Articles | Volume 9, issue 6
https://doi.org/10.5194/os-9-1003-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-9-1003-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Microstructure measurements and estimates of entrainment in the Denmark Strait overflow plume
V. Paka
Shirshov Institute of Oceanology, Atlantic Branch, Prospect Mira 1, 236000 Kaliningrad, Russia
V. Zhurbas
Shirshov Institute of Oceanology, Nakhimovsky Prospect 36, 117997 Moscow, Russia
Marine Systems Institute, Tallinn University of Technology, Akadeemia Road 15a, 12618 Tallinn, Estonia
B. Rudels
Finnish Meteorological Institute, P.O. BOX 503, 00101 Helsinki, Finland
D. Quadfasel
Institute of Oceanography, University of Hamburg, Bundesstraße 53, 20146 Hamburg, Germany
Shirshov Institute of Oceanology, Atlantic Branch, Prospect Mira 1, 236000 Kaliningrad, Russia
D. Delisi
NorthWest Research Associates, 4118 148th Ave NE, Redmond, WA 98052, USA
Related authors
No articles found.
Victor Zhurbas, Germo Väli, and Natalia Kuzmina
Ocean Sci., 15, 1691–1705, https://doi.org/10.5194/os-15-1691-2019, https://doi.org/10.5194/os-15-1691-2019, 2019
Short summary
Short summary
Spiral streaks or spirals are a common feature on satellite images of the sea surface. Spirals are overwhelmingly cyclonic: they wind anticlockwise in the Northern Hemisphere. Based on a regional circulation model with very high resolution we concluded that submesoscale cyclonic eddies differ from anticyclonic eddies in three ways favoring the formation of spirals: they can be characterized by (a) higher angular velocity, (b) more pronounced differential rotation and (c) negative helicity.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
M. Korhonen, B. Rudels, M. Marnela, A. Wisotzki, and J. Zhao
Ocean Sci., 9, 1015–1055, https://doi.org/10.5194/os-9-1015-2013, https://doi.org/10.5194/os-9-1015-2013, 2013
M. Marnela, B. Rudels, M.-N. Houssais, A. Beszczynska-Möller, and P. B. Eriksson
Ocean Sci., 9, 499–519, https://doi.org/10.5194/os-9-499-2013, https://doi.org/10.5194/os-9-499-2013, 2013
B. Rudels, U. Schauer, G. Björk, M. Korhonen, S. Pisarev, B. Rabe, and A. Wisotzki
Ocean Sci., 9, 147–169, https://doi.org/10.5194/os-9-147-2013, https://doi.org/10.5194/os-9-147-2013, 2013
Cited articles
Arneborg, L., Fiekas, V., Umlauf, L., and Burchard, H.: Gravity Current Dynamics and Entrainment - A Process Study Based on Observations in the Arkona Basin, J. Phys. Oceanogr., 37, 2094–2113, 2007.
Baringer, M. O. and Price, J. F.: Mixing and spreading of the Mediterranean Outflow. J. Phys. Oceanogr., 27, 1654–1677, 1997.
Bruce, J. G.: Eddies southwest of the Denmark Strait, Deep-Sea Res. Pt. I, 42, 13–29, 1995.
Cenedese, C. and Adduce, C.: Mixing in a density-driven current flowing down a slope in a rotating fluid, J. Fluid Mech., 604, 369–388, 2008.
Cenedese, C., Whitehead, J. A., Ascarelli, T. A., and Ohiwa, M.: A dense current flowing down a sloping bottom in a rotating fluid, J. Phys. Oceanogr., 34, 188–203, 2004.
Crawford, W. R.: A comparison of length scales and decay times of turbulence in stratified flows, J. Phys. Oceanogr., 16, 1847–1854, 1986.
Dallimore, C. J., Imberger, J., and Ishikawa, T.: Entrainment and turbulence in saline underflow in Lake Ogawara. J. Hydraul. Eng., 127, 937–948, 2001.
Dewey, R. K. and Crawford, W. R.: Bottom stress estimates from vertical dissipation rate profiles on the continental shelf, J. Phys. Oceanogr., 18, 1167–1177, 1988.
Dickson, R. R. and Brown, J.: The production of North Atlantic Deep Water: Sources, rates, and pathways, J. Geophys. Res., 99, 12319–12341, 1994.
Dillon, T. M.: Vertical overturns: A comparison of Thorpe and Ozmidov length scales, J. Geophys. Res., 87, 9601–9613, 1982.
Dillon, T. M. and Park, M. M.: The available potential energy of overturns as an indicator of mixing in the seasonal thermocline, J. Geophys. Res., 92, 5345–5353, 1987.
Ellison, T. H. and Turner, J. S.: Turbulent entrainment in stratified flows, J. Fluid Mech., 6, 423–448, 1959.
Fer, I., Voet, G., Seim, K. S., Rudels, B., and Latarius, K.: Intense mixing of the Faroe Bank Channel overflow, Geophys. Res. Lett., 37, L02604, https://doi.org/10.1029/2009GL041924, 2010.
Girton, J. B. and Sanford, T. B.: Descent and modification of the overflow plume in Denmark Strait, J. Phys. Oceanogr., 33, 1351–1364, 2003.
Høyer, J. L. and Quadfasel, D.: Detection of deep overflows with satellite altimetry, Geophys. Res. Lett., 28, 1611–1614, 2001.
Johnson, G. C., Lueck, R. G., and Sanford, T. B.: Stress on the Mediterranean outflow plume: Part II. Turbulent dissipation and shear measurements, J. Phys. Oceanogr., 24, 2084–2092, 1994a.
