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Abstract. Most of oceanographic operational centers use
three-dimensional data assimilation schemes to produce re-
analyses. We investigate here the benefits of a smoother, i.e. a
four-dimensional formulation of statistical assimilation. A
square-root sequential smoother is implemented with a trop-
ical Atlantic Ocean circulation model. A simple twin exper-
iment is performed to investigate its benefits, compared to
its corresponding filter. Despite model’s non-linearities and
the various approximations used for its implementation, the
smoother leads to a better estimation of the ocean state, both
on statistical (i.e. mean error level) and dynamical points of
view, as expected from linear theory. Smoothed states are
more in phase with the dynamics of the reference state, an as-
pect that is nicely illustrated with the chaotic dynamics of the
North Brazil Current rings. We also show that the smoother
efficiency is strongly related to the filter configuration. One
of the main obstacles to implement the smoother is then to
accurately estimate the error covariances of the filter. Con-
sidering this, benefits of the smoother are also investigated
with a configuration close to situations that can be managed
by operational center systems, where covariances matrices
are fixed (optimal interpolation). We define here a simpli-
fied smoother scheme, called half-fixed basis smoother, that
could be implemented with current reanalysis schemes. Its
main assumption is to neglect the propagation of the error
covariances matrix, what leads to strongly reduce the cost
of assimilation. Results illustrate the ability of this smoother
to provide a solution more consistent with the dynamics,
compared to the filter. The smoother is also able to produce
analyses independently of the observation frequency, so the
smoothed solution appears more continuous in time, espe-
cially in case of a low frenquency observation network.

1 Introduction

Data assimilation methods for geophysics have evolved con-
tinuously since their origins in the 70s. In the branch of es-
timation theory, the Kalman filter (Kalman, 1960) has been
widely used in oceanography. Its implementation with large
numerical models is made possible provided relevant adapta-
tions, such as reduced-order formulation (Parrish and Cohn,
1985; Todling and Cohn, 1994; Evensen, 1994; Fukumori
and Malanotte-Rizzoli, 1995andHoutekamer and Mitchell,
1998). The filter provides an optimal estimate of the sys-
tem state, given a model state (numerical), and past and
present observations available up to the analysis time. Thus,
it is well indicated to initialize a forecast, which is the his-
torical purpose of data assimilation in geophysics. Though,
oceanographic applications of data assimilation get increas-
ingly diversified. In particular, climate studies require accu-
rate reconstructions of the past ocean circulation,reanaly-
ses, as performed for instance in theMyOceanproject (http:
//www.myocean.eu.org/). Such reanalyses are expected to
gain accuracy when the observation datasets are used in a
four-dimensional way with data assimilation, i.e. when each
observation has an influence on past, present and future states
of the model solution. In the framework of the Kalman fil-
ter, the past influence of observations is introduced through
retrospective analyses and leads to a smoothing formulation
of the estimation problem. Optimal smoothers in estimation
theory may be considered as a four-dimensional extension of
the Kalman filter that takes into account future observations.

The relevance of using a smoother for high dimensional
oceanic or atmospheric problems is still an open question.
Even if linear theory says that smoothing decreases residual
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filter errors, the usual approximations (on non-linearity, rank
reduction, localisation, etc.) take these problems a long way
from theory. In the study of?, the smoother produced appar-
ently poor improvements over the filter, but the meteorolog-
ical forecasts started from smoother estimates were better.
On the contrary, with very different settings (ocean model,
forward-backward smoother),Lermusiaux et al.(2002) ob-
tained better estimates with the smoother (in terms of er-
rors), but poorer forecasts.Khare et al.(2008) tried to iden-
tify regimes where the smoother is particularly efficient with
an atmospheric model, but this is very case-dependent. The
work reported in this paper is part of an effort to determine
the relevance of smoothing for realistic oceanic problems.

Several smoother approaches exist (seeCosme et al., 2011,
for detailed descriptions). In this paper, we consider the
sequential fixed-lag smoother (Cohn et al., 1994; Evensen
and van Leeuwen, 2000), well designed for reanalysis pur-
poses. More precisely, we use the reduced-rank square-root
smoother developed byCosme et al.(2010), which is based
on the singular evolutive extended Kalman (SEEK) filter
(Pham et al., 1998; Brasseur and Verron, 2006). Actually, the
MyOceanreanalysis system is based on the SEEK filter too.
This reduced-rank smoother has been tested byCosme et al.
(2010) with a square-box configuration of a high resolution
ocean circulation model. In this work, we investigate the ap-
plication of the reduced-rank smoother with a more complex
and realistic tropical Atlantic Ocean circulation model in a
1 / 4◦ resolution configuration. We strive to identify obstacles
and solutions to implement the smoother in such a realistic
context. The gain of the smoother over the filter is assessed.
Finally, to comply with operational constraints, we design
here a new flavour of the sequential fixed-lag smoother al-
gorithm, referred to ashalf-fixed basis, to overcome imple-
mentation issues. Our main goal is to determine whether this
smoother can improve present reanalysis schemes.

In Sect. 2, we present the SEEK filter and the SEEK
smoother formulations as detailed inCosme et al.(2010).
Some advantages and drawbacks linked to implementation
are stressed. Section 3 summarizes the set-up of our twin ex-
periments. The smoother is then implemented according to
its theoretical formulation. In Sect. 4 we dwell upon a sensi-
tive step of the implementation of a smoother: the parametri-
sation and the dynamical propagation of error covariances.
In Sect. 5 we expose and examine the main results of a short
smoother reanalysis. The filter reanalysis is used as a refer-
ence to point out the improvements of a four-dimensional ex-
tension of the data assimilation. To deal with implementation
issues raised in Sect. 4, a half-fixed basis smoother algorithm
is developed and tested in Sect. 6. Section 7 concludes and
gives perspectives.

2 The reduced-rank square-root filter and smoother
algorithms

The Kalman filter and smoother formulations can be found
in Anderson and Moore(1979), Simon(2006) andEvensen
(2007). For the smoothers, see alsoCosme et al.(2011). Here
we only provide an overview of the sequential algorithms,
close to the EnKS, and an intuitive interpretation of the equa-
tions. We also delineate these algorithms in their square-root
transformation so they can be implemented in large geophys-
ical problems. Finally, we expose the modifications intro-
duced for the half-fixed basis smoother to be implemented.

2.1 Notations

Notations are similar to the ones used inCosme et al.(2010).
Superscripts refer to the type of states (“a” for analysed and
“f” for forecast). Subscripts are used to specify the transi-
tion between two times (for instancek − 1,k is used for the
transition matrix between timesk − 1 andk) or the time of
a state and information it contains (for instancek|k − 1 in-
dicates that the state is estimated at timetk, given all obser-
vations available up to timetk−1). Subscripts 0 represent the
initial conditions.

