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Abstract. Most of oceanographic operational centers usel Introduction

three-dimensional data assimilation schemes to produce re-

analyses. We investigate here the benefits of a smoother, i.e. a

four-dimensional formulation of statistical assimilation. A Data assimilation methods for geophysics have evolved con-
square-root Sequentia| smoother is imp|emented with a troptinUOUS|y since their origins in the 70s. In the branch of es-
ical Atlantic Ocean circulation model. A simple twin exper- timation theory, the Kalman filterk@iman 1960 has been
iment is performed to investigate its benefits, compared tovidely used in oceanography. Its implementation with large
its corresponding filter. Despite model's non-linearities andnumerical models is made possible provided relevant adapta-
the various approximations used for its implementation, thetions, such as reduced-order formulati®a(rish and Cohn
smoother leads to a better estimation of the ocean state, both985 Todling and Cohn1994 Evensen 1994 Fukumori

on statistical (i.e. mean error level) and dynamical points ofand Malanotte-Rizzoli1995andHoutekamer and Mitchell
view, as expected from linear theory. Smoothed states ard998. The filter provides an optimal estimate of the sys-
more in phase with the dynamics of the reference state, an a¢em state, given a model state (numerical), and past and
pect that is nicely illustrated with the chaotic dynamics of the Present observations available up to the analysis time. Thus,
North Brazil Current rings_ We also show that the Smootherit is well indicated to initialize a forecast, which is the his-
efficiency is strongly related to the filter configuration. One torical purpose of data assimilation in geophysics. Though,
of the main obstacles to implement the smoother is then t@>ceanographic applications of data assimilation get increas-
accurately estimate the error covariances of the filter. Coningly diversified. In particular, climate studies require accu-
sidering this, benefits of the smoother are also investigatediate reconstructions of the past ocean circulatieanaly-

with a configuration close to situations that can be managedes as performed for instance in tiéyOceanproject fittp:

by operational center systems, where covariances matricdévww.myocean.eu.orly/ Such reanalyses are expected to
are fixed (optimal interpolation). We define here a simpli- 9&in accuracy when the observation datasets are used in a
fied smoother scheme, called half-fixed basis smoother, thafour-dimensional way with data assimilation, i.e. when each
could be implemented with current reanalysis schemes. It§bservation has an influence on past, present and future states
main assumption is to neg|ect the propagation of the err0|0f the model solution. In the framework of the Kalman fil-
covariances matrix, what leads to strongly reduce the coster, the past influence of observations is introduced through
of assimilation. Results illustrate the ability of this smoother retrospective analyses and leads to a smoothing formulation
to provide a solution more consistent with the dynamiCS'Of the estimation problem. Optlmal smoothers in estimation
compared to the filter. The smoother is also able to producéheory may be considered as a four-dimensional extension of
analyses independently of the observation frequency, so théhe Kalman filter that takes into account future observations.
smoothed solution appears more continuous in time, espe- The relevance of using a smoother for high dimensional

cially in case of a low frenquency observation network. oceanic or atmospheric problems is still an open question.
Even if linear theory says that smoothing decreases residual
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filter errors, the usual approximations (on non-linearity, rank2 The reduced-rank square-root filter and smoother

reduction, localisation, etc.) take these problems a long way algorithms

from theory. In the study d?, the smoother produced appar-

ently poor improvements over the filter, but the meteorolog- The Kalman filter and smoother formulations can be found

ical forecasts started from smoother estimates were bettefd Anderson and Moor¢1979, Simon (2008 andEvensen

On the contrary, with very different settings (ocean model, (2007). For the smoothers, see alSosme et al(2011). Here

forward-backward smoother)ermusiaux et al(2009 ob-  we only provide an overview of the sequential algorithms,

tained better estimates with the smoother (in terms of erclose to the EnKS, and an intuitive interpretation of the equa-

rors), but poorer forecastihare et al (2008 tried to iden-  tions. We also delineate these algorithms in their square-root

tify regimes where the smoother is particularly efficient with transformation so they can be implemented in large geophys-

an atmospheric model, but this is very case-dependent. Thigal problems. Finally, we expose the modifications intro-

work reported in this paper is part of an effort to determine duced for the half-fixed basis smoother to be implemented.

the relevance of smoothing for realistic oceanic problems.
Several smoother approaches exist Sesme et aJ 2011,

for detailed descriptions). In this paper, we consider the

sequential fixed-lag smoothe€dhn et al. 1994 Evensen : .
and van Leeuwer2000, well designed for reanalysis pur- Superscripts refer to the type of states (“a” for analysed and
& ' 9 ysis p “f” for forecast). Subscripts are used to specify the transi-

poses. More precisely, we use the reduced-rank square—roct)ltOn between two times (for instande— 1. k is used for the
smoother developed b§osme et al(2010, which is based transition matrix between times— 1 and’k) or the time of
on the singular evolutive extended Kalman (SEEK) filter a state and information it contains (for instaride — 1 in-
e at o o JCAs hal e S i stmated a e a oo

. ‘vations available up to timg_1). Subscripts O represent the
This reduced-rank smoother has been teste@dgme et al. initial conditions
(2010 with a square-box configuration of a high resolution '
ocean circulation model. In this work, we investigate the ap- »  The Kalman filter
plication of the reduced-rank smoother with a more complex
and realistic tropical Atlantic Ocean circulation model in a The sequential form of the filter is given by a succession of
1/4# resolution configuration. We strive to identify obstacles two steps, forecast and analysis, summarized in Eqgs. (1)—(7).
and solutions to implement the smoother in such a realistidnitial conditions must first be prescribetd, an initial state,
context. The gain of the smoother over the filter is assessedandP2, an initial error covariance matrix.
Finally, to comply with operational constraints, we design
here a new flavour of the sequential fixed-lag smoother al- Initializationxg andP?)

