Articles | Volume 22, issue 1
https://doi.org/10.5194/os-22-329-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-22-329-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coastal-to-offshore submesoscale horizontal stirring enhances wintertime phytoplankton blooms in the ultra-oligotrophic Eastern Mediterranean Sea
Yotam Fadida
Department of Marine Geosciences, Charney School of Marine Science, University of Haifa, Haifa, Israel
Israel Oceanographic and Limnological Research, Haifa, Israel
Vicky Verma
Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
Roy Barkan
Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA
Eli Biton
Israel Oceanographic and Limnological Research, Haifa, Israel
Aviv Solodoch
Institute of Earth Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
Yoav Lehahn
CORRESPONDING AUTHOR
Department of Marine Geosciences, Charney School of Marine Science, University of Haifa, Haifa, Israel
Related authors
No articles found.
Maya Bloch Haimson, Yoav Lehahn, and Tomer Sagi
Ocean Sci., 21, 3131–3164, https://doi.org/10.5194/os-21-3131-2025, https://doi.org/10.5194/os-21-3131-2025, 2025
Short summary
Short summary
In this review paper we aim to create an easy-to-navigate map of the field of ocean data, enabling the reader to establish a broad understanding of the ocean data sector, and bridging gaps between different disciplines and levels of familiarity with ocean data. This is done through the concept of the "data ecosystem", which is used to describe the actors, organisations, and infrastructures involved in all aspects of the data value chain.
Yosef Ashkenazy, Hezi Gildor, and Aviv Solodoch
Ocean Sci., 21, 1641–1661, https://doi.org/10.5194/os-21-1641-2025, https://doi.org/10.5194/os-21-1641-2025, 2025
Short summary
Short summary
We studied ocean currents in the eastern Mediterranean near Israel's coast (2016–2024) across depths of up to 1.3 km. The generalized gamma distribution best matched current-speed data. The speed increment time series fit a stretched exponential distribution better than a normal distribution. Comparisons with high-resolution and regional general circulation models showed discrepancies, highlighting the need to refine the models for better extreme current-speed event predictions.
Cited articles
Amitai, Y., Lehahn, Y., Lazar, A., and Heifetz, E.: Surface circulation of the eastern Mediterranean Levantine basin: Insights from analyzing 14 years of satellite altimetry data, Journal of Geophysical Research: Oceans, 115, https://doi.org/10.1029/2010jc006147, 2010. a
Arrigo, K. R., van Dijken, G. L., and Bushinsky, S.: Primary production in the Southern Ocean, 1997–2006, Journal of Geophysical Research: Oceans, 113, https://doi.org/10.1029/2007JC004551, 2008. a
Auclair, F., Benshila, R., Bordois, L., Boutet, M., Brémond, M., Caillaud, M., Cambon, G., Capet, X., Debreu, L., Ducousso, N., Dufois, F., Dumas, F., Ethé, C., Gula, J., Hourdin, C., Illig, S., Jullien, S., Le Corre, M., Le Gac, S., Le Gentil, S., Lemarié, F., Marchesiello, P., Mazoyer, C., Morvan, G., Nguyen, C., Penven, P., Person, R., Pianezze, J., Pous, S., Renault, L., Roblou, L., Sepulveda, A., Theetten, S., Schaefer, A.-L., Treillou, S., Valat, S., Schreiber, M., and Zribi, A.: Coastal and Regional Ocean COmmunity model (2.1.2), Zenodo [code], https://doi.org/10.5281/zenodo.17642275, 2025. a, b
Baaklini, G., Brajard, J., Issa, L., Fifani, G., Mortier, L., and El Hourany, R.: Monitoring the coastal–offshore water interactions in the Levantine Sea using ocean color and deep supervised learning, Ocean Science, 20, 1707–1720, https://doi.org/10.5194/os-20-1707-2024, 2024. a
