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M., and Mann, M. E.: A signature of persistent natural thermohaline circulation cycles in observed climate, Geophys. Res. Lett., 32, L20708, https://doi.org/10.1029/2005GL024233, 2005.
Lee, M. and Coward, A.: Eddy mass transport for the Southern Ocean in an eddy-permitting global ocean model, Ocean Model., 5, 249–266, 2003.
Letcher, T. M.: Climate Change: Observed Impacts on Planet Earth, 1st Edn., Elsevier, 2009.
Lippold, J., Luo, Y., Francois, R., Allen, S. E., Gherardi, J., Pichat, S., Hickey, B., and Schulz, H.: Strength and geometry of the glacial Atlantic Meridional Overturning Circulation, Nat. Geosci., 5, 813–816, https://doi.org/10.1038/ngeo1608, 2012.
Lund, D. C., Adkins, J. F., and Ferrari, R.: Abyssal Atlantic circulation during the Last Glacial Maximum: Constraining the ratio between transport and vertical mixing, Paleoceanography, 26, PA1213, https://doi.org/10.1029/2010PA001938, 2011.
Lynch-Stieglitz, J., Curry, W. B., and Slowey, N.: Weaker Gulf Stream in the Florida straits during the last glacial maximum, Nature, 402, 644–648, https://doi.org/10.1038/45204, 1999.
Lynch-Stieglitz, J., Adkins, J. F., Curry, W. B., Dokken, T., Hall, I., Herguera, J. C., Hirschi, J., Ivanova, E., Kissel, C., Marchal, O., Marchitto, T. M., McCave, I. N., McManus, J. F., Mulitza, S., Ninnemann, U., Peeters, F., Yu, E. F., and Zahn, R.: Atlantic meridional overturning circulation during the Last Glacial Maximum, Science, 316, 66–69, https://doi.org/10.1126/science.1137127, 2007.
McDougall, T.: Neutral surfaces in the ocean: implications for modelling, Geophys. Res. Lett., 14, 797–800, 1987.
Madec, G.: NEMO ocean engine, Technical Report 27, Institut Pierre-Simon Laplace (IPSL), 2008.
Manabe, S. and Stouffer, R. J.: Multiple-Century response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide, Science, 7, 5–23, https://doi.org/10.1175/1520-0442(1994)007<0005:MCROAC>2.0.CO;2, 1994.
Marchitto, T. M. and Broecker, W. S.: Deep water mass geometry in the glacial Atlantic Ocean: A review of constraints from the paleonutrient proxy Cd/Ca, Geochem. Geophy. Geosys., 7, Q12003, https://doi.org/10.1029/2006GC001323, 2006.
Martin, P. A., Lea, D. W., Rosenthal, Y., Shackleton, N. J., Sarnthein, M., and Papenfuss, T.: Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca, Earth Planet. Sc. Lett., 198, 193–209, https://doi.org/10.1016/S0012-821X(02)00472-7, 2002.
Otto-Bliesner, B. L., Hewitt, C. D., Marchitto, T. M., Brady, E. C., Abe-Ouchi, A., Crucifix, M., Murakami, S., and Weber, S. L.: Last Glacial Maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints, Geophys. Res. Lett., 34 1–6, https://doi.org/10.1029/2007GL029475, 2007.
Rahmstorf, S.: Ocean circulation and climate during the past 120,000 years: Nature, 419, 207–14, https://doi.org/10.1038/nature01090, 2002.
Schmittner, A., Latif, M., and Schneider, B.: Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations, Geophys. Res. Lett., 32, L23710, https://doi.org/10.1029/2005GL024368, 2005.
Shin, S., Liu, Z., Otto-Bliesner, B. L., Kutzbach, J. E., and Vavrus, S. J.: Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation, Geophys. Res. Lett., 30, 1096, https://doi.org/10.1029/2002GL015513, 2003.
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin, M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.: Forecasting the ocean state using NEMO: The new FOAM system, Journal of Operational Oceanography, 3, 3–15, 2010.
Tagliabue, A., Bopp, L., Roche, D. M., Bouttes, N., Dutay, J.-C., Alkama, R., Kageyama, M., Michel, E., and Paillard, D.: Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum, Clim. Past, 5, 695–706, https://doi.org/10.5194/cp-5-695-2009, 2009.
Treguier, A. M., England, M. H., Rintoul, S. R., Madec, G., Le Sommer, J., and Molines, J.-M.: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current, Ocean Sci., 3, 491–507, https://doi.org/10.5194/os-3-491-2007, 2007.
Viebahn, J. and Eden, C.: Standing eddies in the meridional overturning circulation, J. Phys. Oceanogr., 42, 1486–1508, https://doi.org/10.1175/JPO-D-11-087.1, 2012.
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-CM5.1 global climate model: description and basic evaluation, Clim. Dynam., 40, 2091–2121, https://doi.org/10.1007/s00382-011-1259-y, 2012.
Weber, S. L., Drijfhout, S. S., Abe-Ouchi, A., Crucifix, M., Eby, M., Ganopolski, A., Murakami, S., Otto-Bliesner, B., and Peltier, W. R.: The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations, Clim. Past, 3, 51–64, https://doi.org/10.5194/cp-3-51-2007, 2007.
Wunsch, C.: What is the thermohaline circulation?, Science, 298, 1179–81, https://doi.org/10.1126/science.1079329, 2002.
Yu, E. F., Francois, R., and Bacon, M. P.: Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data, Nature, 379, 689–694, https://doi.org/10.1038/379689a0, 1996.
Zickfeld, K., Eby, M., and Weaver, A. J.: Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2, Global Biogeochem. Cy., 22, 1–14, https://doi.org/10.1029/2007GB003118, 2008.
Zika, J. D., England, M. H., and Sijp, W. P.: The Ocean Circulation in Thermohaline Coordinates, J. Phys. Oceanogr., 42, 708–724, https://doi.org/10.1175/JPO-D-11-0139.1, 2012.
Zhang, R., Delworth, T. L., and Held, I. M.: Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature?, Geophys. Res. Lett., 34, L02709, https://doi.org/10.1029/2006GL028683, 2007.
Zhang, X., Lohmann, G., Knorr, G., and Xu, X.: Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation, Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, 2013.