Articles | Volume 9, issue 5
https://doi.org/10.5194/os-9-901-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-9-901-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography
P. Y. Le Traon
Invited contribution by P. Y. Le Traon, recipient of the EGU Fridtjof Nansen Medal 2012.
Ifremer and Mercator Ocean, 8–10 rue Hermés – Parc Technologique du Canal, 31520 Ramonville, St. Agne, France
Ifremer and Mercator Ocean, 8–10 rue Hermés – Parc Technologique du Canal, 31520 Ramonville, St. Agne, France
Related authors
Pierre-Yves Le Traon, Antonio Novellino, and Andrew M. Moore
State Planet Discuss., https://doi.org/10.5194/sp-2024-36, https://doi.org/10.5194/sp-2024-36, 2024
Preprint under review for SP
Short summary
Short summary
Ocean prediction relies on the integration between models, satellite and in-situ observations through data assimilation techniques. The authors discuss the role of observations in operational ocean forecasting systems, describing the state-of-the-art of satellite and in-situ observing networks and defining the paths for addressing multi-scale monitoring and forecasting.
This article is included in the Encyclopedia of Geosciences
Karina von Schuckmann, Lorena Moreira, and Pierre-Yves Le Traon
State Planet, 1-osr7, 1, https://doi.org/10.5194/sp-1-osr7-1-2023, https://doi.org/10.5194/sp-1-osr7-1-2023, 2023
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Antonio Bonaduce, Mounir Benkiran, Elisabeth Remy, Pierre Yves Le Traon, and Gilles Garric
Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018, https://doi.org/10.5194/os-14-1405-2018, 2018
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
V. Turpin, E. Remy, and P. Y. Le Traon
Ocean Sci., 12, 257–274, https://doi.org/10.5194/os-12-257-2016, https://doi.org/10.5194/os-12-257-2016, 2016
Short summary
Short summary
Argo profiling floats are continuously sampling the world ocean, providing temperature and salinity profiles of up to 2000 m depths. This article addresses the impact of the current Argo array on real-time ocean analyses and forecasts. One-year observing system experiments were carried out with the 0.25° global Mercator Ocean monitoring and forecasting system. The improvement due to the assimilation of the Argo profiles is estimated globally and regionally, showing a significant positive impact.
This article is included in the Encyclopedia of Geosciences
F. Ninove, P.-Y. Le Traon, E. Remy, and S. Guinehut
Ocean Sci., 12, 1–7, https://doi.org/10.5194/os-12-1-2016, https://doi.org/10.5194/os-12-1-2016, 2016
Short summary
Short summary
Argo floats are one of the main components of the in situ observation network in the ocean. Nowadays, more than 3500 profiling floats are sampling the world ocean. In this study, they are used to characterize spatial scales of temperature and salinity variations from the surface down to 1500m. The scales appear to be anisotropic and vary from about 100km at high latitudes to 700km in the Indian and Pacific equatorial and tropical regions.
This article is included in the Encyclopedia of Geosciences
K. von Schuckmann, J.-B. Sallée, D. Chambers, P.-Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon
Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, https://doi.org/10.5194/os-10-547-2014, 2014
Pierre-Yves Le Traon, Antonio Novellino, and Andrew M. Moore
State Planet Discuss., https://doi.org/10.5194/sp-2024-36, https://doi.org/10.5194/sp-2024-36, 2024
Preprint under review for SP
Short summary
Short summary
Ocean prediction relies on the integration between models, satellite and in-situ observations through data assimilation techniques. The authors discuss the role of observations in operational ocean forecasting systems, describing the state-of-the-art of satellite and in-situ observing networks and defining the paths for addressing multi-scale monitoring and forecasting.