Johnson, G. C., Sanford, T. B., and Baringer, M. O.: Stress on the Mediterranean Outflow plume: Part I. Velocity and water property measurements, J. Phys. Oceanogr., 24, 2072–2083, 1994b.
Krauss, W.: A note on overflow eddies, Deep-Sea Res. Pt. I, 43, 1661–1667, 1996.
Lueck, R. G., Wolk, F., and Yamazaki, H.: Oceanic velocity microstructure measurements in the 20th century, J. Oceanogr., 58, 153–174, 2002.
Lynch, J. and Lueck, R.: Expendable dissipation profiler (XDP) data from the Mediterranean out-flow experiment: R/V Oceanus cruise 202 leg V. JHU-CBI TR89-01, The Johns Hopkins University, Chesapeake Bay Institute, Baltimore, MD, 284 pp., 1989.
MacCready, P. and Rhines, P. B.: Slippery bottom boundary layers on a slope, J. Phys. Oceanogr., 23, 5–22, 1993.
Mauritzen, C., Price, J. F., Sanford, T. B., and Torres, D.: Circulation and mixing in the Faroese Channels, Deep-Sea Res. I, 52, 883–913, 2005.
Nash, J. D., Peters, H., Kelly, S. M., Pelegrí, J. L., Emelianov, M., and Gasser, M.: Turbulence and high-frequency variability in a deep gravity current outflow, J. Geophys. Let., 39, L18611, https://doi.org/10.1029/2012GL052899, 2012.
Osborn, T.: Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10, 83–89, 1980.
Ozmidov, R. V.: On the turbulent exchange in a stably stratified ocean, Izv. Atmos. Ocean Phys., 1, 493–497, 1965.
Paka, V., Nabatov, V., Lozovatsky, I., and Dillon, T.: Oceanic microstructure measurements by "Baklan" and "Grif", J. Atmos. and Ocean Tech., 16, 519–1532, 1999.
Paka, V. T., Rudels, B., Quadfasel, D., and Zhurbas, V. M.: Measurements of Turbulence in the Zone of Strong Bottom Currents in the Strait of Denmark, Doklady Earth Sciences, 432, 613–617, 2010.
Peters, H., and Bokhorst R.: Microstructure observations of turbulent mixing in a partially mixed estuary. Part II: Salt flux and stress, J. Phys. Oceanogr., 31, 1105–1119, 2001.
Peters, H. and Johns, W. E.: Mixing and entrainment in the Red Sea Outflow plume. Part II: Turbulence characteristics, J. Phys. Oceanogr., 35, 584–600, 2005.
Peters, H. and Johns, W. E.: Bottom layer turbulence in the Red Sea Outflow plume, J. Phys. Oceanogr., 36, 1763–1785, 2006.
Peters, H., Gregg, M. C., and Sanford, T. B.: Detail and scaling of turbulent overturns in the Pacific Equatorial Undercurrent, J. Geophys. Res., 100, 18349–18368, 1995.
Phillips, O. M.: The Dynamics of the Upper Ocean, 2nd ed., Cambridge University Press, 336 pp., 1977.
Prandke, H., Holtsch, K., and Stips, A.: MITEC technology development: The microstructure/turbulence measuring system MSP. Tech. Rep., MITEC Hardware Report, EUR 19733EN, Space Application Institute, Joint Research Centre, European Commission, 64 pp., 2000.
Princevac, M., Fernando, H. J. S., and Whiteman, D. C.: Turbulent entrainment into natural gravity-driven flows, J. Fluid Mech., 33, 259–268, 2005.
Rudels, B., Eriksson, P., Grönvall, H., Hietala, R., and Launiainen, J.: Hydrographic observations in Denmark Strait in fall 1997, and their implications for the entrainment into the Overflow Plume, Geophys. Res. Letters, 26, 1325–1328, 1999.
Shih, L. H., Koseff, J. R., Ivey, G. N., and Ferziger, J. H.: Parameterization of turbulent fluxes and scales using homogeneous sheared stably stratified turbulence simulations, J. Fluid Mech., 525, 193–214, 2005.
Thorpe, S. A.: Turbulence and mixing in a Scottish loch, Philos. Trans. Roy. Soc. London, A286, 125–181, 1977.
Umlauf, L. and Arneborg, L.: Dynamics of rotating shallow gravity currents passing through a channel. Part I: Observation of transverse structure, J. Phys. Oceanogr., 39, 2385–2401, 2009.
Voet, G. and Quadfasel, D.: Entrainment in the Denmark Strait Overflow plume by meso-scale eddies, Ocean Sci., 6, 301–310, 2010.
Wells, M. G.: Influence of Coriolis forces on turbidity currents and sediment deposition. Particle-Laden Flow: From Geophysical to Kolmogorov Scales, B. J. Geurts, H. Clercx, and W. Uijttewaal, Eds., ERCOFTAC Series, Vol. 11, Springer, 331–343, 2007.
Wells, M., Cenedese, C., and Caulfield, C. P.: The Relationship between Flux Coefficient and Entrainment Ratio in Density Currents, J. Phys. Oceanogr., 40, 2713–2727, 2010.
Zhurbas V., Elken, J., Paka, V., Piechura, J., Chubarenko, I., Väli, G., Golenko, N., and Shchuka, S.: On the possibility of convective overturning in the Slupsk Furrow overflow of the Baltic Sea, Oceanologia, 53, 771–791, 2011.