Articles | Volume 10, issue 5
https://doi.org/10.5194/os-10-821-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-821-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Springtime zooplankton size structure over the continental shelf of the Bay of Biscay
P. Vandromme
IFREMER, Centre Bretagne, Département Dynamique de l'Environnement Côtier, B.P. 70, 29280 Plouzané, France
GEOMAR, Helmholtz-Center for Ocean Science, Düsternbrooker Weg 20, 24105 Kiel, Germany
E. Nogueira
Centro Oceanográfico de Gijón, Instituto Español de Oceanografía, Gijón 33212, Spain
M. Huret
IFREMER, Centre Bretagne, Unit. Sciences et Techniques Halieutiques, B.P. 70, 29280 Plouzané, France
Á. Lopez-Urrutia
Centro Oceanográfico de Gijón, Instituto Español de Oceanografía, Gijón 33212, Spain
G. González-Nuevo González
Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo 36200, Spain
M. Sourisseau
IFREMER, Centre Bretagne, Département Dynamique de l'Environnement Côtier, B.P. 70, 29280 Plouzané, France
P. Petitgas
IFREMER, Centre Nantes, Département Écologie et Modèles pour l'Halieutique, rue de l'Île d'Yeu, 44300 Nantes, France
Related authors
No articles found.
Nina Grandremy, Paul Bourriau, Edwin Daché, Marie-Madeleine Danielou, Mathieu Doray, Christine Dupuy, Bertrand Forest, Laetitia Jalabert, Martin Huret, Sophie Le Mestre, Antoine Nowaczyk, Pierre Petitgas, Philippe Pineau, Justin Rouxel, Morgan Tardivel, and Jean-Baptiste Romagnan
Earth Syst. Sci. Data, 16, 1265–1282, https://doi.org/10.5194/essd-16-1265-2024, https://doi.org/10.5194/essd-16-1265-2024, 2024
Short summary
Short summary
We present two space- and time-resolved zooplankton datasets originating from samples collected in the Bay of Biscay in spring over the 2004–2019 period and imaged with the interoperable imaging systems ZooScan and ZooCAM. These datasets are suited for long-term size-based or combined size- and taxonomy-based ecological studies of zooplankton. The set of sorted images are provided along with a set of morphological descriptors that are useful when machine learning is applied to plankton studies.
A. Regaudie-de-Gioux, S. Sal, and Á. López-Urrutia
Biogeosciences, 12, 1915–1923, https://doi.org/10.5194/bg-12-1915-2015, https://doi.org/10.5194/bg-12-1915-2015, 2015
Short summary
Short summary
We question here is whether phytoplankton community growth rates respond to nutrient concentration in a similar manner to phytoplankton species composing the community, that is, following Monod's model. In situ marine community growth rates in relation to nutrient concentration and the behaviour of a simple multi-species community model show that community growth rate does not follow Monod's model. We observed here that this can be explained as a consequence of change in size structure.
Related subject area
Approach: In situ Observations | Depth range: Shelf-sea depth | Geographical range: Shelf Seas | Phenomena: Biological Processes
Fine-scale vertical structure of sound-scattering layers over an east border upwelling system and its relationship to pelagic habitat characteristics
First year of practical experiences of the new Arctic AWIPEV-COSYNA cabled Underwater Observatory in Kongsfjorden, Spitsbergen
Ndague Diogoul, Patrice Brehmer, Yannick Perrot, Maik Tiedemann, Abou Thiam, Salaheddine El Ayoubi, Anne Mouget, Chloé Migayrou, Oumar Sadio, and Abdoulaye Sarré
Ocean Sci., 16, 65–81, https://doi.org/10.5194/os-16-65-2020, https://doi.org/10.5194/os-16-65-2020, 2020
Short summary
Short summary
We characterized the water masses of the Senegalese Petite Côte and described spatial and temporal variations of SSLs in relation to their environment. SSL distributions were mainly structured by bottom depth, diel period, and the level of vertical stratification in the water column. This study serves as a precursor in the field of SSL study in the Senegalese Petite Côte and even West African coasts, hence the importance of this work.