This article is included in the Encyclopedia of Geosciences
Karina von Schuckmann, Lorena Moreira, and Pierre-Yves Le Traon
State Planet, 1-osr7, 1, https://doi.org/10.5194/sp-1-osr7-1-2023, https://doi.org/10.5194/sp-1-osr7-1-2023, 2023
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Antonio Bonaduce, Mounir Benkiran, Elisabeth Remy, Pierre Yves Le Traon, and Gilles Garric
Ocean Sci., 14, 1405–1421, https://doi.org/10.5194/os-14-1405-2018, https://doi.org/10.5194/os-14-1405-2018, 2018
Simon Verrier, Pierre-Yves Le Traon, and Elisabeth Remy
Ocean Sci., 13, 1077–1092, https://doi.org/10.5194/os-13-1077-2017, https://doi.org/10.5194/os-13-1077-2017, 2017
V. Turpin, E. Remy, and P. Y. Le Traon
Ocean Sci., 12, 257–274, https://doi.org/10.5194/os-12-257-2016, https://doi.org/10.5194/os-12-257-2016, 2016
Short summary
Short summary
Argo profiling floats are continuously sampling the world ocean, providing temperature and salinity profiles of up to 2000 m depths. This article addresses the impact of the current Argo array on real-time ocean analyses and forecasts. One-year observing system experiments were carried out with the 0.25° global Mercator Ocean monitoring and forecasting system. The improvement due to the assimilation of the Argo profiles is estimated globally and regionally, showing a significant positive impact.
This article is included in the Encyclopedia of Geosciences
F. Ninove, P.-Y. Le Traon, E. Remy, and S. Guinehut
Ocean Sci., 12, 1–7, https://doi.org/10.5194/os-12-1-2016, https://doi.org/10.5194/os-12-1-2016, 2016
Short summary
Short summary
Argo floats are one of the main components of the in situ observation network in the ocean. Nowadays, more than 3500 profiling floats are sampling the world ocean. In this study, they are used to characterize spatial scales of temperature and salinity variations from the surface down to 1500m. The scales appear to be anisotropic and vary from about 100km at high latitudes to 700km in the Indian and Pacific equatorial and tropical regions.
This article is included in the Encyclopedia of Geosciences
K. von Schuckmann, J.-B. Sallée, D. Chambers, P.-Y. Le Traon, C. Cabanes, F. Gaillard, S. Speich, and M. Hamon
Ocean Sci., 10, 547–557, https://doi.org/10.5194/os-10-547-2014, https://doi.org/10.5194/os-10-547-2014, 2014
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Sea Level
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations
GEM: a dynamic tracking model for mesoscale eddies in the ocean
El Niño, La Niña, and the global sea level budget
DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years
Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis
Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a
Technical Note: Watershed strategy for oceanic mesoscale eddy splitting
Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project
Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level
Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
This article is included in the Encyclopedia of Geosciences
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018, https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
This article is included in the Encyclopedia of Geosciences
Qiu-Yang Li, Liang Sun, and Sheng-Fu Lin
Ocean Sci., 12, 1249–1267, https://doi.org/10.5194/os-12-1249-2016, https://doi.org/10.5194/os-12-1249-2016, 2016
Short summary
Short summary
The Genealogical Evolution Model (GEM) is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern with a two-dimensional vector. All of the computational steps are linear and do not include iteration. It is very fast and is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
This article is included in the Encyclopedia of Geosciences
Christopher G. Piecuch and Katherine J. Quinn
Ocean Sci., 12, 1165–1177, https://doi.org/10.5194/os-12-1165-2016, https://doi.org/10.5194/os-12-1165-2016, 2016
Short summary
Short summary
We use satellite and in situ data to elucidate global-mean sea level (GMSL) changes related to El Niño-Southern Oscillation (ENSO) over 2005–2015. Steric and mass effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize mass contributions. Results exemplify the usefulness of the Global Ocean Observing System for understanding the Earth's radiation imbalance and hydrological cycle.
This article is included in the Encyclopedia of Geosciences
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
This article is included in the Encyclopedia of Geosciences
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
This article is included in the Encyclopedia of Geosciences
Q. Y. Li and L. Sun
Ocean Sci., 11, 269–273, https://doi.org/10.5194/os-11-269-2015, https://doi.org/10.5194/os-11-269-2015, 2015
Short summary
Short summary
This study established a splitting strategy that could separate multinuclear eddies into mononuclear eddies. As the values of eddy parameters (e.g. SLA, geostrophic potential vorticity, Okubo–Weiss parameter) are similar to basins in a map, the natural divisions of the basins are the watersheds between them. It can also be applied to automatic identification of troughs and ridges from weather charts. We denoted it the Universal Splitting Technology for Circulations (USTC) method.