2.1 Notations

Notations are similar to the ones useddasme et al(2010.

gorithm, referred to akalf-fixed basisto overcome imple- Forecast step

mentation issues. Our main goal is to determine whether this .

smoother can improve present reanalysis schemes. X k-1~ Mkfl,kxlifllkfl @
In Sect. 2, we present the SEEK filter and the SEEK

smoother formulations as detailed @osme et al(2010. lek_l = Mk—l,kpf_uk—leT—l,k + Qi—1,k (2

Some advantages and drawbacks linked to implementation )
are stressed. Section 3 summarizes the set-up of our twin ex- Analysis step
periments. The smoother is then implemented according o, _ yi — Hpx! 3)
its theoretical formulation. In Sect. 4 we dwell upon a sensi- © > K k=1

tive step of the implementation of a smoother: the parametri-

sation and the dynamical propagation of error covariances=>k — Hk(P;clklek)T +R )
In Sect. 5 we expose and examine the main results of a short

smoother reanalysis. The filter reanalysis is used as a refeKkix = (Pz‘k_lHk)TGljl (5)
ence to point out the improvements of a four-dimensional ex-

tension of the data assimilation. To deal with implementationx?, = x];qk—l + Kydi (6)
issues raised in Sect. 4, a half-fixed basis smoother algorithm

is developed and tested in Sect. 6. Section 7 concludes arﬂzlk =(- Kklka)P;dk—l (7)

gives perspectives.
The filter performs a forecast step by propagan'@gl‘ 1
with the dynamical linear model operathty_1 x (Eq. 1),
leading to the forecast stalélk_1 at timer#,. Error covari-
ance matring_llk_1 is also propagated with the model op-
erator (Eq2), and a model erroQ,_1  is added to take into

Ocean Sci., 8, 797811, 2012 WwWw.ocean-sci.net/8/797/2012/



N. Freychet et al.: A reduced-rank smoother’s benefits 799

account model uncertainties and approximations. Thus, attheg, = (I — Kk|ka)P§(a}i|k_l, i€y (13)
end of the forecast step (at timg, an estimate of the ocean

statex}(lkfl and error_statist.icé’fdkf1 associated to this state Pjj, =P _; — K,~|kaP§fl.|k_l, i €Xp (14)

are provided by the filter, given all observations available up . . . ,

to timez;_1. Equations of the optimal linear fixed-lag smoother are

summarized in Eqgs. (8)—(14). To perform the retrospec-
tive analysis, the smoother needs the introduction of cross-
covariances matrices, that is, matrices of covariances be-
tween state errors at two different times. These matrices are
involved in the smoother gain (E41), which is used for the
smoother analysis (EdL2). Thereby, the cross-covariance
matrices enable the use of information at tipdo correct

a past state at time. Note that in the forecast step, the
Eqg. @) of thefilter is split into two equations for the smoother
r(Eqs.g and10) to bring out the cross-covariances matrix.

Observations at time, are then used to perform the fil-
ter analysis step. First the innovation veciigris computed
(Eq. 3), providing the difference between observatiomg) (
and the model statecKlk_l) projected into the observation
space with the observation operatéf. The innovation er-
ror covariance matrbGy is also defined (Eg4), with Ry
the observation error matrixsy, is then used to compute the
Kalman gainKx (Eq.5). Then, the update of the forecast
state,x?, , is computed (Eg6), balancing observations and
the model estimate thanks to the Kalman gain. Statistics o
the residual errorPglk, are also estimated through E_d).( 2.4 The square-root transformation of the Kalman filter
At the end of the analysis step, the Kalman filter provides the and smoother
best state estimate given all observations available up to time

Ui . ~ We now expose algorithms in a reduced-rank form so they
AnaIyS|_s and forecast steps are performed successivelyan pe applied to large geophysics systems. We use the sin-
from the first to the last observed date. gular evolutive extended Kalman (SEEK) filter that has al-

ready been implemented with real systems (¥a&yron et
al., 1999 Testut et al.2003 Brankart et al.2003andCas-
truccio et al, 2006. A synthesis on the SEEK filter can be

2.3 The sequential smoother

The smoother uses observations at a tip® improve past . .
estimates at times, with ; < 7. Thus, an analysed state at found inBrasseur and Verro200§ or Rozier et al(2007).

time 1 is now notedx;?‘lk, meaning it contains all informa- The main idea is to use a square-root decomposition of the

tions from observations available until time Obviously,i  €fTor covariance matrix so it can be written &= SEA

is not unique, meaning observations at timean be used whereS' is an x n matrix, n being the length of the state
by the smoother to analyse several past states (at differertector. The filter equations are then reformulated including
times ;). The set of time indices at which the retrospec- the square-root decomposition, as exposed in Egs. (15)—(24).

tive analyses are produced is nofeg In our configuration, To be computable at low cost, some assumptions are in-
Y = (k—L, ...,k—1}, corresponding to a fixed-lag smoother troduced. First, the dimension 8f can be reduced assuming
according to the nomenclature useddnsme et al(2010. that errors only occur on a low-dimensional subspacef

With this configuration, the smoother performs retrospectivethe state space (with < »). In practice, these error direc-
analysis for thel states previous to timg only (L being  tions can be identified keeping theirst empirical orthogo-
called thelag of the smoother). This can be interpreted asNal functions (EOFs) computed from a time series of model
time localisationof the smoother, restricting the past influ- States. When considering only thenain directions of the er-
ence of observations. It also limits the numerical storage of T, S becomes & xr matrix, the columns of which are often

the smoother. referred to aerror modes The terml 4 I' in the smoother
Forecast step gain is therr x r, and easily inversible if is small enough.
Moreover, the propagation of error covariances (E§). is
x;qkfl = Mk—l,kxz_l\k—l (8) more affordable (only model iterations are needed instead

of n). The model error term is now notedin this equa-

tion. Another assumption is made ab&ytso it can be eas-

ily inversible in the Kalman gain equation: it is considered

" o , diagonal here. Note that other assumptions can be used (as
Prik—1 = Mi—1k (Py_ap—1)" + Qu—1jx (10)  presented iestut et al.2003 Brankart et al.2003 2009

to introduce observation error correlations while keeping the
matrix diagonal.

fa _ aa .
Prik—1=Mik-1xPgZq jjk—1, i€ Xy )

Analysis step

- Equations of the SEEK filter and smoother.
Kijk = PEuk—lHl{(HkP;qkle/{ +Ro) ™! (11) quatt !
. . Initialization x§ andS§
X = Xijp—1 +Kipd, 1€ (12) Forecast step
x;dk—l =Mi—1kXF g1 (15)
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800 N. Freychet et al.: A reduced-rank smoother’s benefits

rely on anevolutivefilter (with dynamical propagation of
the modes), termed in this way in contrast tetatic filter
such as ensemble optimal interpolatidvénsen2003. It

is self-evident that the model error must be accounted for ac-
I = (HiShy_p) "R (HiSy_p) (17)  curately.