Philipp Fischer, Max Schwanitz, Reiner Loth, Uwe Posner, Markus Brand, and Friedhelm Schröder
Ocean Sci., 13, 259–272, https://doi.org/10.5194/os-13-259-2017, https://doi.org/10.5194/os-13-259-2017, 2017
Short summary
Short summary
We observed oceanographic and community data from October 2013 to November 2014 in the shallow waters of Kongsfjorden on the western coast of Svalbard (Norway) using remote controlled hydrographic and optic sensors. Daily vertical profiles of temperature, salinity, and turbidity were sampled together with stereo images of the macrobiotic community, including fish. A distinct seasonal cycle in total species abundances was found with surprisingly high animal counts during the polar winter.
Cited articles
Albaina, A. and Irigoien, X.: Relationships between frontal structures and zooplankton communities along a cross-shelf transect in the Bay of Biscay (1995 to 2003), Mar. Ecol.-Prog. Ser., 284, 65–75, https://doi.org/10.3354/meps284065, 2004.
Albaina, A. and Irigoien, X.: Fine scale zooplankton distribution in the Bay of Biscay in spring 2004, J. Plankton Res., 29, 851–870, https://doi.org/10.1093/plankt/fbm064, 2007.
Bachiller, E. and Irigoien, X.: Allometric relations and consequences for feeding in small pelagic fish in the Bay of Biscay, ICES J. Mar. Sci., 70, 232–243, https://doi.org/10.1093/icesjms/fss171, 2013.
Bachiller, E., Fernandes, J. A., and Irigoien, X.: Improving semiautomated zooplankton classification using an internal control and different imaging devices, Limnol. Oceanogr.-Meth., 10, 1–9, https://doi.org/10.4319/lom.2012.10.1, 2012.
Baird, M. E. and Suthers, I. M.: A size-resolved pelagic ecosystem model, Ecol. Model., 203, 185–203, https://doi.org/10.1016/j.ecolmodel.2006.11.025, 2007.
Barnes, C., Irigoien, X., De Oliveira, J. A. A., Maxwell, D., and Jennings, S.: Predicting marine phytoplankton community size structure from empirical relationships with remotely sensed variables, J. Plankton Res., 33, 13–24, https://doi.org/10.1093/plankt/fbq088, 2011.
Basedow, S. L., Tande, K. S., and Zhou, M.: Biovolume spectrum theories applied: spatial patterns of trophic levels within a mesozooplankton community at the polar front, J. Plankton Res., 32, 1105–1119, https://doi.org/10.1093/plankt/fbp110, 2010.
Basedow, S. L., Tande, K. S., Norrbin, M. F., and Kristiansen, S. A.: Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation, Prog. Oceanogr., 108, 72–80, https://doi.org/10.1016/j.pocean.2012.10.005, 2013.
Blanco, J., Echevarría, F., and Garcia, C. M.: Dealing with size-spectra: some conceptual and mathematical problems, Sci. Mar., 58, 17–29, 1994.
Charria, G., Lazure, P., Le Cann, B., Serpette, A., Reverdin, G., Louazel, S., Batifoulier, F., Dumas, F., Pichon, A., and Morel, Y.: Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay, J. Marine Syst., 109–110, S60–S76, https://doi.org/10.1016/j.jmarsys.2011.09.015, 2013.
Checkley, Jr. D., Davis, R., Herman, A., Jackson, G., Beanlands, B., and Regier, L.: Assessing plankton and other particles in situ with the SOLOPC, Limnol. Oceanogr., 53, 2123–2136, https://doi.org/10.4319/lo.2008.53.5_part_2.2123, 2008.
Daewel, U., Peck, M. A., Kühn, W., St. John, M. A., Alekseeva, I., and Schrum, C.: Coupling ecosystem and individual-based models to simulate the influence of environmental variability on potential growth and survival of larval sprat (Sprattus sprattus L.) in the North Sea, Fish. Oceanogr., 17, 333–351, https://doi.org/10.1111/j.1365-2419.2008.00482.x, 2008.
