Articles | Volume 9, issue 5
https://doi.org/10.5194/os-9-885-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-9-885-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tidally induced lateral dispersion of the Storfjorden overflow plume
F. Wobus
School of Marine Science and Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
G. I. Shapiro
School of Marine Science and Engineering, University of Plymouth, Plymouth, PL4 8AA, UK
Shirshov Institute of Oceanology, 36 Nahimovski prospect, Moscow, 117997, Russia
J. M. Huthnance
National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool, L3 5DA, UK
M. A. M. Maqueda
National Oceanography Centre, Joseph Proudman Building, 6 Brownlow Street, Liverpool, L3 5DA, UK
Y. Aksenov
National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
Related authors
No articles found.
Viktoria Spaiser, Sirkku Juhola, Sara M. Constantino, Weisi Guo, Tabitha Watson, Jana Sillmann, Alessandro Craparo, Ashleigh Basel, John T. Bruun, Krishna Krishnamurthy, Jürgen Scheffran, Patricia Pinho, Uche T. Okpara, Jonathan F. Donges, Avit Bhowmik, Taha Yasseri, Ricardo Safra de Campos, Graeme S. Cumming, Hugues Chenet, Florian Krampe, Jesse F. Abrams, James G. Dyke, Stefanie Rynders, Yevgeny Aksenov, and Bryan M. Spears
Earth Syst. Dynam., 15, 1179–1206, https://doi.org/10.5194/esd-15-1179-2024, https://doi.org/10.5194/esd-15-1179-2024, 2024
Short summary
Short summary
In this paper, we identify potential negative social tipping points linked to Earth system destabilization and draw on related research to understand the drivers and likelihood of these negative social tipping dynamics, their potential effects on human societies and the Earth system, and the potential for cascading interactions and contribution to systemic risks.
Jozef Skakala, David Ford, Keith Haines, Amos Lawless, Matthew Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Mike Bell, Davi Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While
EGUsphere, https://doi.org/10.5194/egusphere-2024-1737, https://doi.org/10.5194/egusphere-2024-1737, 2024
Short summary
Short summary
In this paper we review marine data assimilation (MDA) in the UK, its stakeholders, needs, past and present developments in different areas of UK MDA, and offer a vision for their longer future. The specific areas covered are ocean physics and sea ice, marine biogeochemistry, coupled MDA, MDA informing observing network design and MDA theory. We also discuss future vision for MDA resources: observations, software, hardware and people skills.
Nico Wunderling, Anna S. von der Heydt, Yevgeny Aksenov, Stephen Barker, Robbin Bastiaansen, Victor Brovkin, Maura Brunetti, Victor Couplet, Thomas Kleinen, Caroline H. Lear, Johannes Lohmann, Rosa Maria Roman-Cuesta, Sacha Sinet, Didier Swingedouw, Ricarda Winkelmann, Pallavi Anand, Jonathan Barichivich, Sebastian Bathiany, Mara Baudena, John T. Bruun, Cristiano M. Chiessi, Helen K. Coxall, David Docquier, Jonathan F. Donges, Swinda K. J. Falkena, Ann Kristin Klose, David Obura, Juan Rocha, Stefanie Rynders, Norman Julius Steinert, and Matteo Willeit
Earth Syst. Dynam., 15, 41–74, https://doi.org/10.5194/esd-15-41-2024, https://doi.org/10.5194/esd-15-41-2024, 2024
Short summary
Short summary
This paper maps out the state-of-the-art literature on interactions between tipping elements relevant for current global warming pathways. We find indications that many of the interactions between tipping elements are destabilizing. This means that tipping cascades cannot be ruled out on centennial to millennial timescales at global warming levels between 1.5 and 2.0 °C or on shorter timescales if global warming surpasses 2.0 °C.