This article is included in the Encyclopedia of Geosciences
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
This article is included in the Encyclopedia of Geosciences
J.-F. Legeais, M. Ablain, and S. Thao
Ocean Sci., 10, 893–905, https://doi.org/10.5194/os-10-893-2014, https://doi.org/10.5194/os-10-893-2014, 2014
D. P. Chambers and J. A. Bonin
Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, https://doi.org/10.5194/os-8-859-2012, 2012
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009.
Arbic, B. K., Richman, J. G., Shriver, J. F., Timko, P. G., Metzger, E. J., and Wallcraft, A. J.: Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25, 20–29, 2012.
Argo Science Team: On the Design and Implementation of Argo: An Initial plan for a Global Array of profiling Floats. International CLIVAR Project Office Report Number 2, GODAE Report No. 5, GODAE International Project Office, Melbourne, Australia, 1998.
Ayoub, N., Le Traon, P. Y., and De Mey, P.: Combining ERS-1 and TOPEX/Poseidon data to observe the variable oceanic circulation in the Mediterranean sea, J. Marine Syst., 18, 3–40, https://doi.org/10.1016/S0924-7963(98)80004-3, 1998.
Balmaseda, M. and Anderson, D.: Impact of initialization strategies and observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701, https://doi.org/10.1029/2008GL035561, 2009.
Balmaseda, M., Anderson, D., and Vidard, A.: Impact of Argo on analyses of the global ocean, Geophys. Res. Lett., 34, L16605, https://doi.org/10.1029/2007GL030452, 2007.
Bell, M. J, Lefebvre, M., Le Traon, P. Y., Smith, N., and Wilmer-Becker, K.: The Global Ocean Data Assimilation Experiment, Oceanography, 22, 14–21, 2009.
Brachet, S., Le Traon, P. Y., and Le Provost, C.: Mesoscale variability from a high-resolution model and from altimeter data in the North Atlantic Ocean. J. Geophys. Res., 109, C12025, https://doi.org/10.1029/2004JC002360, 2004.
Bretherton, F. P., Davis, R. E., and Fandry, C. B.: A technique for objective analysis and design of oceanographic experiment applied to MODE-73, Deep-Sea Res., 23, 559–582, 1976.
Cazenave, A. and Nerem, R. S.: Present-day sea level change: Observations and causes, Rev. Geophys., 42, RG3001, https://doi.org/10.1029/2003RG000139, 2004.
Cazenave, A., Dominh, K., Guinehut, S., Berthier, E., Llovel, W., Ramillien, G., Ablain, M., and Larnicol, G.: Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo, Global Planet. Change, 65, 83–88, 2009.
Chelton, D. B. and Schlax, M. G.: The resolution capability of an irregularly sampled dataset: with application to Geosat altimeter data, J. Atmos. Ocean. Tech., 11, 534–550, 1994.
Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L. L., and Callahan, P. S.: Satellite Altimetry, Satellite altimetry and Earth sciences, in: Academic Press, edited by: Fu, L. L. and Cazenave, A., 2001.
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies, Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812, 2007.
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The influence of nonlinear mesoscale eddies on near-surface chlorophyll, Science, 334, 328–332, 2011a.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, 2011b.
Dhomps, A.-L., Guinehut, S., Le Traon, P.-Y., and Larnicol, G.: A global comparison of Argo and satellite altimetry observations, Ocean Sci., 7, 175–183, https://doi.org/10.5194/os-7-175-2011, 2011.
Dibarboure, G., Pujol, M.-I., Briol, F., Le Traon, P.-Y., Larnicol, G., Picot, N., Mertz, F., and Ablain, M.: Jason-2 in DUACS: Updated System Description, First Tandem Results and Impact on Processing and Products, Mar. Geod., 34, 214–241, https://doi.org/10.1080/01490419.2011.584826, 2011.
Dombrowsky, E., Bertino, L., Brassington, G. B., Chassignet, E. P., Davidson, F., Hurlburt, H. E., Kamachi, M., Lee, T., Martin, M. J., Mei, S., and Tonani, M.: GODAE Systems in Operation, Oceanography, 22, 80–95, 2009.
Ducet, N. and Le Traon, P. Y.: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio Current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data, J. Geophys. Res., 106, 16603–16622, 2001.
Ducet, N., Le Traon, P. Y., and Reverdin, G.: Global high resolution mapping of ocean circulation from the combination of TOPEX/Poseidon and ERS-1/2, J. Geophys. Res., 105, 19477–19498, 2000.