The model error parameterisation in ensemble filters has
long been and still remains a considerable issue, and is still an
active topic of researchdputekamer et gl2009 Brankart et
al., 2010. Thecovariance inflatiorapproachl(i et al., 2009
dis1=Yis1— Hk+1x£|k71 (19) is quite p_opular but inadequate to decorrelate error modes
through time Cosme et a).2010. Recent efforts have been

Stk-1 =Mi-14S} 11+ 81k (16)

Filter analysis step

Kt =Sp_all + Tel 7 (Hi Sy R (18)

FEN L Kend (20) undertaken for a better, adaptive estimation of the forecast
klk = L klk—1 T R kIkCk error covariances in the SEEK filteBiankart et al. 201Q
2011), but further work is necessary to make them robust and
S;'flk = 5§<|k71(| + T~ Y2 (21) applicable routinely. In order to disconnect the smoother and
) the model error issues here, we have decided to stick to a
Smoother analysis step perfect modeset-up and neglect the model error te¥rThis
1 7 Te—1 obviously puts limitations on the scope of our experiments,
Kije = S_all + Tl (HeSp )" Ry (22) s detailed in Sect. This assumption leads to a new form
of Eq. (16):
a a .
xi|k = xi|k—1 + Kz\kdks i €2 (23) S;dk—l — Mk—l,ksgfjuk—l' (25)
S =Sl + Ml Y2, iexy (24)  The propagative terviS? implies» model iterationsy be-

ing the number of columns i8% To be affordable at a rea-

With the SEEK formulation of the filter, the sequen- sonable cost; must be kept quite small. A remaining prob-
tial smoother implementation becomes straightforward. Onlylem lies in the divergence of the filter that can occur due to
three extra equations are needed (B%.23 and24). The  the order reduction, i.e. the error estimated by the filGr (
cross-covariance terms are here directly introduced in theindS?), and can become inconsistent with the true error. The
smoother gain. The smoother analysis is performed usingstimation of the errors through time can be controlled thanks
the smoother gain and the innovation vector computed fromto several parameters. This point will be discussed in Sect.
the filter. Finally, the smoother analysis covariances are comwith the implementation of an evolutive filter.
puted. The smoother implementation does not require addi- Finally, note that even i§ is neglected in the covariance
tional assumption nor significant extra CPU times, with re- propagation, retrospective influence of observations is artifi-
spect to the filter. The only limitation lies in the storage of cially limited thanks to the fixed-lag form of the smoother.
the smoother covariance matrices, but with the fixed-lag for- . )
mulation, the number of restrospective analyses, and thus thé-6 A half-fixed basis smoother

number of covariance matrices to store for each observatio S . .
he model error parameterisation issue, combined with the

rohibitive cost of the modes propagation, often leads to use

static filters, as various oceanographic operational centers

have already turned td(asseur et al.2005 Martin et al,

25 Model error and evolutive covariances 2007 Oke et al, 2008. It can be expected that these opera-
tional centers will have to adapt their assimilation schemes to

A smoother requires accurate cross-covariances between thgerform the future reanalyses of the ocean circulation, as has

is limited. The smoother also presents the advantage of bein
applicable simultaneously to or after the filter (in this case,
calculations of the gains must be performed again).

filter forecast state and past estimates (&). Thus, the fil-  already been doné-¢rry et al, 2010, and as is the general
ter must provide accurate forecast (and analysis, for the nex¢ase now for the atmospheric circulation. For this reason, and
steps) error modes. in spite of the theoretical concerns mentioned previously, it

Theoretically speaking, the forecast error modes resulseems worth trying to design a smoother based on a static
from the combination of the dynamical propagation of pastfilter (minimizing the impacts of the violations in the theory)
analysis modes, which ensures the statistical connectiomnd testing it numerically.
through time, and a white-in-time model error, which makes  In this configuration, only Eq25) needs to be rewritten in
the short-term cross-temporal decorrelation of modes occué static formSLIk_l = §§. Kalman gains of the filter (E4.8)

(Eg. 16). Hence, both elements (dynamical propagation andand the smoother (EQ2) are also affected, with the terms
model error) play a key role in the behaviour of the smoother.S;,_; being replaced b$gj. Another term in Eq.22) needs
In particular, it is theoretically obvious that a smoother mustto be specified: the analysis error covariance maﬁ%_l.
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This matrix can be considered as fixed (so the smoothe
would also be a fixed basis type), but a more theoretically
sound approach consists of using the analysis covarianc, .,
matrix computed fron) with the filter at the appropriate
time. This smoother scheme is referred to as half-fixed ba:
sis, because a part of the cross-covariance matrix is keg o
fixed (S}dkfl) while the other part is time dependeﬁﬁgfl).

We will expose and discuss more in detail this smoother in
Sect.6. 10°8

i X L. . i B0°W 40°W 20°W (o

3 Twin experiments and assimilation settings

Fig. 1. TATLA4 configuration: sea surface temperature is colored and
The smoother is implemented and assessed in the framewordhibits the development of TIWs in the center of the basin; black
of twin experiments, but with the concern of remaining close contours indicate the 0.5 m$ iso-velocity at 30 m depth, exhibit-
to a real problem (through model and simulated observaing the North Brazil Current and the rings formation. The black
tions). The experimental settings are described in this Sec[ectangular box illustrates the influence zone of an observation (see
tion. The nomenclature of experiments is summarized in Ta-SeCt'g'S)'
ble 2.