Sina Loriani, Yevgeny Aksenov, David Armstrong McKay, Govindasamy Bala, Andreas Born, Cristiano M. Chiessi, Henk Dijkstra, Jonathan F. Donges, Sybren Drijfhout, Matthew H. England, Alexey V. Fedorov, Laura Jackson, Kai Kornhuber, Gabriele Messori, Francesco Pausata, Stefanie Rynders, Jean-Baptiste Salée, Bablu Sinha, Steven Sherwood, Didier Swingedouw, and Thejna Tharammal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2589, https://doi.org/10.5194/egusphere-2023-2589, 2023
Short summary
Short summary
In this work, we draw on paleoreords, observations and modelling studies to review tipping points in the ocean overturning circulations, monsoon systems and global atmospheric circulations. We find indications for tipping in the ocean overturning circulations and the West African monsoon, with potentially severe impacts on the Earth system and humans. Tipping in the other considered systems is considered conceivable but currently not sufficiently supported by evidence.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Yanan Wang, Byongjun Hwang, Adam William Bateson, Yevgeny Aksenov, and Christopher Horvat
The Cryosphere, 17, 3575–3591, https://doi.org/10.5194/tc-17-3575-2023, https://doi.org/10.5194/tc-17-3575-2023, 2023
Short summary
Short summary
Sea ice is composed of small, discrete pieces of ice called floes, whose size distribution plays a critical role in the interactions between the sea ice, ocean and atmosphere. This study provides an assessment of sea ice models using new high-resolution floe size distribution observations, revealing considerable differences between them. These findings point not only to the limitations in models but also to the need for more high-resolution observations to validate and calibrate models.
Adam William Bateson, Daniel L. Feltham, David Schröder, Yanan Wang, Byongjun Hwang, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 16, 2565–2593, https://doi.org/10.5194/tc-16-2565-2022, https://doi.org/10.5194/tc-16-2565-2022, 2022
Short summary
Short summary
Numerical models are used to understand the mechanisms that drive the evolution of the Arctic sea ice cover. The sea ice cover is formed of pieces of ice called floes. Several recent studies have proposed variable floe size models to replace the standard model assumption of a fixed floe size. In this study we show the need to include floe fragmentation processes in these variable floe size models and demonstrate that model design can determine the impact of floe size on size ice evolution.
Georgy I. Shapiro and Jose M. Gonzalez-Ondina
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-77, https://doi.org/10.5194/os-2021-77, 2021
Preprint withdrawn
Short summary
Short summary
An effective method is developed for data assimilation in a high-resolution (child) ocean model in the case when the output from a coarse-resolution data-assimilating model (parent) is available. The basic idea is to assimilate data from the coarser model instead of actual observations. The method named Data Assimilation with Stochastic-Deterministic Downscaling (SDDA) does not allow the child model to drift away from reality as it is indirectly controlled by observations via the parent model.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Georgy I. Shapiro, Jose M. Gonzalez-Ondina, and Vladimir N. Belokopytov
Ocean Sci., 17, 891–907, https://doi.org/10.5194/os-17-891-2021, https://doi.org/10.5194/os-17-891-2021, 2021
Short summary
Short summary
This paper presents an efficient method for high-resolution ocean modelling based on a combination of the deterministic and stochastic approaches. The method utilises mathematical tools similar to those developed for data assimilation in ocean modelling. The main difference is that instead of assimilating a relatively small number of observations, the SDD method assimilates all the data produced by a parent model. The method is applied to create an operational Stochastic Model of the Red Sea.
Philip L. Woodworth, J. A. Mattias Green, Richard D. Ray, and John M. Huthnance
Ocean Sci., 17, 809–818, https://doi.org/10.5194/os-17-809-2021, https://doi.org/10.5194/os-17-809-2021, 2021
Short summary
Short summary
This special issue marks the 100th anniversary of the founding of the Liverpool Tidal Institute (LTI). The preface gives a history of the LTI founding and of its first two directors. It also gives an overview of LTI research on tides. Summaries are given of the 26 papers in the special issue. Their topics could be thought of as providing a continuation of the research first undertaken at the LTI. They provide an interesting snapshot of work on tides now being made by groups around the world.