Durack, P. J. and Wijffels, S. E.: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming, J. Climate, 23, 4342–4362, 2010.
Fratantoni, D. M.: North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters, J. Geophys. Res., 106, 22067–22093, 2001.
Freeland, H. J., Roemmich, D., Garzoli, S. L., Le Traon, P. Y., Ravichandran, M., Riser, S., Thierry, V., Wijffels, S., Belbeoch, M., Gould, J., Grant, F., Ignazewski, M., King, B., Klein, B., Mork, K. A., Owens, B., Pouliquen, S., Sterl, A., Suga, T., Suk, M.-S., Sutton, P., Troisi, A., Velez-Belchi, P. J., and Xu, J.: Argo – A Decade of Progress, Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society (Vol. 2), Venice, Italy, 21–25 September 2009, Hall, J., Harrison, D. E. and Stammer, D. (Eds.), ESA Publication WPP-306, 2010.
Fu, L.-L.: Pattern and velocity of propagation of the global ocean eddy variability, J. Geophys. Res., 114, C11017, https://doi.org/10.1029/2009JC005349, 2009.
Fu, L.-L. and Chelton, D. B.: Large-scale ocean circulation, Satellite Altimetry and Earth Sciences: A Handbook for Techniques and Applications, in: Academic Press, edited by: Fu, L. L. and Cazenave, A., San Diego, 423, 133–16, 2001.
Fu, L.-L, Zlotnicki, V., and Chelton, D. B.: Satellite altimetry observing ocean variability from space, Oceanography, 1, 4, https://doi.org/10.5670/oceanog.1988.01, 1988.
Fu, L.-L., Chelton, D. B., Le Traon, P. Y., and Morrow, R.: Eddy dynamics from satellite altimetry, Oceanography, 23, 14–25, 2010.
Gordon, A. L. and Haxby, W. F.: Agulhas eddies invade the south Atlantic: evidence from GEOSAT altimeter and shipboard conductivity temperature-depth survey, J. Geophys. Res., 95, 3117–3125, 1990.
Greenslade, D. J. M., Chelton, D., and Schlax, M.: The midlatitude resolution capability of sea level fields constructed from single and multiple satellite altimeter datasets, J. Atmos. Ocean. Tech., 14, 849–870, 1997.
Grodsky, S., Lumpkin, R., and Carton, J.: Spurious trends in global surface drifter currents, Geophys. Res. Lett., 38, L10606, https://doi.org/10.1029/2011GL047393, 2011.
Guinehut, S., Larnicol, G., and Le Traon, P. Y.: Design of an array of profiling floats in the North Atlantic from model simulations, J. Marine Syst., 35, 1–9, 2002.
Guinehut, S., Le Traon, P. Y., Larnicol, G., and Philipps, S.: Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields – a first approach based on simulated observations, J. Marine Syst., 46, 85–98, 2004.
Guinehut, S., Le Traon, P. Y., and Larnicol, G.: What can we learn from Global Altimetry/Hydrography comparisons?, Geophys. Res. Lett., 33, L10604, https://doi.org/10.1029/2005GL025551, 2006.
Guinehut, S., Coatanoan, C., Dhomps, A. L., Le Traon, P. Y., and Larnicol, G.: On the use of satellite altimeter data in Argo quality control, J. Atmos. Ocean. Tech., 26, 395–402, 2009.
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012.
Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K.: Earth's energy imbalance and implications, Atmos. Chem. Phys., 11, 13421–13449, https://doi.org/10.5194/acp-11-13421-2011, 2011.
Hernandez, F., Le Traon, P. Y., and Morrow, R.: Mapping mesoscale variability of the Azores current using TOPEX/POSEIDON and ERS-1 altimetry, together with hydrographic and Lagrangian measurements, J. Geophys. Res., 100, 24995–25006, 1995.
Huang, H.-P., Kaplan, A., Curchitser, E. N., and Maximenko, N. A.: The degree of anisotropy for mid-ocean currents from satellite observations and an eddy-resolving model simulation, J. Geophys. Res., 112, C09005, https://doi.org/10.1029/2007JC004105, 2007.
International GODAE Steering Team: The Global Ocean Data Assimilation Experiment Strategic Plan, GODAE Report No. 6, December, 2000.
