Articles | Volume 22, issue 1
https://doi.org/10.5194/os-22-629-2026
https://doi.org/10.5194/os-22-629-2026
Research article
 | 
16 Feb 2026
Research article |  | 16 Feb 2026

Subpolar Atlantic meridional heat transports from OSNAP and ocean reanalyses – a comparison

Susanna Winkelbauer, Isabella Winterer, Michael Mayer, Yao Fu, and Leopold Haimberger

Related authors

StraitFlux – precise computations of water strait fluxes on various modeling grids
Susanna Winkelbauer, Michael Mayer, and Leopold Haimberger
Geosci. Model Dev., 17, 4603–4620, https://doi.org/10.5194/gmd-17-4603-2024,https://doi.org/10.5194/gmd-17-4603-2024, 2024
Short summary
Recent variations in oceanic transports across the Greenland–Scotland Ridge
Michael Mayer, Takamasa Tsubouchi, Susanna Winkelbauer, Karin Margretha H. Larsen, Barbara Berx, Andreas Macrander, Doroteaciro Iovino, Steingrímur Jónsson, and Richard Renshaw
State Planet, 1-osr7, 14, https://doi.org/10.5194/sp-1-osr7-14-2023,https://doi.org/10.5194/sp-1-osr7-14-2023, 2023
Short summary
Assessment of Indonesian Throughflow transports from ocean reanalyses with mooring-based observations
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023,https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary
Diagnostic evaluation of river discharge into the Arctic Ocean and its impact on oceanic volume transports
Susanna Winkelbauer, Michael Mayer, Vanessa Seitner, Ervin Zsoter, Hao Zuo, and Leopold Haimberger
Hydrol. Earth Syst. Sci., 26, 279–304, https://doi.org/10.5194/hess-26-279-2022,https://doi.org/10.5194/hess-26-279-2022, 2022
Short summary

Cited articles

Bacon, S., Aksenov, Y., Fawcett, S., and Madec, G.: Arctic mass, freshwater and heat fluxes: methods and modelled seasonal variability, Phil. Trans. R. Soc. A, 373, https://doi.org/10.1098/rsta.2014.0169, 2015. a
Baker, J., Renshaw, R., Jackson, L., Dubois, C., Iovino, D., and Zuo, H.: Overturning variations in the subpolar North Atlantic in an ocean reanalyses ensemble, in: The Copernicus Marine Environment Monitoring Service Ocean State Report, vol. 15, S1–S142, https://doi.org/10.1080/1755876X.2022.2095169, 2022. a, b, c
Bryden, H. L., Johns, W. E., King, B. A., McCarthy, G., McDonagh, E. L., Moat, B. I., and Smeed, D. A.: Reduction in Ocean Heat Transport at 26°N since 2008 Cools the Eastern Subpolar Gyre of the North Atlantic Ocean, Journal of Climate, 33, 1677–1689, https://doi.org/10.1175/JCLI-D-19-0323.1, 2020. a
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Reviews of Geophysics, 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016. a, b, c
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, https://doi.org/10.1038/s41586-018-0006-5, 2018. a
Download
Short summary
Ocean reanalyses combine models and observations to reconstruct past ocean conditions. We evaluate their performance against measurements from the OSNAP (Overturning in the Subpolar North Atlantic Program) section. While reanalyses capture long-term averages and broad circulation patterns, they miss some more regional features and variability. This highlights both their value and their limitations, stressing the need for improved observations and higher-resolution models.
Share