Adam W. Bateson, Daniel L. Feltham, David Schröder, Lucia Hosekova, Jeff K. Ridley, and Yevgeny Aksenov
The Cryosphere, 14, 403–428, https://doi.org/10.5194/tc-14-403-2020, https://doi.org/10.5194/tc-14-403-2020, 2020
Short summary
Short summary
The Arctic sea ice cover has been observed to be decreasing, particularly in summer. We use numerical models to gain insight into processes controlling its seasonal and decadal evolution. Sea ice is made of pieces of ice called floes. Previous models have set these floes to be the same size, which is not supported by observations. In this study we show that accounting for variable floe size reveals the importance of sea ice regions close to the open ocean in driving seasonal retreat of sea ice.
David Storkey, Adam T. Blaker, Pierre Mathiot, Alex Megann, Yevgeny Aksenov, Edward W. Blockley, Daley Calvert, Tim Graham, Helene T. Hewitt, Patrick Hyder, Till Kuhlbrodt, Jamie G. L. Rae, and Bablu Sinha
Geosci. Model Dev., 11, 3187–3213, https://doi.org/10.5194/gmd-11-3187-2018, https://doi.org/10.5194/gmd-11-3187-2018, 2018
Short summary
Short summary
We document the latest version of the shared UK global configuration of the
NEMO ocean model. This configuration will be used as part of the climate
models for the UK contribution to the IPCC 6th Assessment Report.
30-year integrations forced with atmospheric forcing show that the new
configurations have an improved simulation in the Southern Ocean with the
near-surface temperatures and salinities and the sea ice all matching the
observations more closely.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
R. Marsh, V. O. Ivchenko, N. Skliris, S. Alderson, G. R. Bigg, G. Madec, A. T. Blaker, Y. Aksenov, B. Sinha, A. C. Coward, J. Le Sommer, N. Merino, and V. B. Zalesny
Geosci. Model Dev., 8, 1547–1562, https://doi.org/10.5194/gmd-8-1547-2015, https://doi.org/10.5194/gmd-8-1547-2015, 2015
Short summary
Short summary
Calved icebergs account for around 50% of total freshwater input to the ocean from the Greenland and Antarctic ice sheets. As they melt, icebergs interact with the ocean. We have developed and tested interactive icebergs in a state-of-the-art global ocean model, showing how sea ice, temperatures, and currents are disturbed by iceberg melting. With this new model capability, we are better prepared to predict how future increases in iceberg numbers might influence the oceans and climate.
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
A. Megann, D. Storkey, Y. Aksenov, S. Alderson, D. Calvert, T. Graham, P. Hyder, J. Siddorn, and B. Sinha
Geosci. Model Dev., 7, 1069–1092, https://doi.org/10.5194/gmd-7-1069-2014, https://doi.org/10.5194/gmd-7-1069-2014, 2014
G. Shapiro, M. Luneva, J. Pickering, and D. Storkey
Ocean Sci., 9, 377–390, https://doi.org/10.5194/os-9-377-2013, https://doi.org/10.5194/os-9-377-2013, 2013
Cited articles
Akimova, A., Schauer, U., Danilov, S., and Núñez-Riboni, I.: The role of the deep mixing in the Storfjorden shelf water plume, Deep-Sea Res. Pt. I, 58, 403–414, https://doi.org/10.1016/j.dsr.2011.02.001, 2011.
Anderson, L., Jones, E., Lindegren, R., Rudels, B., and Sehlstedt, P.: Nutrient regeneration in cold, high salinity bottom water of the Arctic shelves, Contin. Shelf Res., 8, 1345–1355, 1988.
Becker, E. and Burkhardt, U.: Nonlinear horizontal diffusion for GCMs, Month. Weather Rev., 135, 1439–1454, https://doi.org/10.1175/MWR3348.1, 2007.
Blaker, A. T., Hirschi, J. J.-M., Sinha, B., de Cuevas, B., Alderson, S., Coward, A., and Madec, G.: Large near-inertial oscillations of the Atlantic meridional overturning circulation, Ocean Modell., 42, 50–56, https://doi.org/10.1016/j.ocemod.2011.11.008, 2012.
Brodeau, L., Barnier, B., Treguier, A.-M., Penduff, T., and Gulev, S.: An ERA40-based atmospheric forcing for global ocean circulation models, Ocean Modell., 31, 88–104, https://doi.org/10.1016/j.ocemod.2009.10.005, 2010.