Daewel, U., Hjollo, S. S., Huret, M., Ji, R., Maar, M., Niiranen, S., Travers-Trolet, M., Peck, M. A., and van de Wolfshaar, K. E.: Predation control of zooplankton dynamics: a review of observations and models, ICES J. Mar. Sci., 71, 254–271, https://doi.org/10.1093/icesjms/fst125, 2014.
de Jong, S.: SIMPLS: an alternative approach to partial least squares regression, Chemometr. Intell. Lab., 18, 251–263, https://doi.org/10.1016/0169-7439(93)85002-X, 1993.
Doray, M., Badts, V., Masse, J., Duhamel, E., Huret, M., Doremus, G., and Petitgas, P.: Manual of fisheries survey protocols. PELGAS surveys (PELagiques GAScogne), Ifremer, https://doi.org/10.13155/30259, 2014.
Gaardsted, F., Tande, K. S., and Basedow, S. L.: Measuring copepod abundance in deep-water winter habitats in the NE Norwegian Sea: intercomparison of results from laser optical plankton counter and multinet, Fish. Oceanogr., 19, 480–492, https://doi.org/10.1111/j.1365-2419.2010.00558.x, 2010.
Gohin, F., Loyer, S., Lunven, M., Labry, C., Froidefond, J., Delmas, D., Huret, M., and Herbland, A.: Satellite-derived parameters for biological modelling in coastal waters: illustration over the eastern continental shelf of the Bay of Biscay, Remote Sens. Environ., 95, 29–46, https://doi.org/10.1016/j.rse.2004.11.007, 2005.
Gómez-Canchong, P., Blanco, J. M., and Quiñones, R. A.: On the use of biomass size spectra linear adjustments to design ecosystem indicators, Sci. Mar., 77, 257–268, https://doi.org/10.3989/scimar.03708.22A, 2013.
González-Quirós, R. and Checkley, D. M.: Occurrence of fragile particles inferred from optical plankton counters used in situ and to analyze net samples collected simultaneously, J. Geophys. Res., 111, C05S06, https://doi.org/10.1029/2005JC003084, 2006.
Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.-B., Cawood, A., Pesant, S., Garcia-Comas, C., and Prejger, F.: Digital zooplankton image analysis using the ZooScan integrated system, J. Plankton Res., 32, 285–303, https://doi.org/10.1093/plankt/fbp124, 2010.
Guidi, L., Stemmann, L., Jackson, G. a., Ibanez, F., Claustre, H., Legendre, L., Picheral, M., and Gorsky, G.: Effects of phytoplankton community on production, size and export of large aggregates: A world-ocean analysis, Limnol. Oceanogr., 54, 1951–1963, https://doi.org/10.4319/lo.2009.54.6.1951, 2009.
Herman, A. W. W., Beanlands, B., and Phillips, E. F. F.: The next generation of Optical Plankton Counter: the Laser-OPC, J. Plankton Res., 26, 1135–1145, https://doi.org/10.1093/plankt/fbh095, 2004.
Hernroth, L.: Sampling and filtration efficiency of two commonly used plankton nets. A comparative study of the Nansen net and the Unesco WP 2 net, J. Plankton Res., 9, 719–728, https://doi.org/10.1093/plankt/9.4.719, 1987.
Hirst, A. G. and Bunker, A. J.: Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight, Limnol. Oceanogr., 48, 1988–2010, https://doi.org/10.4319/lo.2003.48.5.1988, 2003.
Huntley, M. and Boyd, C.: Food-limited growth of marine zooplankton, Am. Nat., 124, 455–478, https://doi.org/10.1086/284288, 1984.
Iriarte, J. and González, H.: Phytoplankton size structure during and after the 1997/98 El Niño in a coastal upwelling area of the northern Humboldt Current System, Mar. Ecol.-Prog. Ser., 269, 83–90, https://doi.org/10.3354/meps269083, 2004.