2005. The data assimilation experiment starts one month af-
ter the beginning of FALSE, so that the perturbed simula-

The ocean circulation model NEMO (Nucleus for Europeantion can partially adjust with the forcings and damp, spuri-
Modelling of OceanMadeg 2008 is used in a tropical At-  ©US; hllgh.-frequenc_y OSC|I_Iat|ons. The goal of the preser_lt data
lantic configuration (from 615W to 15°E, and 15S to assimilation experiment is then to correct FALSE SO it be-
17.75 N) and with a resolution of 1/4 degree. This config- COMes closer to REF. Note that even if a perturbation of the
uration, previously developed and used Wiyelmann et al. initial condition is not sufficient to assess _the performance of
(2009, is named TATL4 (Tropical ATLantic 1/4 degree). the smoother for a long-term reanalysis, it gllows the caref_ul
Boundary conditions are extracted from a model simulationStudy of the impact of the smoother analysis and the quality
spanning the 1958-2007 periddyssin et al.2009. An ini- of corrected states, at least at the beginning of the experi-
tial condition for TATL4 is extracted on 5 January 1995, Ment.

Atmospheric forcings Brodeau et a).2010 are identical.
An interannual simulation is then performed until the end of

2005. This run is used as a reference for the twin experimen, nietic observations are extracted from REF following the
and is called REF. procedure described bg§osme et al(2010. Two sets of

Two main signals dominate the dynamics of the tropical 5seryations are generated: in situ data of temperature and
Atlantic, as illustrated by Figl. On the one hand, tropical salinity, and altimetric measurements.

instability waves (TIWs) develop during summer a_nd fallat |, situ data mimic ARGO profilers network. Every two
3°N. They propagate from east to west and exhibit a strongy,s 4 set of vertical profiles is available, with the profiles

signal on the sea surface temperatlegeckis 1977 Allen 6° apart from each other. This pattern is shifted Byfam

etal, 1999. On the other hand, eddies develop and circulate, g 5sgimilation step to the next. It results irfalgnsity net-

along the north-east coast of Brazil. These eddies, know agqo i every 18 days, close to the average true ARGO network
Brazil rings Richardson and Walsti986 Garzoliand Katz  (ne profile every 2and every 15 days). The simulated in

199_3’_ are due to_the North Bra_zil Current retroflection and g, qata network is illustrated on Fig,. for one assimilation
exhibit a strong signal on velocity (fr_om t_he surface to 200- cycle (every 2 days) and the full coverage (after 18 days).
500 m depth). Due to their propagative signatures, these tWo™ ajimetric data mimic Jason-type satellite tracks. Ev-
signals are interesting objects of study for afour-dimensionalery 2 days, a limited number of tracks of sea surface

assimilation experiment. height (SSH) are available. The periodicity of these tracks is
10 days. Figure3 provides an example of SSH tracks avail-
able for one assimilation cycle (every 2 days) and shows the

To perform a twin experiment, a perturbed ocean state is gencOMPIete coverage obtained after 10 days of consecutive al-

erated using the interannual variability. An initial condition iMetric observations.
from REF on 25 May 2003 is used to restart the model on
25 May 2005. This error on initial condition leads to a per-
turbed simulation called FALSE, computed until the end of

3.1 Model and configuration

3.3 Simulated observations

3.2 Perturbation

WwWw.ocean-sci.net/8/797/2012/ Ocean Sci., 8, 7874 2012



802 N. Freychet et al.: A reduced-rank smoother’s benefits

2 days of observation 18 days of observation

T
6O°W 40°W 20°W e GOW 40°W

Fig. 2. Horizontal distributions of in situ observation network simulated for the experiment. Left: observations available for one assimilation
step (here: 30 June 2005). Right: observations coverage after 18 days.

2 days of observation 18 days of observation

f" !’&,
o

0
|

Fig. 3. Horizontal distributions of altimetric observation network simulated for the experiment. Left: observations available for one assimi-
lation step (here: 30 June 2005). Right: observations coverage after 10 days.

We consider the measurement error to be null here: thée considerably increased, and hence the required size of the
observations are not perturbed and can be describpdras ensemble.
fect observationsHowever, the matriR is not zero because
of the truncation error. Its parametrisation is presented in3.5 Localisation
Sect. 4. The preliminary experiments have been carried out . L
this way, and since the appropriate valueRofo account for A consequence qf the order reductlon is that stgtlsncs may
representativeness is much larger than the actual observatidipt Pe able to faithfully descibe all the correlations, espe-
error, perturbing the observations was considered somewh&@/!y long-distance correlationsiputekamer and Mitchell
superfluous. Re-running the experiments would be extremely-998- To prevent the spurious influence of distant obser-

expensive and would not change the results significantly, ~vations during an analysis step, the filter is used with a lo-
calisation schemeBfankart et al.2009. This method rules

3.4 |Initial statistics out long-distance corrections, so that only observations in the
neighbourhood of an analysed point are used for the correc-

As the only source in the initial state error is connected to thetion. The size of the neighbourhood is defined a% Adnal

model’s time variations, the statisti& describing the ini- and 10 meridional in length (illustrated by the black box in

tial error covariance are calculated based on the model’s timéig. 1), a trade-off between analysis accuracy and computa-

variability. 270 EOFs are computed from REF, using oceantional efficiency made after a large number of sensitivity ex-

states in summer and fall between 1995 and 2000. Winteperiments. It is large enough so that at least one observation

and spring are not considered because the experiment spaissavailable for each analysis. The zonal length is larger than

the summer months only, and because TIW or Brazil ringthe meridional length because the dynamics in the tropical

signatures are mostly present in summer and fall. The firstegion are mostly zonal, so the correlations are more consis-

39 EOFs, which represent about 95 % of the total varianceent in this direction.

of the 270 initial EOFs, are selected to form the initial error

modes. Note that in an operational forecast system, where

additional errors (in forcings for instance) have to be consid-

ered, the number of degrees of freedom for the errors would

Ocean Sci., 8, 797811, 2012 WwWw.ocean-sci.net/8/797/2012/
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4 Evolutive filter Table 1. Observation errors of SSH, temperature and salinity for
sensitivity experiments ErrObs01 to ErrObs04.