Cavalieri, D. J. and Martin, S.: The contribution of Alaskan, Siberian and Canadian coastal polynyas to the halocline layer of the Arctic Ocean, J. Geophys. Res., 99, 18343–18362, https://doi.org/10.1029/94JC01169, 1994.
Egbert, G. and Erofeeva, S.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Technol., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Enriquez, C. E., Shapiro, G. I., Souza, A. J., and Zatsepin, A. G.: Hydrodynamic modelling of mesoscale eddies in the Black Sea, Ocean Dyn., 55, 476–489, https://doi.org/10.1007/s10236-005-0031-4, 2005.
Fer, I. and Ådlandsvik, B.: Descent and mixing of the overflow plume from Storfjord in Svalbard: an idealized numerical model study, Ocean Science, 4, 115–132, https://doi.org/10.5194/os-4-115-2008, 2008.
Fer, I., Skogseth, R., Haugan, P. M., and Jaccard, P.: Observations of the Storfjorden overflow, Deep-Sea Res. Pt. I, 50, 1283–1303, https://doi.org/10.1016/S0967-0637(03)00124-9, 2003.
Fer, I., Skogseth, R., and Haugan, P. M.: Mixing of the Storfjorden overflow (Svalbard Archipelago) inferred from density overturns, J. Geophys. Res., 109, C01005, https://doi.org/10.1029/2003JC001968, 2004.
Flather, R. A.: A tidal model of the northwest European continental shelf, Memoires de la Societe Royale de Sciences de Liege, 6, 141–164, 1976.
Geyer, W. R. and Signell, R. P.: A reassessment of the role of tidal dispersion in estuaries and bays, Estuar. Coast., 15, 97–108, 1992.
Gordon, A. L., Zambianchi, E., Orsi, A., Visbeck, M., Giulivi, C. F., Whitworth, Thomas, I., and Spezie, G.: Energetic plumes over the western Ross Sea continental slope, Geophys. Res. Lett., 31, L21302, https://doi.org/10.1029/2004GL020785, 2004.
Guan, X., Ou, H.-W., and Chen, D.: Tidal effect on the dense water discharge, Part 2: A numerical study, Deep-Sea Res. Pt. II, 56, 884–894, https://doi.org/10.1016/j.dsr2.2008.10.028, 2009.
Haarpaintner, J.: The Storfjorden Polynya: ERS-2 SAR observations and overview, Polar Res., 18, 175–182, 1999.
Haarpaintner, J., Gascard, J.-C., and Haugan, P. M.: Ice production and brine formation in Storfjorden, Svalbard, J. Geophys. Res., 106, 14001–14013, https://doi.org/10.1029/1999JC000133, 2001.
Holloway, G. and Proshutinsky, A.: Role of tides in Arctic ocean/ice climate, J. Geophys. Res., 112, C04S06, https://doi.org/10.1029/2006JC003643, 2007.
Holt, J. T. and Proctor, R.: Dispersion in Shallow Seas, in: Encyclopedia of Ocean Sciences, edited by Steele, J. H., Thorpe, S. A., and Turekian, K. K., 742–747, Elsevier, https://doi.org/10.1006/rwos.2001.0348, 2001.
Ilıcak, M., Özgökmen, T. M., Peters, H., Baumert, H. Z., and Iskandarani, M.: Performance of two-equation turbulence closures in three-dimensional simulations of the Red Sea overflow, Ocean Modell., 24, 122–139, https://doi.org/10.1016/j.ocemod.2008.06.001, 2008.
Ivanov, V.: How summer ice depletion in the Arctic Ocean may affect the global THC?, Geophys. Res. Abstracts, 13, EGU2011–4457, \urlprefixhttp://meetingorganizer.copernicus.org/EGU2011/EGU2011-4457.p% df, 2011.
Ivanov, V. V., Shapiro, G. I., Huthnance, J. M., Aleynik, D. L., and Golovin, P. N.: Cascades of dense water around the world ocean, Prog. Oceanogr., 60, 47–98, https://doi.org/10.1016/j.pocean.2003.12.002, 2004.