Irigoien, X., Fernandes, J. A., Grosjean, P., Denis, K., Albaina, A., and Santos, M.: Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment, J. Plankton Res., 31, 1–17, https://doi.org/10.1093/plankt/fbn096, 2009.
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.: An optimal definition for ocean mixed layer depth, J. Geophys. Res.-Oceans, 105, 16803–16821, https://doi.org/10.1029/2000JC900072, 2000.
Keen, E.: A practical designer's guide to mesozooplankton nets, available at (last access: 15 October 2014): http://acsweb.ucsd.edu/ ekeen/resources/Choosing-a-Net.pdf, 2013.
Kerr, S. R. and Dickie, L. M.: The Biomass Spectrum: A Predator-Prey Theory of Aquatic Production, Columbia University Press, 2001.
Koutsikopoulos, C., Le Cann, B., and Cann, B. L. E.: Physical processes and hydrological structures related to the Bay of Biscay anchovy, Sci. Mar., 60, 9–19, 1996.
Krupica, K. L., Sprules, W. G., and Herman, A. W.: The utility of body size indices derived from optical plankton counter data for the characterization of marine zooplankton assemblages, Cont. Shelf. Res., 36, 29–40, https://doi.org/10.1016/j.csr.2012.01.008, 2012.
Legendre, P. and Legendre, L.: Numerical Ecology, 3rd Edn., Elsevier, Amsterdam, 2012.
Lehette, P. and Hernández-León, S.: Zooplankton biomass estimation from digitized images: a comparison between subtropical and Antarctic organisms, Limnol. Oceanogr.-Meth., 7, 304–308, https://doi.org/10.4319/lom.2009.7.304, 2009.
Llope, M., Anadón, R., Viesca, L., Quevedo, M., González-Quirós, R., and Stenseth, N. C.: Hydrography of the southern Bay of Biscay shelf-break region: Integrating the multiscale physical variability over the period 1993–2003, J. Geophys. Res., 111, C09021, https://doi.org/10.1029/2005JC002963, 2006.
Marcolin, C. D. R., Schultes, S., Jackson, G. A., and Lopes, R. M.: Plankton and seston size spectra estimated by the LOPC and ZooScan in the Abrolhos Bank ecosystem (SE Atlantic), Cont. Shelf. Res., 70, 74–87, https://doi.org/10.1016/j.csr.2013.09.022, 2013.
Marquis, E., Niquil, N., Vezina, A. F., Petitgas, P., and Dupuy, C.: Influence of planktonic foodweb structure on a system's capacity to support pelagic production: an inverse analysis approach, ICES J. Mar. Sci., 68, 803–812, https://doi.org/10.1093/icesjms/fsr027, 2011.
Mauchline, J.: The biology of Calanoid Copepods, Adv. Mar. Biol., 33, 1–710, 1998.
Mikkelsen, O. A., Hill, P. S., Milligan, T. G., and Chant, R. J.: In situ particle size distributions and volume concentrations from a LISST-100 laser particle sizer and a digital floc camera, Cont. Shelf. Res., 25, 1959–1978, https://doi.org/10.1016/j.csr.2005.07.001, 2005.
Morote, E., Olivar, M. P., Villate, F., and Uriarte, I.: A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: influence of prey availability and ontogeny, ICES J. Mar. Sci., 67, 897–908, https://doi.org/10.1093/icesjms/fsp302, 2010.
Nichols, J. H. and Thompson, A. B.: Mesh Selection of Copepodite and Nauplius Stages of 4 Calanoid Copepod Species, J. Plankton Res., 13, 661–671, 1991.
Nogueira, E., González-Nuevo, G., Bode, A., Varela, M., Morán, X. A. G., and Valdés, L.: Comparison of biomass and size spectra derived from optical plankton counter data and net samples: application to the assessment of mesoplankton distribution along the Northwest and North Iberian Shelf, ICES J. Mar. Sci., 61, 508–517, https://doi.org/10.1016/j.icesjms.2004.03.018, 2004.
Peters, R. H. and Wassenberg, K.: The Effect of body size on animal abundance, Oecologia, 60, 89–96, https://doi.org/10.1007/BF00379325, 1983.