Jacobs, G. A. and Leben, R. R.: Loop Current eddy shedding estimated using GEOSAT altimeter data, Geophys. Res. Lett., 17, 2385–2388, 1990.
Jacobs, G. A., Barron, C. N., and Rhodes, R. C.: Mesoscale characteristics. J. Geophys. Res., 106, 19581–19595, 2001.
Johannessen, J. A., Le Traon, P.-Y., Robinson, I., Nittis, K., Bell, M. J., Pinardi, N., and Bahurel, P.: Marine Environment and Security for the European Area Toward Operational Oceanography, B. Am. Meteorol. Soc., 87, 1081–1090, https://doi.org/10.1175/BAMS-87-8-1081, 2006.
Kelly, K. A. and Gille, S. T.: Gulf stream surface transport and statistics at 69° W from the GEOSAT altimeter, J. Geophys. Res., 95, 3149–3161, 1990.
Koblinsky, C., Gaspar, P., and Lagerloef, G.: The Future of Spaceborne Altimetry – Oceans and Climate Change: A Long-Term Strategy, Joint Oceanographic Institutions, Inc., 85 pp., 1992.
Lapeyre, G. and Klein, P.: Dynamics of the Upper Oceanic Layers in Terms of Surface Quasigeostrophy Theory, J. Phys. Oceanogr., 36, 165–176, 2006.
Le Traon, P. Y.: Time scales of mesoscale variability and their relationship with spatial scales in the North Atlantic, J. Mar. Res., 49, 467–492, 1991.
Le Traon, P. Y. and Ogor, F.: ERS-1/2 orbit improvement using T/P: The 2 cm challenge, J. Geophys. Res., 103, 8045–8057, 1998.
Le Traon, P. Y. and Dibarboure, G.: Mesoscale mapping capabilities of multiple-satellite altimeter missions, J. Atmos. Ocean. Tech., 16, 1208–1223, 1999.
Le Traon, P.-Y. and Morrow, R.: Ocean currents and eddies, in: Satellite Altimetry and Earth Sciences: A Handbook for Techniques and Applications, Academic Press, edited by: Fu, L.-L. and Cazenave, A., San Diego, 171–210, 2001.
Le Traon, P.-Y. and Dibarboure, G.: Velocity mapping capabilities of present and future altimeter missions: The role of high frequency signals, J. Atmos. Ocean. Tech., 19, 2077–2088, 2002.
Le Traon, P. Y., Rouquet, M. C., and Boissier, C.: Spatial scales of mesoscale variability in the North Atlantic as deduced from GEOSAT data, J. Geophys. Res., 95, 20267–20285, 1990.
Le Traon, P. Y., Gaspar, P., Bouyssel, F., and Makhmaraa, H.: Using Topex/Poseidon data to enhance ERS-1 data, J. Atmos. Ocean. Tech., 12, 161–170, 1995a.
Le Traon, P. Y., Gaspar, P., Ogor, F., and Dorandeu, J.: Satellites work in tandem to improve accuracy of data, EOS, Trans. AGU, 76, 385, 389, 1995b.
Le Traon, P. Y., Nadal, F., and Ducet, N.: An improved mapping method of multisatellite altimeter data, J. Atmos. Ocean. Tech., 15, 522–533, 1998.
Le Traon, P. Y., Dibarboure, G., and Ducet, N.: Use of a High-Resolution model to analyze the mapping capabilities of multiple-altimeter missions, J. Atmos. Ocean. Tech., 18, 1277–1288, 2001a.
Le Traon, P. Y., Rienecker, M., Smith, N., Bahurel, P., Bell, M., Hurlburt, H., and Dandin, P.: Operational oceanography and prediction – a GODAE perspective, in: Observing the Oceans in the 21st Century, edited by: Koblinsky, C. J. and Smith, N. R., http://archimer.ifremer.fr/doc/00090/20096/, 2001b.
Le Traon, P. Y., Klein, P., Hua, B. L., and Dibarboure, G.: Do altimeter data agree with interior or surface quasi-geostrophic theory?, J. Phys. Oceanogr., 38, 1137–1142, 2008.
Maximenko, N. A. and Niiler, P. P.: Mean surface circulation of the global ocean inferred from satellite altimeter and drifter data. In 15 years of Progress in Radar Altimetry, ESA Publication SP-614, 2006.