2.2 The Kalman filter

The sequential form of the filter is given by a succession of
two steps, forecast and analysis, summarized in Eqs. (1)–(7).
Initial conditions must first be prescribed:xa

0, an initial state,
andPa

0, an initial error covariance matrix.

Initializationxa
0 andPa

0
Forecast step

xf
k|k−1 = M k−1,kx

a
k−1|k−1 (1)

Pf
k|k−1 = M k−1,kPa

k−1|k−1MT
k−1,k + Qk−1,k (2)

Analysis step

dk = yk − Hkx
f
k|k−1 (3)

Gk = Hk(Pf
k|k−1Hk)

T
+ R−1

k (4)

K k|k = (Pf
k|k−1Hk)

T G−1
k (5)

xa
k|k = xf

k|k−1 + K k|kdk (6)

Pa
k|k = (I − K k|kHk)Pf

k|k−1 (7)

The filter performs a forecast step by propagatingxa
k−1|k−1

with the dynamical linear model operatorMk−1,k (Eq. 1),
leading to the forecast statexf

k|k−1 at time tk. Error covari-
ance matrixPa

k−1|k−1 is also propagated with the model op-
erator (Eq.2), and a model errorQk−1,k is added to take into
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account model uncertainties and approximations. Thus, at the
end of the forecast step (at timetk), an estimate of the ocean
statexf

k|k−1 and error statisticsPf
k|k−1 associated to this state

are provided by the filter, given all observations available up
to timetk−1.

Observations at timetk are then used to perform the fil-
ter analysis step. First the innovation vectordk is computed
(Eq. 3), providing the difference between observations (yk)
and the model state (xf

k|k−1) projected into the observation
space with the observation operatorHk. The innovation er-
ror covariance matrixGk is also defined (Eq.4), with Rk

the observation error matrix.Gk is then used to compute the
Kalman gainK k|k (Eq. 5). Then, the update of the forecast
state,xa

k|k, is computed (Eq.6), balancing observations and
the model estimate thanks to the Kalman gain. Statistics on
the residual error,Pa

k|k, are also estimated through Eq. (7).
At the end of the analysis step, the Kalman filter provides the
best state estimate given all observations available up to time
tk.

Analysis and forecast steps are performed successively
from the first to the last observed date.

2.3 The sequential smoother

The smoother uses observations at a timetk to improve past
estimates at timesti , with ti < tk. Thus, an analysed state at
time ti is now notedxa

i|k, meaning it contains all informa-
tions from observations available until timetk. Obviously,i
is not unique, meaning observations at timetk can be used
by the smoother to analyse several past states (at different
times ti). The set of time indices at which the retrospec-
tive analyses are produced is noted6k. In our configuration,
6i = {k−L,...,k−1}, corresponding to a fixed-lag smoother
according to the nomenclature used inCosme et al.(2010).
With this configuration, the smoother performs retrospective
analysis for theL states previous to timetk only (L being
called thelag of the smoother). This can be interpreted as
time localisationof the smoother, restricting the past influ-
ence of observations. It also limits the numerical storage of
the smoother.

Forecast step

xf
k|k−1 = M k−1,kx

a
k−1|k−1 (8)

Pfa
k,i|k−1 = M k−1,kPaa

k−1,i|k−1, i ∈ 6k (9)

Pf
k|k−1 = M k−1,k(Pfa

k,k−1|k−1)
T

+ Qk−1|k (10)

Analysis step

K i|k = Pfa
k,i|k−1HT

k (HkPf
k|k−1HT

k + Rk)
−1 (11)

xa
i|k = xa

i|k−1 + K i|kdk, i ∈ 6k (12)

Paa
k,i|k = (I − K k|kHk)Pfa

k,i|k−1, i ∈ 6k (13)

Pa
i|k = Pa

i|k−1 − K i|kHkPfa
k,i|k−1, i ∈ 6k (14)

Equations of the optimal linear fixed-lag smoother are
summarized in Eqs. (8)–(14). To perform the retrospec-
tive analysis, the smoother needs the introduction of cross-
covariances matrices, that is, matrices of covariances be-
tween state errors at two different times. These matrices are
involved in the smoother gain (Eq.11), which is used for the
smoother analysis (Eq.12). Thereby, the cross-covariance
matrices enable the use of information at timetk to correct
a past state at timeti . Note that in the forecast step, the
Eq. (2) of the filter is split into two equations for the smoother
(Eqs.9 and10) to bring out the cross-covariances matrix.

2.4 The square-root transformation of the Kalman filter
and smoother

We now expose algorithms in a reduced-rank form so they
can be applied to large geophysics systems. We use the sin-
gular evolutive extended Kalman (SEEK) filter that has al-
ready been implemented with real systems (e.g.Verron et
al., 1999; Testut et al., 2003; Brankart et al., 2003andCas-
truccio et al., 2006). A synthesis on the SEEK filter can be
found inBrasseur and Verron(2006) or Rozier et al.(2007).
The main idea is to use a square-root decomposition of the

error covariance matrix so it can be written as:Pf
= SfSfT ,

whereSf is a n × n matrix, n being the length of the state
vector. The filter equations are then reformulated including
the square-root decomposition, as exposed in Eqs. (15)–(24).

To be computable at low cost, some assumptions are in-
troduced. First, the dimension ofSf can be reduced assuming
that errors only occur on a low-dimensional subspace,r, of
the state space (withr � n). In practice, these error direc-
tions can be identified keeping ther first empirical orthogo-
nal functions (EOFs) computed from a time series of model
states. When considering only ther main directions of the er-
ror,Sf becomes an×r matrix, the columns of which are often
referred to aserror modes. The termI + 0 in the smoother
gain is thenr × r, and easily inversible ifr is small enough.
Moreover, the propagation of error covariances (Eq.16) is
more affordable (onlyr model iterations are needed instead
of n). The model error term is now notedδ in this equa-
tion. Another assumption is made aboutR, so it can be eas-
ily inversible in the Kalman gain equation: it is considered
diagonal here. Note that other assumptions can be used (as
presented inTestut et al., 2003; Brankart et al., 2003, 2009)
to introduce observation error correlations while keeping the
matrix diagonal.

Equations of the SEEK filter and smoother.