Petitgas, P., Doray, M., Masse, J., and Grellier, P.: Spatially explicit estimation of fish length histograms, with application to anchovy habitats in the Bay of Biscay, ICES J. Mar. Sci., 68, 2086–2095, https://doi.org/10.1093/icesjms/fsr139, 2011.
Petrik, C. M., Jackson, G. A., and Checkley, D. M.: Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float, Deep-Sea Res. Pt. I, 74, 64–81, https://doi.org/10.1016/j.dsr.2012.12.009, 2013.
Picheral, M., Guidi, L., Stemmann, L., Karl, D. M., Iddaoud, G., and Gorsky, G.: The underwater vision profiler 5: an advanced instrument for high spatial resolution studies of particle size spectra and zooplankton, Limnol. Oceanogr.-Meth., 8, 462–473, https://doi.org/10.4319/lom.2010.8.462, 2010.
Pingree, R. D., Mardell, G. T., and Cartwright, D. E.: Slope turbulence, internal waves and phytoplankton growth at the celtic sea shelf-break [and discussion], Philos. T. R. Soc. A, 302, 663–682, https://doi.org/10.1098/rsta.1981.0191, 1981.
Platt, T. and Denman, K.: Organization in Pelagic ecosystem, Helgoland. Wiss. Meer., 30, 575–581, 1977.
Poulet, S. A., Laabir, M., and Chaudron, Y.: Characteristic features of zooplankton in the Bay of Biscay, Sci. Mar., 60, 79–95, 1996.
Quiñones, R. A., Platt, T., and Rodríguez, J.: Patterns of biomass-size spectra from oligotrophic waters of the Northwest Atlantic, Progr. Oceanogr., 57, 405–427, https://doi.org/10.1016/S0079-6611(03)00108-3, 2003.
Rosipal, R., Kr, N., and Krämer, N.: Overview and recent advances in partial least squares, in: Subspace, Latent Structure and Feature Selection SE-2, edited by: Saunders, C., Grobelnik, M., Gunn, S., and Shawe-Taylor, J., Vol. 3940 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 34–51, https://doi.org/10.1007/11752790_2, 2006.
San Martin, E., Irigoien, X., Harris, R. P., López-Urrutia, A., Zubkov, M. V., and Heywood, J. L.: Variation in the transfer of energy in marine plankton along a productivity gradient in the Atlantic Ocean, Limnol. Oceanogr., 51, 2084–2091, https://doi.org/10.4319/lo.2006.51.5.2084, 2006.
Schultes, S. and Lopes, R. M.: Laser optical plankton counter and zooscan intercomparison in tropical and subtropical marine ecosystems, Limnol. Oceanogr.-Meth., 7, 771–784, https://doi.org/10.4319/lom.2009.7.771, 2009.
Sheldon, R. W., Sutcliffe, W. H., and Prakash, A.: The size distribution of particles in the ocean, Limnol. Oceanogr., 17, 327–340, https://doi.org/10.4319/lo.1972.17.3.0327, 1972.
Sieracki, C. K., Sieracki, M. E., and Yentsch, C. S.: An imaging-in-flow system for automated analysis of marine microplankton, Mar. Ecol.-Progr. Ser., 168, 285–296, 1998.
Smith, P. E., Counts, R. C., and Cutter, R. I.: Changes in filtering efficiency of plankton nets due to clogging under tow, J. Cons. int. Explor. Mer, 32(2), 232–248, 1968.
Sourisseau, M. and Carlotti, F.: Spatial distribution of zooplankton size spectra on the French continental shelf of the Bay of Biscay during spring 2000 and 2001, J. Geophys. Res., 111, p. 12, https://doi.org/10.1029/2005JC003063, 2006.
Steinberg, D. K., Carlson, C. A., Bates, N. R., Johnson, R. J., Michaels, A. F., and Knap, A. H.: Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry, Deep-Sea Res. Pt. II, 48, 1405–1447, https://doi.org/10.1016/S0967-0645(00)00148-X, 2001.