We now present the results of the SEEK smoother in its orig-

inal form, i.e. with evolving error modes, as presented in Experimentname SSH(cm) Temperatf€) Salinity

Cosme et al(2010. For the reasons mentioned in S,

. - - . ErrObs01 0.03 0.8 0.5
we pay particular attention to the accurate estimation of the ErrObs02 0.08 15 1
forecast error modes (defined by 2&.in our configuration). ErrObs03 015 5 15
It is well known that due to the truncature Sfessentially, ErrObs04 0.3 3 3

the error modes can collapse or become inconsistent with the
true error (error on the mean) with time. The most common
method to avoid this is to use covariance inflation. However
for the reasons given in Se@.5, it is not our choice here.
Instead, we chose to tune a few parameters controlable in th
system: the number of error modes (columnS)irthe size of
the localisation domain, and the amplitude of the (diagonal)
observation error matriR. The adopted criterion of consis-
tency between errors on the mean and errors estimated by t
modes is that the RMS error computed with the mean,

'day O for the results. For each experiment, the true RMS error
is compared to the mean estimate error of the fitig6&)).
esults are illustrated with the temperature error levels on
Fig. 4. The red curve represents the true error, and the full
black curve the estimated error. The error of FALSE is also
I,%\own with the black dotted line. To be consistent, the esti-
mated error (black) should be close to the true error (red).
Results show that for the error statistics to be consistent,

1 N M P prescribed observation errors have to be large. Indeed, the
RMS = N <P Z Z(xi, k= x{’ejt k)2 best estimated error is obtained with the largest observations
XM k= error (ErrObs04 in Tabld). This suggests that the trunca-

ture error included irR is ten times larger than a traditional
measurement error. On the other hand, the mean true error
(in red) is poorly influenced by this parametrisation. Conse-
r%uently, large observation errors avoid the collapse of error
modes without affecting the quality of the mean state es-
imate. Also, as a (negative) counterpart of neglecting the
. ) . . odel error, the filter converges to an asymptotic level of
by practical considerations. A high number of error mOdeserror, which makes the smoother assessment relevant in the

allows an accurate representation of the error space, but MSirst few weeks of the experiment only. The results are sim-

quires more CPU time for modes propagation. Several S€Mar for all other assimilated variables (salinity and SSH, not

S't'v.'ty experiments, not_ defcalled here, suggested that 39 ISshown). The filter is less efficient for velocities, but still the
a fair number. The localisation parameters must also be pre-

i . ; . . . estimated error on these variables is better with high obser-
scribed optimally to avoid spurious corrections due to d'StanR/ation errors. as for the assimilated variables

observations and no correction due to absence of close obser- The paran%etrisation of an evolutive filter is’ difficult. The
vations. Again, sensitivity experiments showed that having a.tdefinition of the error covariance matrix and the control of

Iceha:;'::gne observation for each analysed grid point was a fa'fts time evolution is tricky, and may lead to consideration of

- L _ unusual values for certain parameters (such as the observa-
The remaining parameter to be specified is the marix

which represents the confidence of the observations and Ot'ons error in our case). This would be especially true with a
P ore complex system where error sources would not only be

the resulting analysis. This matrix includes the observatlon"nked to the initial condition, and it certainly is a major ob-

tehrr?r gncludlntg the da_ccusracyé Zf E_easurfr_ne_nts), bu_t ant gnlystacle for the smoother implementation. A strategy to avoid
at. As mentioned In Seck.4, tis Matnx is considered — y,;q problem will be exposed in Se@&. but first we discuss

diagonal. .Th's assumpnon |mpI!es that the d!agonal termsthe smoother effects with the previously defined evolutive fil-
should be inflated to include the ignored non-diagonal terms, . in the next section

Moreover, the truncation error (due to the reduction order)

should also be included iR. This error, as well as the non-

diagonal terms oR, are not easy to quantify, and a wrong 5 Smoother’s impact

definition of the diagonal terms & can lead to inconsistent

error statistics with the real error. Precedent studies point ouThe smoother is tuned using the parameters defined for the
these aspects, as for instaride and Rabier(2002, Rabier ~ SEEK filter in the previous section. The fixed-lag parame-
(2006 andOke et al(2008. To correctly parametrid®, sev-  ter, i.e. the temporal localisation of influence of the obser-
eral filtering experiments are conducted with different valuesvations, is set to 10 days (5 retrospective assimilations). Ex-
for observation errors, as specified in TalkleThe experi- tending the lag to more than 10 days barely improves the
ments lasted 50 days, starting from 25 June, considered asmoother results. This is due to the decrease in amplitude of

(withi = 1: N the set of the longitudeg,= 1: N the set of
the latitudesk = 1: P the set of the vertical levels; ; ; the
mean state of the ocean aqiijf « the true state of the ocean,
REF), must be of the same order of magnitude as the squa
root of the trace of the covariances matii($5)).

The first two parameters, though, are partly constraine
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Fig. 4. Influence of temperature observation error on the error statistics. Red curve represents the true RMS error on temperature and black
curve the error estimated with the filter (y-axis: day of the experiment, x-axis: RMS erftt)irrhe black dotted curve shows the RMS
error of FALSE. Each figure corresponds to a different parametrisation of temperature &rdfalues are specified in Table.

the cross-covariance matrg2S’” with time, either because the smoother corrections are based on the filter innovation
<2 and SfT become orthogonal due to the model dynamics(Eq. 19). If the innovation is null, whatever the reason is,
working on the latter, or because of the continuous decreasthe smoother will not bring any correction. A smoother is
of the former due to the successive retrospective analyses. not meant to counterbalance spurious tuning of the filter, but
only to make optimal (4-D) use of observations, especially
when they are sparse in nature, space, and time. In the case
of a reanalysis, the filter is expected to have a significant im-

pact during all the experiment, along with the smoother. As

T_he smoother 'mPa_Ct L the.mean error levels is shown Nve are interested in the smoother effects here, we now focus
Fig. 5 for two assimilated variables (SSH and temperature)q, 1 first part of the experiment when the smoothed error

and a non-assimilated variable (zonal velocity). As expected)q, | s significantly lower than the filtered error level.
the error on SSH or velocity is reduced with the smoother,

though to a limited extent, due to relatively small initial er- 5.2  The smoother’s dynamics estimation