Initializationxa
0 andSa

0
Forecast step

xf
k|k−1 = M k−1,kx

a
k−1|k−1 (15)
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Sf
k|k−1 = M k−1,kSa

k−1|k−1 + δk−1|k (16)

Filter analysis step

0k = (HkSf
k|k−1)

T R−1
k (HkSf

k|k−1) (17)

K k+1 = Sf
k|k−1[I + 0k]

−1(HkSf
k|k−1)

T R−1
k (18)

dk+1 = yk+1 − Hk+1x
f
k|k−1 (19)

xa
k|k = xf

k|k−1 + K k|kdk (20)

Sa
k|k = Sf

k|k−1(I + 0k)
−1/2 (21)

Smoother analysis step

K i|k = Sa
i|k−1[I + 0k]

−1(HkSf

k|k−1)
T R−1

k (22)

xa
i|k = xa

i|k−1 + K i|kdk, i ∈ 6k (23)

Sa
i|k = Sa

i|k−1[I + 0k]
−1/2, i ∈ 6k (24)

With the SEEK formulation of the filter, the sequen-
tial smoother implementation becomes straightforward. Only
three extra equations are needed (Eqs.22, 23 and24). The
cross-covariance terms are here directly introduced in the
smoother gain. The smoother analysis is performed using
the smoother gain and the innovation vector computed from
the filter. Finally, the smoother analysis covariances are com-
puted. The smoother implementation does not require addi-
tional assumption nor significant extra CPU times, with re-
spect to the filter. The only limitation lies in the storage of
the smoother covariance matrices, but with the fixed-lag for-
mulation, the number of restrospective analyses, and thus the
number of covariance matrices to store for each observation,
is limited. The smoother also presents the advantage of being
applicable simultaneously to or after the filter (in this case,
calculations of the gains must be performed again).

2.5 Model error and evolutive covariances

A smoother requires accurate cross-covariances between the
filter forecast state and past estimates (Eq.22). Thus, the fil-
ter must provide accurate forecast (and analysis, for the next
steps) error modes.

Theoretically speaking, the forecast error modes result
from the combination of the dynamical propagation of past
analysis modes, which ensures the statistical connection
through time, and a white-in-time model error, which makes
the short-term cross-temporal decorrelation of modes occur
(Eq. 16). Hence, both elements (dynamical propagation and
model error) play a key role in the behaviour of the smoother.
In particular, it is theoretically obvious that a smoother must

rely on anevolutivefilter (with dynamical propagation of
the modes), termed in this way in contrast to astatic filter
such as ensemble optimal interpolation (Evensen, 2003). It
is self-evident that the model error must be accounted for ac-
curately.

The model error parameterisation in ensemble filters has
long been and still remains a considerable issue, and is still an
active topic of research (Houtekamer et al., 2009; Brankart et
al., 2010). Thecovariance inflationapproach (Li et al., 2009)
is quite popular but inadequate to decorrelate error modes
through time (Cosme et al., 2010). Recent efforts have been
undertaken for a better, adaptive estimation of the forecast
error covariances in the SEEK filter (Brankart et al., 2010,
2011), but further work is necessary to make them robust and
applicable routinely. In order to disconnect the smoother and
the model error issues here, we have decided to stick to a
perfect modelset-up and neglect the model error termδ. This
obviously puts limitations on the scope of our experiments,
as detailed in Sect.4. This assumption leads to a new form
of Eq. (16):

Sf
k|k−1 = M k−1,kSa

k−1|k−1. (25)

The propagative termMSa implies r model iterations,r be-
ing the number of columns inSa. To be affordable at a rea-
sonable cost,r must be kept quite small. A remaining prob-
lem lies in the divergence of the filter that can occur due to
the order reduction, i.e. the error estimated by the filter (Sf

andSa), and can become inconsistent with the true error. The
estimation of the errors through time can be controlled thanks
to several parameters. This point will be discussed in Sect.4
with the implementation of an evolutive filter.

Finally, note that even ifδ is neglected in the covariance
propagation, retrospective influence of observations is artifi-
cially limited thanks to the fixed-lag form of the smoother.

2.6 A half-fixed basis smoother

The model error parameterisation issue, combined with the
prohibitive cost of the modes propagation, often leads to use
static filters, as various oceanographic operational centers
have already turned to (Brasseur et al., 2005; Martin et al.,
2007; Oke et al., 2008). It can be expected that these opera-
tional centers will have to adapt their assimilation schemes to
perform the future reanalyses of the ocean circulation, as has
already been done (Ferry et al., 2010), and as is the general
case now for the atmospheric circulation. For this reason, and
in spite of the theoretical concerns mentioned previously, it
seems worth trying to design a smoother based on a static
filter (minimizing the impacts of the violations in the theory)
and testing it numerically.

In this configuration, only Eq. (25) needs to be rewritten in
a static form:Sf

k|k−1 = Sa
0. Kalman gains of the filter (Eq.18)

and the smoother (Eq.22) are also affected, with the terms
Sf

k|k−1 being replaced bySa
0. Another term in Eq. (22) needs

to be specified: the analysis error covariance matrixSa
i|k−1.
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This matrix can be considered as fixed (so the smoother
would also be a fixed basis type), but a more theoretically
sound approach consists of using the analysis covariance
matrix computed fromSa

0 with the filter at the appropriate
time. This smoother scheme is referred to as half-fixed ba-
sis, because a part of the cross-covariance matrix is kept
fixed (Sf

k|k−1) while the other part is time dependent (Sa
i|k−1).

We will expose and discuss more in detail this smoother in
Sect.6.

3 Twin experiments and assimilation settings

The smoother is implemented and assessed in the framework
of twin experiments, but with the concern of remaining close
to a real problem (through model and simulated observa-
tions). The experimental settings are described in this sec-
tion. The nomenclature of experiments is summarized in Ta-
ble2.

3.1 Model and configuration

The ocean circulation model NEMO (Nucleus for European
Modelling of Ocean,Madec, 2008) is used in a tropical At-
lantic configuration (from 61.5◦ W to 15◦ E, and 15◦ S to
17.75◦ N) and with a resolution of 1 / 4 degree. This config-
uration, previously developed and used byUbelmann et al.
(2009), is named TATL4 (Tropical ATLantic 1 / 4 degree).
Boundary conditions are extracted from a model simulation
spanning the 1958–2007 period (Dussin et al., 2009). An ini-
tial condition for TATL4 is extracted on 5 January 1995.
Atmospheric forcings (Brodeau et al., 2010) are identical.
An interannual simulation is then performed until the end of
2005. This run is used as a reference for the twin experiment
and is called REF.