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Jungclaus, J. H., Backhaus, J. O., and Fohrmann, H.: Outflow of dense water from the Storfjord in Svalbard: A numerical model study, J. Geophys. Res., 100, 24719–24728, https://doi.org/10.1029/95JC02357, 1995.
Lane-Serff, G. F.: Overflows and Cascades, in: Encyclopedia of Ocean Sciences, edited by John, H. S., Karl, K. T., and Steve, A. T., 265–271, Academic Press, Oxford, 2009.
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and sea-ice models : the data sets and flux climatologies. NCAR Technical Note, NCAR/TN-460+STR, Tech. rep., CGD Division of the National Center for Atmospheric Research, 2004.
Legg, S., Chang, Y., Chassignet, E. P., Danabasoglu, G., Ezer, T., Gordon, A. L., Griffies, S., Hallberg, R., Jackson, L., Large, W., Özgökmen, T., Peters, H., Price, J., Riemenschneider, U., Wu, W., Xu, X., and Yang, J.: Improving oceanic overflow representation in climate models: the Gravity Current Entrainment Climate Process Team, Bull. Amer. Meteorol. Soc., 90, 657–670, 2009.
Luneva, M. and Holt, J.: Physical shelf processes operating in the NOCL Arctic Ocean model, Arctic Ocean Model Intercomparison Project, Workshop 14, 19-22 October 2010, Woods Hole Oceanographic Institution, http://www.whoi.edu/fileserver.do?id=77125&pt=2&p=83808, 2010.
Madec, G.: NEMO ocean engine. Note du Pôle de modélisation, Tech. Rep. No. 27, Institut Pierre-Simon Laplace (IPSL), France, http://www.nemoocean.eu/About-NEMO/Reference-manuals, iSSN: 1288-1619, 2008.
Martinho, A. S. and Batteen, M. L.: On reducing the slope parameter in terrain-following numerical ocean models, Ocean Modell., 13, 166–175, https://doi.org/10.1016/j.ocemod.2006.01.003, 2006.
O'Dea, E. J., Arnold, A. K., Edwards, K. P., Furner, R., Hyder, P., Martin, M. J., Siddorn, J. R., Storkey, D., While, J., Holt, J. T., and Liu, H.: An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf, J. Operat. Oceanogr., 5, 3–17, http://www.ingentaconnect.com/content/imarest/joo/2012/00000005/00000001/art00002, 2012.
Ou, H.-W., Guan, X., and Chen, D.: Tidal effect on the dense water discharge, Part 1: Analytical model, Deep-Sea Res. Pt. II, 56, 874–883, https://doi.org/10.1016/j.dsr2.2008.10.031, 2009.
Padman, L., Howard, S. L., Orsi, A. H., and Muench, R. D.: Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water, Deep-Sea Res. Pt. II:, 56, 818–834, 2009.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Computers Geosciences, 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Piechura, J.: Dense bottom waters in Storfjord and Storfjordrenna, Oceanologia, 38, 285–292, 1996.
Postlethwaite, C. F., Morales Maqueda, M. A., le Fouest, V., Tattersall, G. R., Holt, J., and Willmott, A. J.: The effect of tides on dense water formation in Arctic shelf seas, Ocean Science, 7, 203–217, https://doi.org/10.5194/os-7-203-2011, 2011.
Quadfasel, D., Rudels, B., and Kurz, K.: Outflow of dense water from a Svalbard fjord into the Fram Strait, Deep-Sea Res. Pt. A, 35, 1143–1150, https://doi.org/10.1016/0198-0149(88)90006-4, 1988.
Rudels, B., Björk, G., Nilsson, J., Lake, I., and Nohr, C.: The interactions between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden Expedition, J. Mar. Syst., 55, 1–30, https://doi.org/10.1016/j.jmarsys.2004.06.008, 2005.
Schauer, U.: The release of brine-enriched shelf water from Storfjord into the Norwegian Sea, J. Geophys. Res., 100, 16015–16028, https://doi.org/10.1029/95JC01184, 1995.