Maximenko, N. A., Bang, B., and Sasaki, H.: Observational evidence of alternating zonal jets in the World Ocean, Geophys. Res. Lett., 32, L12607, https://doi.org/10.1029/2005GL022728, 2005.
Maximenko, N. A., Melnichenko, O. V., Niiler, P. P., and Sasaki, H.: Stationary mesoscale jet-like features in the ocean, Geophys. Res. Lett., 35, L08603, https://doi.org/10.1029/2008GL033267, 2008.
Mitchum, G. T.: Monitoring the stability of satellite altimeters with tide gauges, J. Atmos. Ocean. Tech., 15, 721–730, 1998.
Morrow, R. and Le Traon, P. Y.: Recent advances in observing mesoscale ocean dynamics with satellite altimetry, Adv. Space Res., 50, 1062–1076, 2012.
Morrow, R. A., Church, J. A., Coleman, R., Chelton, D. B., and White, N.: Eddy momentum flux and its contribution to the Southern Ocean momentum balance, Nature, 357, 482–484, 1992.
Morrow, R. F., Birol, D., Griffin, and Sudre, J.: Divergent pathways of anticyclonic and cyclonic eddies, Geophys. Res. Lett., 31, L24311, https://doi.org/10.1029/2004GL020974, 2004.
Oke, P. R., Balmaseda, M. A., Benkiran, M., Cummings, J. A., Fujii, Y., Guinehut, S., Larnicol, G., Le Traon, P. Y., Martin, M. J., and Dombrowsky, E.: Observing System Evaluations using GODAE systems, Oceanography, 22, 144–153, 2009.
Pascual, A., Faugere, Y., Larnicol, G., and Le Traon, P. Y.: Improved description of the ocean mesoscale variability by combining four satellite altimeters, Geophys. Res. Lett., 33, L02611, https://doi.org/10.1029/2005GL024633, 2006.
Pascual, A., Pujol, M. I., Larnicol, G., Le Traon, P. Y., and Rio, M. H.: Mesoscale Mapping Capabilities of Multi-satellite Altimeter Missions: First Results with Real Data in the Mediterranean Sea, J. Marine Syst., 65, 190–211, 2007.
Pascual, A., Boone, C., Larnicol, G., and Le Traon, P. Y.: On the quality of real-time altimeter gridded fields: comparison with in situ data, J. Atmos. Ocean. Tech., 26, 556–569, 2009.
Penduff, T., Juza, M., Brodeau, L., Smith, G. C., Barnier, B., Molines, J.-M., Treguier, A.-M., and Madec, G.: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales, Ocean Sci., 6, 269–284, https://doi.org/10.5194/os-6-269-2010, 2010.
Picaut, J. and Busalacchi, A. J.: Tropical Ocean Variability. Satellite Altimetry and Earth Sciences. A Handbook of Techniques and Applications, in: Academic Press, edited by: Fu, L.-L. and Cazenave, A., 217–236, 2001.
Qiu, B. and Chen, S.: Seasonal modulations in the eddy field of the South Pacific Ocean, J. Phys. Oceanogr., 34, 1515–1527, 2004.
Qiu, B. and Chen, S.: Eddy-mean flow interaction in the decadally-modulating Kuroshio Extension system, Deep-Sea Res. II, 57, 1098–1110, 2010.
Qiu, B., Kelly, K. A., and Joyce, T. M.: Mean flow and variability in the Kuroshio Extension from GEOSAT altimetry data, J. Geophys. Res., 96, 18491–18507, 1991.
Richman, J. G., Arbic, B. K., Shriver, J. F., Metzger, E. J., and Wallcraft, A. J.: Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides, J. Geophys. Res., 117, C12012, https://doi.org/10.1029/2012JC008364, 2012.
Rio, M. H., Guinehut, S., and Larnicol, G.: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements, J. Geophys. Res., 116, C07018, https://doi.org/10.1029/2010JC006505, 2011.
Roemmich, D., Boebel, O., Desaubies, Y., Freeland, H., King, B., Le Traon, P. Y., Molinari, R., Owens, W. B., Riser, S., Send, U., Takeuchi, K., and Wijffels, W.: Argo, the global array of profiling floats. OceanObs99: International Conference on the Ocean Observing System for Climate, 18–22 October 1999, Saint-Raphael, France, 1999.