Two main signals dominate the dynamics of the tropical
Atlantic, as illustrated by Fig.1. On the one hand, tropical
instability waves (TIWs) develop during summer and fall at
3◦ N. They propagate from east to west and exhibit a strong
signal on the sea surface temperature (Legeckis, 1977; Allen
et al., 1995). On the other hand, eddies develop and circulate
along the north-east coast of Brazil. These eddies, know as
Brazil rings (Richardson and Walsh, 1986; Garzoli and Katz,
1993), are due to the North Brazil Current retroflection and
exhibit a strong signal on velocity (from the surface to 200–
500 m depth). Due to their propagative signatures, these two
signals are interesting objects of study for a four-dimensional
assimilation experiment.

3.2 Perturbation

To perform a twin experiment, a perturbed ocean state is gen-
erated using the interannual variability. An initial condition
from REF on 25 May 2003 is used to restart the model on
25 May 2005. This error on initial condition leads to a per-
turbed simulation called FALSE, computed until the end of

Fig. 1. TATL4 configuration: sea surface temperature is colored and exhibits the development of TIWs
in the center of the bassin; black contours indicate the 0.5 m s−1 iso-velocity at 30 m depth, exhibiting
the north Brazil current and the rings formation. The black square boxe illustrates the influence zone of
an observation (see Sect. 3.5).
figure

30

Fig. 1.TATL4 configuration: sea surface temperature is colored and
exhibits the development of TIWs in the center of the basin; black
contours indicate the 0.5 m s−1 iso-velocity at 30 m depth, exhibit-
ing the North Brazil Current and the rings formation. The black
rectangular box illustrates the influence zone of an observation (see
Sect.3.5).

2005. The data assimilation experiment starts one month af-
ter the beginning of FALSE, so that the perturbed simula-
tion can partially adjust with the forcings and damp, spuri-
ous, high-frequency oscillations. The goal of the present data
assimilation experiment is then to correct FALSE so it be-
comes closer to REF. Note that even if a perturbation of the
initial condition is not sufficient to assess the performance of
the smoother for a long-term reanalysis, it allows the careful
study of the impact of the smoother analysis and the quality
of corrected states, at least at the beginning of the experi-
ment.

3.3 Simulated observations

Synthetic observations are extracted from REF following the
procedure described byCosme et al.(2010). Two sets of
observations are generated: in situ data of temperature and
salinity, and altimetric measurements.

In situ data mimic ARGO profilers network. Every two
days, a set of vertical profiles is available, with the profiles
6◦ apart from each other. This pattern is shifted by 2◦ from
one assimilation step to the next. It results in a 2◦ density net-
work every 18 days, close to the average true ARGO network
(one profile every 2◦ and every 15 days). The simulated in
situ data network is illustrated on Fig.2, for one assimilation
cycle (every 2 days) and the full coverage (after 18 days).

Altimetric data mimic Jason-type satellite tracks. Ev-
ery 2 days, a limited number of tracks of sea surface
height (SSH) are available. The periodicity of these tracks is
10 days. Figure3 provides an example of SSH tracks avail-
able for one assimilation cycle (every 2 days) and shows the
complete coverage obtained after 10 days of consecutive al-
timetric observations.

www.ocean-sci.net/8/797/2012/ Ocean Sci., 8, 797–811, 2012
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2 days of observation 18 days of observation

Fig. 2. Horizontal distribution of in situ observations network simulated for the experiment. Left: ob-
servations available for one assimilation step (here: 30 June 2005). Right: observations coverage after
18 days.

31

Fig. 2.Horizontal distributions of in situ observation network simulated for the experiment. Left: observations available for one assimilation
step (here: 30 June 2005). Right: observations coverage after 18 days.

2 days of observation 18 days of observation

Fig. 3. Horizontal distribution of altimetric observations network simulated for the experiment. Left:
observations available for one assimilation step (here: 30 June 2005). Right: observations coverage after
10 days.

32

Fig. 3. Horizontal distributions of altimetric observation network simulated for the experiment. Left: observations available for one assimi-
lation step (here: 30 June 2005). Right: observations coverage after 10 days.

We consider the measurement error to be null here: the
observations are not perturbed and can be described asper-
fect observations. However, the matrixR is not zero because
of the truncation error. Its parametrisation is presented in
Sect. 4. The preliminary experiments have been carried out
this way, and since the appropriate value ofR to account for
representativeness is much larger than the actual observation
error, perturbing the observations was considered somewhat
superfluous. Re-running the experiments would be extremely
expensive and would not change the results significantly.

3.4 Initial statistics

As the only source in the initial state error is connected to the
model’s time variations, the statisticsSa

0 describing the ini-
tial error covariance are calculated based on the model’s time
variability. 270 EOFs are computed from REF, using ocean
states in summer and fall between 1995 and 2000. Winter
and spring are not considered because the experiment spans
the summer months only, and because TIW or Brazil ring
signatures are mostly present in summer and fall. The first
39 EOFs, which represent about 95 % of the total variance
of the 270 initial EOFs, are selected to form the initial error
modes. Note that in an operational forecast system, where
additional errors (in forcings for instance) have to be consid-
ered, the number of degrees of freedom for the errors would

be considerably increased, and hence the required size of the
ensemble.

3.5 Localisation

A consequence of the order reduction is that statistics may
not be able to faithfully descibe all the correlations, espe-
cially long-distance correlations (Houtekamer and Mitchell,
1998). To prevent the spurious influence of distant obser-
vations during an analysis step, the filter is used with a lo-
calisation scheme (Brankart et al., 2009). This method rules
out long-distance corrections, so that only observations in the
neighbourhood of an analysed point are used for the correc-
tion. The size of the neighbourhood is defined as 15◦ zonal
and 10◦ meridional in length (illustrated by the black box in
Fig. 1), a trade-off between analysis accuracy and computa-
tional efficiency made after a large number of sensitivity ex-
periments. It is large enough so that at least one observation
is available for each analysis. The zonal length is larger than
the meridional length because the dynamics in the tropical
region are mostly zonal, so the correlations are more consis-
tent in this direction.

Ocean Sci., 8, 797–811, 2012 www.ocean-sci.net/8/797/2012/
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4 Evolutive filter

We now present the results of the SEEK smoother in its orig-
inal form, i.e. with evolving error modes, as presented in
Cosme et al.(2010). For the reasons mentioned in Sect.2.5,
we pay particular attention to the accurate estimation of the
forecast error modes (defined by Eq.25in our configuration).
It is well known that due to the truncature ofS essentially,
the error modes can collapse or become inconsistent with the
true error (error on the mean) with time. The most common
method to avoid this is to use covariance inflation. However,
for the reasons given in Sect.2.5, it is not our choice here.
Instead, we chose to tune a few parameters controlable in the
system: the number of error modes (columns inS), the size of
the localisation domain, and the amplitude of the (diagonal)
observation error matrixR. The adopted criterion of consis-
tency between errors on the mean and errors estimated by the
modes is that the RMS error computed with the mean,

RMS=

√√√√ 1

N × M × P

N∑
i=1

M∑
j=1

P∑
k=1

(xi,j,k − xref
i,j,k)

2

(with i = 1 : N the set of the longitudes,j = 1 : N the set of
the latitudes,k = 1 : P the set of the vertical levels,xi,j,k the
mean state of the ocean andxref

i,j,k the true state of the ocean,
REF), must be of the same order of magnitude as the square
root of the trace of the covariances matrix (tr(SST )).