rors in SSH. In the tropics, where the large scale dynamics

are not dominated by geostrophy, variations in SSH are lowThe smoother is able to reduce the error level of the fil-
in amplitude, and therefore hard to control with data assim-ter analysis. We now examine its capacity to estimate dy-
ilation (Ubelmann et a).2009. The small improvements in  namically balanced states of the ocean circulation. Indeed, a
velocity are due to the fact that corrections on this variableKalman filter analysis estimate results from a trade-off be-
mostly occur near the surface, and errors are computed ovdween dynamics (from the background estimate) and statis-
the 3 spatial dimensions. The signature of the smoother imtics (from the correction term). However, it is still supposed
pact is then mitigated by the 3-D signal. Results are moreto represent the state of a dynamical system and, as such,
contrasted for the thermodynamical variables: temperaturenust bedynamically balancedhat is, respectful of the dy-
and salinity. Compared to the filter analysis, the mean erromamics represented by the system’s model. A smoother es-
level of the smoothed states is 10 % to 15 % lower at the betimate must be, at least in theory, closer to the truth than
ginning of the experiment (before day 10). After day 10, thethe filter estimate. However, it has also undergone a se-
smoother effects tend to decrease, concomitantly with the filries of statistically-based corrections that move this dynam-
ter corrections. This behaviour is satisfactory, and directlyics/statistics trade-off toward statistics, which may further al-
related to the settings of our experiment, where the errorger its dynamical balance. To check the representation of the
are introduced in the initial state only. In such settings, thedynamics in the smoothed states (compared to the filtered
filter converges with time toward an asymptotic error level, states), we perform a simple test: analysed states (from the
and the innovations tend to be zero. Like the filter correction,filter or the smoother at day 2, i.e. the first analysed date)

5.1 Smoothing improvements on error statistics

Ocean Sci., 8, 797811, 2012 WwWw.ocean-sci.net/8/797/2012/
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Fig. 5. RMS errors for the SSH (m), the temperatuf€Y and  Fig. 6. RMS errors for the SSH (m), the temperatuf€) and the
the zonal velocity (ms?), for the filter (full black line) and the  zonal velocity (ms2), for the filtered run (full black line) and the
smoother (circles). The trajectories of the run FALSE are also rep4ree runs restarted with the filtered state at day 2 (full red line) or
resented by a dotted line. the smoothed state at day 2 (dotted red line). The RMS errors for
FALSE are also shown with a dotted black line.

are uged to initialize a frge run of thg mo'd'eI. (res.pec'uvelyTalble > Nomenclature of the different runs.
FreeFilt and FreeSmooth in Tat#te The implicit idea is that

if a state is dynamically inconsistent, this should be reflected ryn name Description

in the error evolution, as illustrated Rozier et al(2007).

Results for error levels in SSH, temperature and zonal ve- REF r'gft::::gga' run from 1995 to 2005, used as the
!OCIty are shown on F!g6. First, the error Ievgl at day 10 FALSE Perturbed run, initialized on 25 June 2005
is the same for the filtered run (full black_lme) and thg with the state of REE from 25 June 2003.
FreeSmooth run (dotted red line), for all variables, and this £ oariit Run initialized on day 2 of the data assimila-
is a notable point. Indeed, the same observations are used in tion experiment, with the filtered state.
both cases, but the filter assimilates them sequentially in time FreeSmooth Run initialized on day 2 of the data assimila-
while the smoother assimilates them on the same date (here, tion experiment, with the smoothed state.
day 2). It means that the smoother could extract the same FreeOl Run initialized on day 10 of the data assimila-
information from observations, but corrected the same state. tion experiment, with the state analysed with
More generally, the evolution of error levels (on both vari- the optimal interpolation.

ables) for FreeSmooth is better during the first 50 days. Be- FreeSmoothOl Runinitialized on day 10 of the data assimila-

yond, errors tend to converge to the same level (though more tion experiment, with the smoothed state basis

slowly for the temperature), becoming close to the FALSE on optimal interpolation.

error level. These results suggest that the smoother correc-

tions are consistent with the dynamics, i.e. the reduction of

the error level has a real significance from a dynamical point A region particularly well-indicated to illustrate this point

of view and does not introduce significant instabilities. is the North Brazil Current zone. Because of its chaotic dy-
namics, the initial condition strongly affects the subsequent
circulation in this region (especially on the Brazil rings).
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Fig. 7. Evolution of absolute error on velocity (in $), between REF and FreeFilt (left) and FreeSmooth (right). The error is calculated
along a section localized af Bl, and between 40W and 50 W.

Figure7 shows the evolution of the error (in velocity) be- theory, we will now investigate the possibility and the ef-
tween the free runs and the reference along a transect (bdiciency of retrospective analyses in a context of fixed-basis
tween 44 W and 52 W) at 5 N. Figure8 shows snapshots formulation of the filter. These results are exposed in the next
of the absolute velocity around this same transect, for dif-section.
ferent times. The alternation between positive and negative
anomalies (Fig.7) is typical of phase shifts affecting the oo
propagative structures, here the Brazil rings. Until day 50,6 Smoother based on a static filter
th|§ ph_as_e sh'ft IS s_tronger in FreeFilt. If the rings seem t is well known that the main obstacle to accurate Kalman
quite similar in the filtered state and the smoothed state af.,, . . . . .

. . . : iltering in oceanography is model dimension. At the
day 0 (Fig.8), they clearly show different evolutions. Rings .
. . . French ocean forecast service Mercator Ocdsip(/www.
in FreeSmooth are much closer to the rings in REF. For .
. S mercator-ocean.fr/frg/the model is presently runata 112
instance, a ring is correctly formed at day 20 or 30 for . . ; -

. > . resolution and 50 vertical levels, featuring more than a billion

FreeSmooth, but this same ring is not completely untied fromsta’[e variables and a prohibitive cost for ensemble methods
the North Brazil Current with FreeFilt. Thus, even if not di- b '

rectly visible in the analysed states (day 0), the dynamics areC_onsequentIy, data assimilation is performed with a rather

obviously more coherent with REF in the smoothed state.s"mIOIe °p“m?' mterpolauon (O1) scheme, as at several other
. . centers. In this section, we present and experiment a formu-
Still, error levels on the free runs (Fig@) and snapshots

