Brankart, J.-M., Cosme, E., Testut, C.-E., Brasseur, P., and Verron, J.: Efficient local error parameterizations for square root or ensemble Kalman filters: application to a basin-scale ocean turbulent flow, Mon. Weather Rev., 139, 474–493, 2011
Brasseur, P. and Verron, J.: The SEEK filter method for data assimilation in oceanography: a synthesis, Ocean Dynam., 56, 650–661, https://doi.org/10.1007/s10236-006-0080-3, 2006.
Brasseur, P., Bahurel, P., Bertino, L., Birol F., Brankart, J.-M., Ferry, N., Losa, S., Remy, E., Schröter, J., Skachko, S., Testut, C.-E., Tranchant, B., Van Leeuwen, P. J., and Verron, J.: Data Assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments, Q. J. Roy. Meteor. Soc., 131, 3561–3582, 2005.
Brodeau, L., Barnier, B., Penduff, T., Treguier, A.-M., and Gulev, S.: An ERA-40 based atmospheric forcing for global ocean circulation models, Ocean Model., 31, 88–104, 2010.
Castruccio, F., Verron, J., Gourdeau, L., Brankart, J.-M., and Brasseur, P.: On the role of the GRACE mission in the joint assimilation of altimetry and TAO data in a tropical Pacific ocean model, Geophys. Res. Lett., 33, L14616, https://doi.org/10.1029/2006GL025823, 2006.
Cosme, E., Brankart, J.-M., Verron, J., Brasseur, P., and Krysta, M.: Implementation of a reduced rank square-root smoother for high resolution ocean data assimilation, Ocean Model., 33, 87–100, 2010.
Cosme, E., Verron, J., Brasseur, P., Blum, J., and Auroux, D.: Smoothing problems in a Bayesian framework and their linear Gaussian solutions, Mon. Weather Rev., 140, 683–695, 2011.
Dussin, R., Treguier, A.-M., Molines, J., Barnier, B., Penduff, T., Brodeau, L., and Madec, G.: Definition of the interannual experiment orca025-b83, Tech. rep., 2009.
Evensen, G.: Sequential data assimilation with a non linear quasigeostrophic model using monte carlo methods to forecast error statistics, J. Geophys. Res., 99, 10143–10162, 1994.
Evensen, G.: The Ensemble Kalman Filter: theoretical formulation and practical implementation, Ocean Dynam., 53, 343–367, https://doi.org/10.1007/s10236-003-0036-9, 2003.
Evensen, G.: Data assimilation, The Ensemble Kalman Filter, Springer, 2007.
Ferry, N., Parent, L., Garric, G., Barnier, B., Jourdin, N. C., and Mercator Ocean team: Mercator Global Eddy Permitting Ocean Reanalysis GLORYS1V1: Description and Results, Mercator Ocean Quarterly Newsletter, 36, 15–27, 2010.
Garzoli, S. and Katz, E.: The forced annual reversal of the north atlantic equatorial countercurrent, J. Phys. Oceanogr., 13, 2082–2090, 1993.
Hunt, B. R., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. J., Sauer, T., Szunyogh, I., Yorke, J. A., and Zimin, A. V.: Four-dimensional ensemble Kalman filtering, Tellus A, 56, 273–277, 2004.
Kalman, R. E.: A new approach to linear filter and prediction problems, J. Basic. Eng., 82, 35–45, 1960.
Khare, S. P., Anderson, J. L., Hoar, T. J., and Nychka, D.: An investigation into the application of an ensemble Kalman smoother to high-dimensional geophysical systems, Tellus A, 60, 97–112, 2008.
Legeckis, R.: Long waves in the estern equatorial pacific ocean: a view from a geostationary satellite, Science, 197, 1179–1181, 1977.
Lermusiaux, P. F. J., Robinson, A. R., Haley, P. J. H., and Leslie, W. G.: Advanced interdisciplinary data assimilation: filtering and smoothing via error subspace statistical estimation, in: Proceedings of the OCEANS 2002 MTS/IEEE Conference, IEEE, Holland Publications, 795–802, 2002.
Li, H., Kalnay, E., and Miyoshi, T.: Simultaneous estimation of covariance inflation and observation errors within an Ensemble Kalman Filter, Q. J. Roy. Meteor. Soc., 135, 523–533, 2009.
Liu, Z. and Rabier, F.: The interaction between model resolution and observation resolution and density in data assimilation, Q. J. Roy. Meteor. Soc., 128, 1367–1386, 2002.
Madec, G.: Nemo reference manual, ocean dynamics component: nemo-opa. preliminary version, Tech. Rep., Institut Pierre-Simon Laplace (IPSL), France, 27, ISSN No. 1288–1619, 91 pp., available at: http://www.locean-ipsl.upmc.fr/NEMO/general/manual/index.html, 2008.
Martin, M. J., Hines, A., and Bell, M. J.: Data assimilation in the FOAM operational short-range ocean forecasting system: a description of the scheme and its impact, Q. J. R. Meteor. Soc., 133, 981–995, 2007.
Oke, P. R., Brassington, G. B., Griffin, D. A., and Schiller, A.: The Bluelink ocean data assimilation system (BODAS), Ocean Model., 21, 46–70, 2008.
Parrish, D. F. and Cohn, S. E.: A Kalman filter for a two-dimensional shallow-water model: formulation and preliminary experiments, Tech. Rep., Office Note 304, National Meteorological Center, Washington DC, 1985.
Simon, D.: Optimal State Estimation, Wiley & Sons, 530 pp., 2006.
Rabier, F.: Importance of data: A meteorological perspective, in: Ocean Weather Forecasting: An Integrated View of Oceanography, edited by: Chassignet, E. P. and Verron, J., Springer, 343–360, 2006.
Richardson, P. and Walsh, D.: Mapping climatological seasonal variations of surface currents in the tropical atlantic using ship drifts, J. Geophys. Res., 91, 10537–10550, 1986.
Rozier, D., Cosme, E., Birol, F., Brasseur, P., Brankart, J.-M., and Verron, J.: A reduced-order Kalman filter for data assimilation in physical oceanography, SIAM Rev., 49, 449–465, 2007.
Testut, C.-E., Brasseur, P., Brankart, J.-M., and Verron, J.: Assimilation of sea-surface temperature and altimetric observations during 1992–1993 into an eddy permitting primitive equation model of the North Atlantic Ocean, J. Mar. Syst., 40–41, 291–316, 2003.
Todling, R. and Cohn, S. E.: Suboptimal schemes for atmospheric data assimilation based on the Kalman filter, Mon. Weather Rev., 122, 2530–2557, 1994.
Ubelmann, C., Verron, J., Brankart, J.-M., Brasseur, P., and Cosme, E.: Impact of data from upcoming altimetric missions on the control of the three dimensional circulation in the tropical Atlantic ocean, J. Operat. Oceanogr., 2, 3–14, 2009.
Verron, J., Gourdeau, L., Pham, D. T., Murtugudde, R., and Busalacchi, A. J.: An extended Kalman filter to assimilate satellite altimeter data into a non-linear numerical model of the Tropical Pacific: method and validation, J. Geophys. Res., 104, 5441–5458, 1999.