The first two parameters, though, are partly constrained
by practical considerations. A high number of error modes
allows an accurate representation of the error space, but re-
quires more CPU time for modes propagation. Several sen-
sitivity experiments, not detailed here, suggested that 39 is
a fair number. The localisation parameters must also be pre-
scribed optimally to avoid spurious corrections due to distant
observations and no correction due to absence of close obser-
vations. Again, sensitivity experiments showed that having at
least one observation for each analysed grid point was a fair
choice.

The remaining parameter to be specified is the matrixR,
which represents the confidence of the observations and of
the resulting analysis. This matrix includes the observation
error (including the accuracy of measurements), but not only
that. As mentioned in Sect.2.4, this matrix is considered
diagonal. This assumption implies that the diagonal terms
should be inflated to include the ignored non-diagonal terms.
Moreover, the truncation error (due to the reduction order)
should also be included inR. This error, as well as the non-
diagonal terms ofR, are not easy to quantify, and a wrong
definition of the diagonal terms ofR can lead to inconsistent
error statistics with the real error. Precedent studies point out
these aspects, as for instanceLiu and Rabier(2002), Rabier
(2006) andOke et al.(2008). To correctly parametriseR, sev-
eral filtering experiments are conducted with different values
for observation errors, as specified in Table1. The experi-
ments lasted 50 days, starting from 25 June, considered as

Table 1. Observation errors of SSH, temperature and salinity for
sensitivity experiments ErrObs01 to ErrObs04.

Experiment name SSH (cm) Temperature (◦C) Salinity

ErrObs01 0.03 0.8 0.5
ErrObs02 0.08 1.5 1
ErrObs03 0.15 2 1.5
ErrObs04 0.3 3 3

day 0 for the results. For each experiment, the true RMS error
is compared to the mean estimate error of the filter (tr(SST )).
Results are illustrated with the temperature error levels on
Fig. 4. The red curve represents the true error, and the full
black curve the estimated error. The error of FALSE is also
shown with the black dotted line. To be consistent, the esti-
mated error (black) should be close to the true error (red).

Results show that for the error statistics to be consistent,
prescribed observation errors have to be large. Indeed, the
best estimated error is obtained with the largest observations
error (ErrObs04 in Table1). This suggests that the trunca-
ture error included inR is ten times larger than a traditional
measurement error. On the other hand, the mean true error
(in red) is poorly influenced by this parametrisation. Conse-
quently, large observation errors avoid the collapse of error
modes without affecting the quality of the mean state es-
timate. Also, as a (negative) counterpart of neglecting the
model error, the filter converges to an asymptotic level of
error, which makes the smoother assessment relevant in the
first few weeks of the experiment only. The results are sim-
ilar for all other assimilated variables (salinity and SSH, not
shown). The filter is less efficient for velocities, but still the
estimated error on these variables is better with high obser-
vation errors, as for the assimilated variables.

The parametrisation of an evolutive filter is difficult. The
definition of the error covariance matrix and the control of
its time evolution is tricky, and may lead to consideration of
unusual values for certain parameters (such as the observa-
tions error in our case). This would be especially true with a
more complex system where error sources would not only be
linked to the initial condition, and it certainly is a major ob-
stacle for the smoother implementation. A strategy to avoid
this problem will be exposed in Sect.6, but first we discuss
the smoother effects with the previously defined evolutive fil-
ter in the next section.

5 Smoother’s impact

The smoother is tuned using the parameters defined for the
SEEK filter in the previous section. The fixed-lag parame-
ter, i.e. the temporal localisation of influence of the obser-
vations, is set to 10 days (5 retrospective assimilations). Ex-
tending the lag to more than 10 days barely improves the
smoother results. This is due to the decrease in amplitude of
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Fig. 4. Influence of temperature observation error on the error statistics. Red curve represents the true
RMS error on temperature and black curve the error estimated with the filter (y axis: day of the exper-
iment, x-axis: RMS error, in ◦C). The black dotted curve shows the RMS error of FALSE. Each figure
corresponds to a different parametrisation of temperature error in R. Values are specified in Table 1.
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Fig. 4. Influence of temperature observation error on the error statistics. Red curve represents the true RMS error on temperature and black
curve the error estimated with the filter (y-axis: day of the experiment, x-axis: RMS error, in◦C). The black dotted curve shows the RMS
error of FALSE. Each figure corresponds to a different parametrisation of temperature error inR. Values are specified in Table1 .

the cross-covariance matrixSaSfT with time, either because
Sa andSfT become orthogonal due to the model dynamics
working on the latter, or because of the continuous decrease
of the former due to the successive retrospective analyses.

5.1 Smoothing improvements on error statistics

The smoother impact on the mean error levels is shown in
Fig. 5 for two assimilated variables (SSH and temperature)
and a non-assimilated variable (zonal velocity). As expected,
the error on SSH or velocity is reduced with the smoother,
though to a limited extent, due to relatively small initial er-
rors in SSH. In the tropics, where the large scale dynamics
are not dominated by geostrophy, variations in SSH are low
in amplitude, and therefore hard to control with data assim-
ilation (Ubelmann et al., 2009). The small improvements in
velocity are due to the fact that corrections on this variable
mostly occur near the surface, and errors are computed over
the 3 spatial dimensions. The signature of the smoother im-
pact is then mitigated by the 3-D signal. Results are more
contrasted for the thermodynamical variables: temperature
and salinity. Compared to the filter analysis, the mean error
level of the smoothed states is 10 % to 15 % lower at the be-
ginning of the experiment (before day 10). After day 10, the
smoother effects tend to decrease, concomitantly with the fil-
ter corrections. This behaviour is satisfactory, and directly
related to the settings of our experiment, where the errors
are introduced in the initial state only. In such settings, the
filter converges with time toward an asymptotic error level,
and the innovations tend to be zero. Like the filter correction,

the smoother corrections are based on the filter innovation
(Eq. 19). If the innovation is null, whatever the reason is,
the smoother will not bring any correction. A smoother is
not meant to counterbalance spurious tuning of the filter, but
only to make optimal (4-D) use of observations, especially
when they are sparse in nature, space, and time. In the case
of a reanalysis, the filter is expected to have a significant im-
pact during all the experiment, along with the smoother. As
we are interested in the smoother effects here, we now focus
on the first part of the experiment when the smoothed error
level is significantly lower than the filtered error level.