(Fig. 8) after day 50 show that the dynamics in FreeSmoothIation of the fixed-lag smoother that complies with these op-
tends to become also unphased with REF (though the d rmme_rational constraints. The filter described and implemented
ics are not exactly the sapme as in FreeFilt) 9 y previously is modified to work as an Ol scheme. The same

Given all these considerations, it is obvious that theparameterlsatlons are used, except that Eg) is now re-

smoothed solution leads to a better estimation of the dynamplaced by the following equation:

ics, compare to a filtered solution at the same date. The foursf =~ _ 3 (26)
dimensional use of the information from the observations has * ’
areal impact on analysed states. If the parametrisation linke& being the initial basis of error modes.
to the filter is optimal, then the implementation of a smoother A hypothesis inherent to the implemention of an optimal
gives a better estimated solution, from both statistical and dyinterpolation scheme is that the analyses times are distant
namical points of view. In our experiment though, these re-enough to make the residual errors decorrelate from one step
sults are limited to the beginning of the experiment due to theto the next. To implement the Ol scheme with our configura-
settings of the problem. tion, we define a new observation network with a 10-day fre-
Despite its benefits, a remaining obstacle in implementinggquency. Observations themselves are the same (i.e. they are
a smoother is the parametrisation of the evolutive filter. Evenextracted from REF every 2 days), but are gathered together
if this formulation is not fully consistent with the smoother at the nearest analysis days, and assimilated all together on

Ocean Sci., 8, 797811, 2012 WwWw.ocean-sci.net/8/797/2012/
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Fig. 8. Absolute error maps for the velocity (in m3), for REF (left), FreeFilt (middle) and FreeSmooth (right). Day 0 (top) is the day of
the restart. The snapshots are given every 10 days.

those days. For instance, observations between day 5 and 7~
are gathered and assimilated at day 10. The next assimilatio
step occurs at day 20, with all observations available betweel
day 15 and 25. Day 10 is now the date of the first assimilationf
step. -
Figure 9 presents a diagram of the smoother implemen-
tation. At the filter analysis timé, the analysis covariance
matrix S} is computed from the backgrour®), simultane- -
ous to the analysis state. This is not usually done with an OI[ I | |
scheme. The retrospective analysis at titnesing the ob- K k+10 k+20
servation at a timé + 10 is performed (corresponding t0 @ Fig. 9. Schematic representation of the half-fixed basis smoother
10-day interval) using the cross-covariances mﬁSST. with a 10-day frequency observation network. Analysis covariance
Thus, the smoother uses information on residual errors ainatrices (in green) are computed after each optimal interpolation
time k, combined withSf instead 01’82 vaop- I S is fixed,  analysis (at timeé andk + 10). The cross-covariance matrix used
the matrixS? depends on the time of the analysis (this matrix for the smoother analysis between datendk + 8 (respectively
is computed every 10 days after an Ol analysis step). Thidetweenk + 10 andk + 20) is indicated in red (respectively blue).
form of smoother can be then considered as half-fixed. The‘Smoothed states are indicated with red or blue symbols (see6Sect.
large red circle and the blue plus sign in Figeepresent the for more explanations).
smoother analysis with a 10-day retrospective analysis.
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Fig. 10.RMS errors for the SSH (m), the temperatut€) and the Fig. 11. RMS errors for the SSH (m), the temperatu?€) and

zonal velocity (ms1), for_the optimal interpolation (full black line) & zonal velocity (ms?), for the optimal interpolation (full black

and the smoother (red circles). line) and the free runs restarted with the corrected state at day 10
with Ol (full red line) or the smoothed state based on Ol at day 10

o ] (dotted red line). The RMS errors for FALSE are also indicated by
Now, it is also possible to perform smoother analysesine dotted black lines.

at intermediate times, every 2 days for instance. For each
of such analyses, the background state is provided by the
model simulation during the Ol process. The background erthe velocity). It is finally worth noticing that this smoothing
ror modes must be defined appropriately, based on alreadgcheme is almost cost-free and could be applied with current
existing bases. In the following experiments, the modes a@ssimilation systems in operational oceanographic centers.
timesk+2, ..., k+8 are simply prescribed wit§}, but other Note that a 2-day configuration of a smoother can also be
sound solutions are possible, such as a linear combinationsed with a 10-day frequency evolutive filter. The smoother
of S andS{. This was not tested here. These intermediateneeds the propagation of error statistics between the begin-
smoother analyses are represented with red squares and bloag of an interval and the day of the retrospective assimila-
crosses in Figo. tion. This scheme is then similar to the asynchronous Kalman
filter described byHunt et al.(2004).

6.1 Smoother’s impact on the optimal interpolation

solution 6.2 Dynamics with a half-fixed basis smoother

Results on RMS error levels for the optimal interpolation As in the previous section, we here examine the dynamical
and the smoother based on Ol are shown on E@.The balance of the smoother solution. Free runs are initialized
smoother impact (red circles) is visible for each variable, as-at day 10 with the analysed states from Ol (FreeOl) or the
similated or not. First, the evolution of error levels for the smoother based on Ol (FreeSmoothOl). The evolution of er-
smoothed solution is continous. Discontinuities inherent toror levels are shown in Figll. Even if initial error levels
seqguential assimilation solutions (visible here every 10 daysfor Ol and the smoother are close (especially for temperature
during Ol analysis) are smoothed out. Also, even with aand velocity), the behaviours of both free runs are signifi-
very simple configuration of cross-covariance matrices, thecantly different. The error level of FreeOl tends to increase
smoothed solution exhibits lower error levels than the fil- (after day 50) for each variable. On the contrary, for each
tered one, except for some points (between day 20 and 30 forariable, the error level of FreeSmoothOl tends to decrease
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Fig. 12.Absolute error map for the velocity (in nT%), for REF (left), the run restarted with a corrected state for Ol (middle) and a smoothed
state based on Ol (right). Day 0 (top) is the day of the restart. The snapshots are given every 40 days.