Roemmich, D., Gilson, J., Davis, R., Sutton, P., Wijffels, S., and Riser, S.: Decadal spinup of the South Pacific subtropical gyre, J. Phys. Oceanogr., 37, 162–173, 2007.
Roemmich D., Belbeoch, M., Belchi, P. J. V., Freeland, H., Gould, W. J., Grant, F., Ignaszewski, M., King, B., Klein, B., Mork, K. A., Owens, W. B., Pouliquen, S., Ravichandran, M., Riser, S., Sterl, A., Suga, T., Suk, M.-S., Sutton, P., Thierry, V., Le Traon, P.-Y., Wijffels, S., and Xu, J.: Argo: the challenge of continuing 10 years of progress, Oceanography, 22, 46–55, 2009.
Smith, N. and Lefebvre, M.: The Global Ocean Data Assimilation Experiment (GODAE), in: "Monitoring the oceans in the 2000s: an integrated approach", International Symposium, Biarritz, 15–17 October 1997.
Stammer, D. and Böning, C. W.: Mesoscale variability in the Atlantic ocean from GEOSAT altimetry and Woce high resolution numerical modelling, J. Phys. Oceanogr., 22, 732–752, 1992.
Stammer, D., Tokmakian, R., Semtner, A., and Wunsch, C.: How well does a \textonequarter ° global ocean circulation model simulate large scale oceanic observations, J. Geophys. Res., 101, 25779–25811, 1996.
Tai, C. K.: The Resolving Power of a Single Exact-Repeat Altimetric Satellite or a Coordinated Constellation of Satellites, J. Atmos. Ocean. Tech., 21, 810–818, 2004.
Tai, C. K.: Aliasing of Sea Level Sampled by a Single Exact-Repeat Altimetric Satellite or a Coordinated Constellation of Satellites: Analytic Aliasing Formulas, J. Atmos. Ocean. Tech., 23, 252–267, 2006.
Tai, C.-T. and White, W. B.: Eddy variability in the Kuroshio extension as revealed by Geosat altimetry. Energy propagation away from the jet, Reynolds stress, and seasonal cycle, J. Phys. Oceanogr., 20, 1761–1777, 1990.
Thompson, K. R. and Demirov, E.: Skewness of sea level variability of the world's oceans, J. Geophys. Res., 111, C05005, https://doi.org/10.1029/2004JC002839, 2006.
Trenberth, K. E.: The ocean is warming, isn't it?, Nature, 465, 304–304, 2010.
Vage, K., Pickart, R. S., Thierry, V., Reverdin, G., Lee, C. M., Petrie, B., Agnew, T. A., Wong, A., and Ribergaard, M. H.: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008, Nat. Geosci., 2, 67–72, 2009.
von Schuckmann, K. and Le Traon, P.-Y.: How well can we derive Global Ocean Indicators from Argo data?, Ocean Sci., 7, 783–791, https://doi.org/10.5194/os-7-783-2011, 2011.
von Schuckmann, K., Gaillard, F., and Le Traon, P. Y.: Global hydrographic variability patterns during 2003–2008, J. Geophys. Res., 114, C09007, https://doi.org/10.1029/2008JC005237, 2009.
Wilkin, J. L. and Morrow, R. A.: Eddy kinetic energy and momentum flux in the Southern Ocean: Comparison of a global eddy-resolving model with altimeter, drifter, and current-meter data, J. Geophys. Res., 99, 7903–7916, 1994.
Wunsch, C.: Sampling characteristics of satellite orbits, J. Atmos. Ocean. Tech., 6, 891–907, 1989.
Wunsch, C.: Global problems and global observations, in: Academic, Ocean Circulation and Climate. Observing and Modelling the Global Ocean, edited by: Siedler, G., Church, J. and Gould, J., 47–80, San Diego, 2001.
Xu, Y. and Fu, L. L.: The effects of altimeter instrument noise on the estimation of the wavenumber spectrum of sea surface height, J. Phys. Oceanogr., 42, 2229–2233, 2012.
Zlotnicki, V., Fu, L.-L., and Patzert, W.: Seasonal variability in a global sea level observed with GEOSAT altimetry, J. Geophys. Res., 94, 17959–17969 1989.