5.2 The smoother’s dynamics estimation

The smoother is able to reduce the error level of the fil-
ter analysis. We now examine its capacity to estimate dy-
namically balanced states of the ocean circulation. Indeed, a
Kalman filter analysis estimate results from a trade-off be-
tween dynamics (from the background estimate) and statis-
tics (from the correction term). However, it is still supposed
to represent the state of a dynamical system and, as such,
must bedynamically balanced, that is, respectful of the dy-
namics represented by the system’s model. A smoother es-
timate must be, at least in theory, closer to the truth than
the filter estimate. However, it has also undergone a se-
ries of statistically-based corrections that move this dynam-
ics/statistics trade-off toward statistics, which may further al-
ter its dynamical balance. To check the representation of the
dynamics in the smoothed states (compared to the filtered
states), we perform a simple test: analysed states (from the
filter or the smoother at day 2, i.e. the first analysed date)
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Fig. 5. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for the filter
(full black line) and the smoother (circles). The trajectory of the run FALSE is also represented with the
dotted line.
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Fig. 5. RMS errors for the SSH (m), the temperature (◦C) and
the zonal velocity (m s−1), for the filter (full black line) and the
smoother (circles). The trajectories of the run FALSE are also rep-
resented by a dotted line.

are used to initialize a free run of the model (respectively
FreeFilt and FreeSmooth in Table2). The implicit idea is that
if a state is dynamically inconsistent, this should be reflected
in the error evolution, as illustrated byRozier et al.(2007).

Results for error levels in SSH, temperature and zonal ve-
locity are shown on Fig.6. First, the error level at day 10
is the same for the filtered run (full black line) and the
FreeSmooth run (dotted red line), for all variables, and this
is a notable point. Indeed, the same observations are used in
both cases, but the filter assimilates them sequentially in time
while the smoother assimilates them on the same date (here,
day 2). It means that the smoother could extract the same
information from observations, but corrected the same state.
More generally, the evolution of error levels (on both vari-
ables) for FreeSmooth is better during the first 50 days. Be-
yond, errors tend to converge to the same level (though more
slowly for the temperature), becoming close to the FALSE
error level. These results suggest that the smoother correc-
tions are consistent with the dynamics, i.e. the reduction of
the error level has a real significance from a dynamical point
of view and does not introduce significant instabilities.

Fig. 6. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for the filtered
run (full black line) and the free runs restarted with: the filtered state at day 2 (full red line), the smoothed
state at day 2 (dotted red line). The RMS error for FALSE is also shown with the dotted black line.
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Fig. 6. RMS errors for the SSH (m), the temperature (◦C) and the
zonal velocity (m s−1), for the filtered run (full black line) and the
free runs restarted with the filtered state at day 2 (full red line) or
the smoothed state at day 2 (dotted red line). The RMS errors for
FALSE are also shown with a dotted black line.

Table 2.Nomenclature of the different runs.

Run name Description

REF Interannual run from 1995 to 2005, used as the
reference.

FALSE Perturbed run, initialized on 25 June 2005
with the state of REF from 25 June 2003.

FreeFilt Run initialized on day 2 of the data assimila-
tion experiment, with the filtered state.

FreeSmooth Run initialized on day 2 of the data assimila-
tion experiment, with the smoothed state.

FreeOI Run initialized on day 10 of the data assimila-
tion experiment, with the state analysed with
the optimal interpolation.

FreeSmoothOI Run initialized on day 10 of the data assimila-
tion experiment, with the smoothed state basis
on optimal interpolation.

A region particularly well-indicated to illustrate this point
is the North Brazil Current zone. Because of its chaotic dy-
namics, the initial condition strongly affects the subsequent
circulation in this region (especially on the Brazil rings).

www.ocean-sci.net/8/797/2012/ Ocean Sci., 8, 797–811, 2012
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Fig. 7. Evolution of absolute error on velocity (in m s−1), between REF and FreeFilt (left) and
FreeSmooth (right). The error is calculated along a section localized at 5◦ N, and between 40◦ W and
50◦ W.
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Fig. 7. Evolution of absolute error on velocity (in m s−1), between REF and FreeFilt (left) and FreeSmooth (right). The error is calculated
along a section localized at 5◦ N, and between 40◦ W and 50◦ W.

Figure7 shows the evolution of the error (in velocity) be-
tween the free runs and the reference along a transect (be-
tween 44◦ W and 52◦ W) at 5◦ N. Figure8 shows snapshots
of the absolute velocity around this same transect, for dif-
ferent times. The alternation between positive and negative
anomalies (Fig.7) is typical of phase shifts affecting the
propagative structures, here the Brazil rings. Until day 50,
this phase shift is stronger in FreeFilt. If the rings seem
quite similar in the filtered state and the smoothed state at
day 0 (Fig.8), they clearly show different evolutions. Rings
in FreeSmooth are much closer to the rings in REF. For
instance, a ring is correctly formed at day 20 or 30 for
FreeSmooth, but this same ring is not completely untied from
the North Brazil Current with FreeFilt. Thus, even if not di-
rectly visible in the analysed states (day 0), the dynamics are
obviously more coherent with REF in the smoothed state.
Still, error levels on the free runs (Fig.7) and snapshots
(Fig. 8) after day 50 show that the dynamics in FreeSmooth
tends to become also unphased with REF (though the dynam-
ics are not exactly the same as in FreeFilt).

Given all these considerations, it is obvious that the
smoothed solution leads to a better estimation of the dynam-
ics, compare to a filtered solution at the same date. The four-
dimensional use of the information from the observations has
a real impact on analysed states. If the parametrisation linked
to the filter is optimal, then the implementation of a smoother
gives a better estimated solution, from both statistical and dy-
namical points of view. In our experiment though, these re-
sults are limited to the beginning of the experiment due to the
settings of the problem.

Despite its benefits, a remaining obstacle in implementing
a smoother is the parametrisation of the evolutive filter. Even
if this formulation is not fully consistent with the smoother

theory, we will now investigate the possibility and the ef-
ficiency of retrospective analyses in a context of fixed-basis
formulation of the filter. These results are exposed in the next
section.