Stemmann, L. and Boss, E.: Plankton and particle size and packaging: from determining optical properties to driving the biological pump, Annual Review of Marine Science, 4, 263–290, https://doi.org/10.1146/annurev-marine-120710-100853, 2012.
Stenseth, N. C., Llope, M., Anadón, R., Ciannelli, L., Chan, K.-S., Hjermann, D. O., Bagoien, E., and Ottersen, G.: Seasonal plankton dynamics along a cross-shelf gradient, Proc. Biol. Sci. R. Soc., 273, 2831–2838, https://doi.org/10.1098/rspb.2006.3658, 2006.
Suthers, L. M., Taggart, C. T., Rissik, D., Baird, M. E., and Suthers, I.: Day and night ichthyoplankton assemblages and zooplankton biomass size spectrum in a deep ocean island wake, Mar. Ecol.-Prog. Ser., 322, 225–238, https://doi.org/10.3354/meps322225, 2006.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183, https://doi.org/10.1029/2000JD900719, 2001.
Valdés, L., López-Urrutia, A., Cabal, J., Alvarez-Ossorio, M., Bode, A., Miranda, A., Cabanas, M., Huskin, I., Anadón, R., Alvarez-Marqués, F., Llope, M., and Rodríguez, N.: A decade of sampling in the Bay of Biscay: what are the zooplankton time series telling us?, Prog. Oceanogr., 74, 98–114, https://doi.org/10.1016/j.pocean.2007.04.016, 2007.
Vandromme, P., Stemmann, L., Berline, L., Gasparini, S., Mousseau, L., Prejger, F., Passafiume, O., Guarini, J.-M., and Gorsky, G.: Inter-annual fluctuations of zooplankton communities in the Bay of Villefranche-sur-mer from 1995 to 2005 (Northern Ligurian Sea, France), Biogeosciences, 8, 3143–3158, https://doi.org/10.5194/bg-8-3143-2011, 2011.
Vandromme, P., Stemmann, L., Garcìa-Comas, C., Berline, L., Sun, X., Gorsky, G., Garcia-Comas, C., Colbert, S., Picheral, M., Gasparini, S., Guarini, J.-M., and Prejger, F.: Assessing biases in computing size spectra of automatically classified zooplankton from imaging systems: a case study with the ZooScan integrated system, Methods in Oceanography, 1–2, 3–21, https://doi.org/10.1016/j.mio.2012.06.001, 2012.
Ward, B. A., Dutkiewicz, S., Jahn, O., and Follows, M. J.: A size-structured food-web model for the global ocean, Limnol. Oceanogr., 57, 1877–1891, https://doi.org/10.4319/lo.2012.57.6.1877, 2012.
Woodd-Walker, R. S., Gallienne, C. P., and Robins, D. B.: A test model for optical plankton counter (OPC) coincidence and a comparison of OPC-derived and conventional measures of plankton abundance, J. Plankton Res., 22, 473–483, https://doi.org/10.1093/plankt/22.3.473, 2000.
Yañez Rubio, A., Llanos-Rivera, A., Castro, L., Claramunt, G., and Herrera, L.: Variations in type, width, volume and carbon content of anchoveta Engraulis ringens food items during the early larval stages, J. Mar. Biol. Assoc. UK, 91, 1207–1213, https://doi.org/10.1017/S0025315410001748, 2011.
Zhou, M.: What determines the slope of a plankton biomass spectrum?, J. Plankt. Res., 28, 437–448, https://doi.org/10.1093/plankt/fbi119, 2006.
Zhou, M., Tande, K. S., Zhu, Y. W., and Basedow, S.: Productivity, trophic levels and size spectra of zooplankton in northern Norwegian shelf regions, Deep-Sea Res. Pt. II, 56, 1934–1944, https://doi.org/10.1016/j.dsr2.2008.11.018, 2009.
Zhou, M., Carlotti, F., and Zhu, Y.: A size-spectrum zooplankton closure model for ecosystem modelling, J. Plankton Res., 32, 1147–1165, https://doi.org/10.1093/plankt/fbq054, 2010.