continously. This is blatant with velocity. Even after day 50, states. The smoother was first implemented as described in
the error level keeps decreasing, suggesting that the dynanits seminal formulation, i.e. with an evolutive filter. In a sec-
ics stay consistent and close to REF. Figl2dlustrates this  ond step, a simplified scheme was introduced based on op-
point in the North Brazil Current region. During the first 40 timal interpolation, as many operational centers use, and its
days, the Brazil rings are quite similar between FreeOl andbenefits were exposed. A simple twin experiment was set up
FreeSmoothOl. However, at day 80, the rings and the brancffor this study, based on a perturbation of the initial condi-
of the North Brazil Current’s retroflection are clearly better tion. This configuration limited the benefits of the analysis
simulated in FreeSmoothOl. throughout time, but a focus on the first assimilation steps
This example shows once again that the improvement ofnabled us to draw relevant conclusions about the smoother
the solution due to the smoother is not only statistical, but hasdehaviour and benefits.
a real dynamical meaning. The smoother can be used with Technically, the implementation of the smoother algorithm
a non-optimal system (fixed-basis) and still exhibits signif- is rather straightforward (when a filter algorithm is already
icant improvements, both on the average error level and oimplemented). It requires only a few extra calculations com-
the dynamics of the solution. Still, one should keep in mind pared to the filter, and can be performed simultaneously to or
that the parametrisation of the Ol here is not optimal, sinceafter a filter pass. The smoother can then be considered as an
it is based on the same parametrisation of an evolutive fil-additional layer to the filter algorithm.
ter. Moreover, as already discussed, many possibilities can A major obstacle to implementing a smoother lies in the
be considered using a smoother scheme based on Ol. Wearametrisation of an evolutive filter, theoretically needed to
chose a simple configuration here, but more sophisticatediefine accurately the cross-crovariance error matrices. We
ways to define the cross-covariance error matrix could im-used a criterion based on mean error statistics to specify
prove the results. These results also suggest that a smoothite parameters associated with the filter. We found that for
scheme could be introduced in current operational center syghe mean error statistics of the filter to be consistent with
tems, opening new perspectives for upcoming reanalyses dhe true error, we had to prescribe large observation errors.
the ocean circulation. Moreover, the filter efficiency was mostly significant during
the first 10 days of the experiment. To preserve optimality
over a longer period, the filter should be used with adaptative
7 Conclusions parametrisationsBrankart et al.2010.
To circumvent this issue, we considered implementing a
The reduced-rank sequential smooth@ogme et a).2010 smoother based on a simpler system of optimal interpolation.
based on the SEEK filter has been further developed and imT0 do so, we defined a new algorithm for a half-fixed basis
p|emented in a real ocean circulation model. The main pursmoother. The advantage of such formulation is that it could
pose was to study the obstacles to implementing such an a®€ implemented almost as is with current assimilation sys-
similation scheme in a real reanalysis system, and to studyems of operational centers. This smoother was tested with a
effects of the smoother on the estimation of the correctedL0-day frequency observation network, but we also pointed
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out the ability of the smoother to provide a solution with a Brankart, J.-M., Cosme, E., Testut, C.-E., Brasseur, P., and Ver-
higher frequency (2 days in this case). ron, J.: Efficient adaptative error parametrizations for square root
The smoother efficiency was studied in both cases: evolu- 0r ensemble Kalman filters: application to the control of ocean
tive and fixed error modes. Overall, the smoother was able to Mesoscale signals, Mon. Weather Rev., 138, 932-950, 2010.
improve the results compared to 3-D assimilation schemesBrankart, J.-M., Cosme, E., Testut, C.-E., Brasseur, P., and Verron,
filter or optimal interpolation. In this twin experiment, with 2+ Efficient local eror parameterizations for square root or en-
absence of perturbations to the forcing and to the synthetic semble Kalman filters: application to a basin-scale ocean turbu-
. ) lent flow, Mon. Weather Rev., 139, 474-493, 2011
qbserva_tlo_ns'_ error levels Wgre reduced with th? I'e'[rOSp(':‘CBrasseur, P. and Verron, J.: The SEEK filter method for data assim-
tive assimilation of observations. The smoother impact was jiation in oceanography: a synthesis, Ocean Dynam., 56, 650—
mostly significant during the first 10 days of the experiment, 661, doi:10.1007/s10236-006-0080-3006.
just like the filter, underlying the fact that the smoother effi- Brasseur, P., Bahurel, P., Bertino, L., Birol F., Brankart, J.-M., Ferry,
ciency is strongly related to the parametrisation of the filter N., Losa, S., Remy, E., Sditer, J., Skachko, S., Testut, C.-E.,
(and the optimal interpolation). Tranchant, B., Van Leeuwen, P. J., and Verron, J.: Data Assimila-
We also could verify that the smoothed solution was dy- tion for marine monitoring and prediction: The MERCATOR op-
namically consistent and in better dynamical adequacy with erational assimilation systems and the MERSEA developments,
the reference than the filtered solution. Thus, the corrections Q: J- ROy Meteor. Soc., 131, 3561-3582, 2005.
introduced with the smoother are not only statistical but aIsoBr%d_eilr’]' é‘R fjgnfgéga’ aF:;nodsL:)f:]’eIi'(’: gfgg;;bfémga?zgeigli‘i’r’
have_ a dynamical conS|ste.ncy. Th|_s point was sur_pns_mgly culation models, Ocean Model., 31, 88-104, 2010.
true in t_he (?ase of the haIf-flxeq basis smoother, Wh'_Ch 1S en'Cas’[ruccio, F., Verron, J., Gourdeau, L., Brankart, J.-M., and
couraging in the context of using the smoother to improve  grasseur, P.. On the role of the GRACE mission in the
the quality of reanalyses. joint assimilation of altimetry and TAO data in a tropi-
We suggest that the smoother could be performed with ac- cal Pacific ocean model, Geophys. Res. Lett., 33, L14616,
tual reanalysis systems. Indeed, the algorithm could be im- doi:10.1029/2006GL025822006.
plemented easily and with a negligible cost, and the smoothe€ohn, S. E., Sivakumaran, N. S., and Todling, R.: A fixed-
has shown encouraging results with an optima| interpo|a[i0n lag Kalman smoother for retrospective data assimilation, Mon.

system. In other terms, there is no reason to not use it. Weather Rev., 122, 2838-2867, 1994.
Cosme, E., Brankart, J.-M., Verron, J., Brasseur, P., and Krysta, M.:

Implementation of a reduced rank square-root smoother for high
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