6 Smoother based on a static filter

It is well known that the main obstacle to accurate Kalman
filtering in oceanography is model dimension. At the
French ocean forecast service Mercator Ocean (http://www.
mercator-ocean.fr/fre/), the model is presently run at a 1 / 12◦

resolution and 50 vertical levels, featuring more than a billion
state variables and a prohibitive cost for ensemble methods.
Consequently, data assimilation is performed with a rather
simple optimal interpolation (OI) scheme, as at several other
centers. In this section, we present and experiment a formu-
lation of the fixed-lag smoother that complies with these op-
erational constraints. The filter described and implemented
previously is modified to work as an OI scheme. The same
parameterisations are used, except that Eq. (25) is now re-
placed by the following equation:

Sf
k|k−1 = Sa

0, (26)

Sa
0 being the initial basis of error modes.
A hypothesis inherent to the implemention of an optimal

interpolation scheme is that the analyses times are distant
enough to make the residual errors decorrelate from one step
to the next. To implement the OI scheme with our configura-
tion, we define a new observation network with a 10-day fre-
quency. Observations themselves are the same (i.e. they are
extracted from REF every 2 days), but are gathered together
at the nearest analysis days, and assimilated all together on
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Fig. 8. Absolute error map for the velocity (in m s−1), for REF (left), FreeFilt (middle) and FreeSmooth
(right). Day 0 (top) is the day of the restart. The snapshots are given every 10 days.
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Fig. 8. Absolute error maps for the velocity (in m s−1), for REF (left), FreeFilt (middle) and FreeSmooth (right). Day 0 (top) is the day of
the restart. The snapshots are given every 10 days.

those days. For instance, observations between day 5 and 15
are gathered and assimilated at day 10. The next assimilation
step occurs at day 20, with all observations available between
day 15 and 25. Day 10 is now the date of the first assimilation
step.

Figure 9 presents a diagram of the smoother implemen-
tation. At the filter analysis timek, the analysis covariance
matrix Sa

k is computed from the backgroundSa
0, simultane-

ous to the analysis state. This is not usually done with an OI
scheme. The retrospective analysis at timek using the ob-
servation at a timek + 10 is performed (corresponding to a
10-day interval) using the cross-covariances matrixSa

kSa
0
T .

Thus, the smoother uses information on residual errors at
time k, combined withSa

0 instead ofSf
k+10|k. If Sa

0 is fixed,
the matrixSa

k depends on the time of the analysis (this matrix
is computed every 10 days after an OI analysis step). This
form of smoother can be then considered as half-fixed. The
large red circle and the blue plus sign in Fig.9 represent the
smoother analysis with a 10-day retrospective analysis.

Fig. 9. Schematic representation of the half-fixed basis smoother with a 10-days frequency observations
network. Analysis covariance matrix (in green) are computed after each optimal interpolation analysis
(at time k and k+ 10). The cross-covariance matrix used for the smoother analysis between date k and
k+8 (respectively k+10 and k+20) is indicated in red (respectively blue). Smoothed states are indicated
with red or blue symbols (see Sect. 6 for more explanations).
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Fig. 9. Schematic representation of the half-fixed basis smoother
with a 10-day frequency observation network. Analysis covariance
matrices (in green) are computed after each optimal interpolation
analysis (at timek andk + 10). The cross-covariance matrix used
for the smoother analysis between datek and k + 8 (respectively
betweenk + 10 andk + 20) is indicated in red (respectively blue).
Smoothed states are indicated with red or blue symbols (see Sect.6
for more explanations).
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Fig. 10. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for the optimal
interpolation (full black line) and the smoother (red circles).
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Fig. 10.RMS errors for the SSH (m), the temperature (◦C) and the
zonal velocity (m s−1), for the optimal interpolation (full black line)
and the smoother (red circles).

Now, it is also possible to perform smoother analyses
at intermediate times, every 2 days for instance. For each
of such analyses, the background state is provided by the
model simulation during the OI process. The background er-
ror modes must be defined appropriately, based on already
existing bases. In the following experiments, the modes at
timesk+2, . . . ,k+8 are simply prescribed withSa

k, but other
sound solutions are possible, such as a linear combination
of Sa

k andSa
0. This was not tested here. These intermediate

smoother analyses are represented with red squares and blue
crosses in Fig.9.

6.1 Smoother’s impact on the optimal interpolation
solution

Results on RMS error levels for the optimal interpolation
and the smoother based on OI are shown on Fig.10. The
smoother impact (red circles) is visible for each variable, as-
similated or not. First, the evolution of error levels for the
smoothed solution is continous. Discontinuities inherent to
sequential assimilation solutions (visible here every 10 days,
during OI analysis) are smoothed out. Also, even with a
very simple configuration of cross-covariance matrices, the
smoothed solution exhibits lower error levels than the fil-
tered one, except for some points (between day 20 and 30 for

Fig. 11. RMS error for the SSH (m), the temperature (◦C) and the zonal velocity (m s−1), for the optimal
interpolation (full black line) and the free runs restarted with: the corrected state at day 10 with OI (full
red line), the smoothed state based on OI at day 10 (dotted red line). The RMS error for FALSE is also
indicate with the dotted black line.
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Fig. 11. RMS errors for the SSH (m), the temperature (◦C) and
the zonal velocity (m s−1), for the optimal interpolation (full black
line) and the free runs restarted with the corrected state at day 10
with OI (full red line) or the smoothed state based on OI at day 10
(dotted red line). The RMS errors for FALSE are also indicated by
the dotted black lines.

the velocity). It is finally worth noticing that this smoothing
scheme is almost cost-free and could be applied with current
assimilation systems in operational oceanographic centers.

Note that a 2-day configuration of a smoother can also be
used with a 10-day frequency evolutive filter. The smoother
needs the propagation of error statistics between the begin-
ning of an interval and the day of the retrospective assimila-
tion. This scheme is then similar to the asynchronous Kalman
filter described byHunt et al.(2004).

6.2 Dynamics with a half-fixed basis smoother

As in the previous section, we here examine the dynamical
balance of the smoother solution. Free runs are initialized
at day 10 with the analysed states from OI (FreeOI) or the
smoother based on OI (FreeSmoothOI). The evolution of er-
ror levels are shown in Fig.11. Even if initial error levels
for OI and the smoother are close (especially for temperature
and velocity), the behaviours of both free runs are signifi-
cantly different. The error level of FreeOI tends to increase
(after day 50) for each variable. On the contrary, for each
variable, the error level of FreeSmoothOI tends to decrease
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Fig. 12. Absolute error map for the velocity (in m s−1), for REF (left), the run restarted with a corrected
state for OI (middle) and a smoothed state based on OI (right). Day 0 (top) is the day of the restart. The
snapshots are given every 40 days.
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Fig. 12.Absolute error map for the velocity (in m s−1), for REF (left), the run restarted with a corrected state for OI (middle) and a smoothed
state based on OI (right). Day 0 (top) is the day of the restart. The snapshots are given every 40 days.

continously. This is blatant with velocity. Even after day 50,
the error level keeps decreasing, suggesting that the dynam-
ics stay consistent and close to REF. Figure12illustrates this
point in the North Brazil Current region. During the first 40
days, the Brazil rings are quite similar between FreeOI and
FreeSmoothOI. However, at day 80, the rings and the branch
of the North Brazil Current’s retroflection are clearly better
simulated in FreeSmoothOI.