Schauer, U. and Fahrbach, E.: A dense bottom water plume in the western Barents Sea: downstream modification and interannual variability, Deep-Sea Res. Pt. I, 46, 2095–2108, https://doi.org/10.1016/S0967-0637(99)00046-1, 1999.
Schauer, U., Rudels, B., Fer, I., Haugan, P. M., Skogseth, R., Björk, G., and Winsor, P.: Return of deep shelf/slope convection in the Western Barents Sea?, in: Seventh Conference on Polar Meteorology and Oceanography and Joint Symposium on High-Latitude Climate Variations, Amer. Meteorol. Soc., Hyannis, MA, 2003.
Shapiro, G. I. and Hill, A. E.: Dynamics of dense water cascades at the shelf edge, J. Phys. Oceanogr., 27, 2381–2394, https://doi.org/10.1175/1520-0485(1997)027<2381:DODWCA>2.0.CO;2, 1997.
Shapiro, G., Luneva, M., Pickering, J., and Storkey, D.: The effect of various vertical discretization schemes and horizontal diffusion parameterisation on the performance of a 3-D ocean model: the Black Sea case study, Ocean Science Discuss., 9, 3643–3671, https://doi.org/10.5194/osd-9-3643-2012, 2012.
Skogseth, R., Haugan, P. M., and Haarpaintner, J.: Ice and brine production in Storfjorden from four winters of satellite and in situ observations and modeling, J. Geophys. Res., 109, C10008, https://doi.org/10.1029/2004JC002384, 2004.
Skogseth, R., Fer, I., and Haugan, P. M.: Dense-water production and overflow from an Arctic coastal polynya in Storfjorden, in: The Nordic Seas: An Integrated Perspective. AGU Geophysical Monograph Series 158, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., 73–88, Am. Geophys. Union, http://www.agu.org/cgi-bin/agubooks?topic=GM&book=OSGM1584238&search=, 2005a.
Skogseth, R., Haugan, P. M., and Jakobsson, M.: Watermass transformations in Storfjorden, Cont. Shelf Res., 25, 667–695, https://doi.org/10.1016/j.csr.2004.10.005, 2005b.
Skogseth, R., Sandvik, A., and Asplin, L.: Wind and tidal forcing on the meso-scale circulation in Storfjorden, Svalbard, Cont. Shelf Res., 27, 208–227, https://doi.org/10.1016/j.csr.2006.10.001, 2007.
Skogseth, R., Smedsrud, L. H., Nilsen, F., and Fer, I.: Observations of hydrography and downflow of brine-enriched shelf water in the Storfjorden polynya, Svalbard, J. Geophys. Res., 113, C08049, https://doi.org/10.1029/2007JC004452, 2008.
Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment, Month. Weather Rev., 91, 99–164, 1963.
Taylor, G. I.: Dispersion of Soluble Matter in Solvent Flowing Slowly through a Tube, Proceedings of the Royal Society of London, Series A, Mathemat. Phys. Sci., 219, 186–203, https://doi.org/10.1098/rspa.1953.0139, 1953.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical turbulence models, J. Mar. Res., 61, 235–265, https://doi.org/10.1357/002224003322005087, 2003.
Wåhlin, A. K. and Walin, G.: Downward migration of dense bottom currents, Environ. Fluid Mechan., 1, 257–279, https://doi.org/10.1023/A:1011520432200, 2001.
Warner, J. C., Sherwood, C. R., Arango, H. G., and Signell, R. P.: Performance of four turbulence closure models implemented using a generic length scale method, Ocean Modell., 8, 81–113, https://doi.org/10.1016/j.ocemod.2003.12.003, 2005.
Wobus, F., Shapiro, G. I., Maqueda, M. A. M., and Huthnance, J. M.: Numerical simulations of dense water cascading on a steep slope, J. Mar. Res., 69, 391–415, 2011.
Wobus, F., Shapiro, G. I., Huthnance, J. M., and Maqueda, M. A. M.: The piercing of the Atlantic Layer by an Arctic shelf water cascade in an idealised study inspired by the Storfjorden overflow in Svalbard, Ocean Modell., 71, 54–65, 2013.