This example shows once again that the improvement of
the solution due to the smoother is not only statistical, but has
a real dynamical meaning. The smoother can be used with
a non-optimal system (fixed-basis) and still exhibits signif-
icant improvements, both on the average error level and on
the dynamics of the solution. Still, one should keep in mind
that the parametrisation of the OI here is not optimal, since
it is based on the same parametrisation of an evolutive fil-
ter. Moreover, as already discussed, many possibilities can
be considered using a smoother scheme based on OI. We
chose a simple configuration here, but more sophisticated
ways to define the cross-covariance error matrix could im-
prove the results. These results also suggest that a smoother
scheme could be introduced in current operational center sys-
tems, opening new perspectives for upcoming reanalyses of
the ocean circulation.

7 Conclusions

The reduced-rank sequential smoother (Cosme et al., 2010)
based on the SEEK filter has been further developed and im-
plemented in a real ocean circulation model. The main pur-
pose was to study the obstacles to implementing such an as-
similation scheme in a real reanalysis system, and to study
effects of the smoother on the estimation of the corrected

states. The smoother was first implemented as described in
its seminal formulation, i.e. with an evolutive filter. In a sec-
ond step, a simplified scheme was introduced based on op-
timal interpolation, as many operational centers use, and its
benefits were exposed. A simple twin experiment was set up
for this study, based on a perturbation of the initial condi-
tion. This configuration limited the benefits of the analysis
throughout time, but a focus on the first assimilation steps
enabled us to draw relevant conclusions about the smoother
behaviour and benefits.

Technically, the implementation of the smoother algorithm
is rather straightforward (when a filter algorithm is already
implemented). It requires only a few extra calculations com-
pared to the filter, and can be performed simultaneously to or
after a filter pass. The smoother can then be considered as an
additional layer to the filter algorithm.

A major obstacle to implementing a smoother lies in the
parametrisation of an evolutive filter, theoretically needed to
define accurately the cross-crovariance error matrices. We
used a criterion based on mean error statistics to specify
the parameters associated with the filter. We found that for
the mean error statistics of the filter to be consistent with
the true error, we had to prescribe large observation errors.
Moreover, the filter efficiency was mostly significant during
the first 10 days of the experiment. To preserve optimality
over a longer period, the filter should be used with adaptative
parametrisations (Brankart et al., 2010).

To circumvent this issue, we considered implementing a
smoother based on a simpler system of optimal interpolation.
To do so, we defined a new algorithm for a half-fixed basis
smoother. The advantage of such formulation is that it could
be implemented almost as is with current assimilation sys-
tems of operational centers. This smoother was tested with a
10-day frequency observation network, but we also pointed
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out the ability of the smoother to provide a solution with a
higher frequency (2 days in this case).

The smoother efficiency was studied in both cases: evolu-
tive and fixed error modes. Overall, the smoother was able to
improve the results compared to 3-D assimilation schemes,
filter or optimal interpolation. In this twin experiment, with
absence of perturbations to the forcing and to the synthetic
observations, error levels were reduced with the retrospec-
tive assimilation of observations. The smoother impact was
mostly significant during the first 10 days of the experiment,
just like the filter, underlying the fact that the smoother effi-
ciency is strongly related to the parametrisation of the filter
(and the optimal interpolation).

We also could verify that the smoothed solution was dy-
namically consistent and in better dynamical adequacy with
the reference than the filtered solution. Thus, the corrections
introduced with the smoother are not only statistical but also
have a dynamical consistency. This point was surprisingly
true in the case of the half-fixed basis smoother, which is en-
couraging in the context of using the smoother to improve
the quality of reanalyses.

We suggest that the smoother could be performed with ac-
tual reanalysis systems. Indeed, the algorithm could be im-
plemented easily and with a negligible cost, and the smoother
has shown encouraging results with an optimal interpolation
system. In other terms, there is no reason to not use it.
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l’Enseignement Suṕerieur et de la Recherche, the Groupe Mission
MERCATOR/CORIOLIS, the European Commission under Grant
Agreement FP7-SPACE-2007-1-CT-218812-MYOCEAN, and
CNES. The calculations were performed using HPC resources from
GENCI-IDRIS (Grant 2009-011279).

Edited by: A. Schiller

References

Allen, M. R., Lawrence, S. P., Murray, M. J., Mutlow, C. T., Stock-
dale, T. N., Llewellynjones, D. T., and Anderson, D. L. T.: Con-
trol of tropical instability waves in the pacific, Geophys. Res.
Lett., 22, 2581–2584, 1995.

Anderson, B. D. O. and Moore, J. B.: Optimal Filtering, Prentice-
Hall, 357 pp., 1979.

Brankart, J.-M., Testut, C.-E., Brasseur, P., and Verron, J.: Imple-
mentation of a multivariate data assimilation scheme for isopy-
nic coordinate ocean models: application to a 1993–96 hindcast
of the North Atlantic Ocean circulation, J. Geophys. Res., 108,
1–20, 2003.

Brankart, J.-M., Ubelmann, C., Testut, C.-E., Cosme, E., Brasseur,
P., and Verron, J.: Efficient parameterization of the observation
error covariance matrix for square root or ensemble Kalman fil-
ters: application to ocean altimetry, Mon. Weather Rev., 137,
1908–1927, 2009.

Brankart, J.-M., Cosme, E., Testut, C.-E., Brasseur, P., and Ver-
ron, J.: Efficient adaptative error parametrizations for square root
or ensemble Kalman filters: application to the control of ocean
mesoscale signals, Mon. Weather Rev., 138, 932–950, 2010.

Brankart, J.-M., Cosme, E., Testut, C.-E., Brasseur, P., and Verron,
J.: Efficient local error parameterizations for square root or en-
semble Kalman filters: application to a basin-scale ocean turbu-
lent flow, Mon. Weather Rev., 139, 474–493, 2011

Brasseur, P. and Verron, J.: The SEEK filter method for data assim-
ilation in oceanography: a synthesis, Ocean Dynam., 56, 650–
661,doi:10.1007/s10236-006-0080-3, 2006.

Brasseur, P., Bahurel, P., Bertino, L., Birol F., Brankart, J.-M., Ferry,
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