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Science, 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019. a
Barkan, R., Molemaker, M. J., Srinivasan, K., McWilliams, J. C., and D'Asaro, E. A.: The Role of Horizontal Divergence in Submesoscale Frontogenesis, Journal of Physical Oceanography, 49, 1593–1618, https://doi.org/10.1175/JPO-D-18-0162.1, 2019. a, b
Behrenfeld, M. J. and Boss, E. S.: Resurrecting the ecological underpinnings of ocean plankton blooms, Annual Review of Marine Science, 6, 167–194, https://doi.org/10.1146/annurev-marine-052913-021325, 2014. a
Berthon, J.-F. and Zibordi, G.: Bio-optical relationships for the northern Adriatic Sea, International Journal of Remote Sensing, 25, 1527–1532, 2004. a
Di Biagio, V., Salon, S., Feudale, L., and Cossarini, G.: Subsurface oxygen maximum in oligotrophic marine ecosystems: mapping the interaction between physical and biogeochemical processes, Biogeosciences, 19, 5553–5574, https://doi.org/10.5194/bg-19-5553-2022, 2022. a
Boccaletti, G., Ferrari, R., and Fox-Kemper, B.: Mixed Layer Instabilities and Restratification, Journal of Physical Oceanography, 37, 2228–2250, https://doi.org/10.1175/JPO3101.1, 2007. a
Bonansea, M., Rodriguez, C., and Pinotti, L.: Assessing the potential of integrating Landsat sensors for estimating chlorophyll-a concentration in a reservoir, Hydrology Research, 49, 1608–1617, https://doi.org/10.2166/nh.2017.116, 2017. a
Brannigan, L., Marshall, D. P., Naveira-Garabato, A., and Nurser, A. G.: The seasonal cycle of submesoscale flows, Ocean Modelling, 92, 69–84, 2015. a
Callies, J., Ferrari, R., Klymak, J. M., and Gula, J.: Seasonality in submesoscale turbulence, Nature Communications, 6, https://doi.org/10.1038/ncomms7862, 2015. a, b
Capet, X., McWilliams, J. C., Molemaker, M. J., and Shchepetkin, A. F.: Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes, Journal of Physical Oceanography, 38, 44–64, https://doi.org/10.1175/2007JPO3672.1, 2008. a
Colella, S., Falcini, F., Rinaldi, E., Sammartino, M., and Santoleri, R.: Mediterranean Ocean Colour Chlorophyll Trends, PLOS ONE, 11, 1–16, https://doi.org/10.1371/journal.pone.0155756, 2016. a
Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation, Ocean Modelling, 49-50, 1–21, https://doi.org/10.1016/j.ocemod.2012.03.003, 2012. a
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geoscientific Model Development, 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a
D'Ovidio, F., Della Penna, A., Trull, T. W., Nencioli, F., Pujol, M.-I., Rio, M.-H., Park, Y.-H., Cotté, C., Zhou, M., and Blain, S.: The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau, Biogeosciences, 12, 5567–5581, https://doi.org/10.5194/bg-12-5567-2015, 2015. a
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., Omar, M., Masina, S., Coppini, G., and Pinardi, N.: A high resolution reanalysis for the Mediterranean Sea, Frontiers in Earth Science, 9, 702285, https://doi.org/10.3389/feart.2021.702285, 2021. a
Estournel, C., Marsaleix, P., and Ulses, C.: A new assessment of the circulation of Atlantic and Intermediate Waters in the Eastern Mediterranean, Progress in Oceanography, 198, https://doi.org/10.1016/j.pocean.2021.102673, 2021. a
E.U. Copernicus Marine Service Information: Mediterranean Sea, Bio-Geo-Chemical, L4, monthly means, daily gapfree and climatology Satellite Observations (1997–ongoing), Marine Data Store [data set], https://doi.org/10.48670/moi-00300, 2023. a, b
E.U. Copernicus Marine Service Information: European Seas Gridded L 4 Sea Surface Heights And Derived Variables Nrt, Marine Data Store [data set], https://doi.org/10.48670/moi-00142, 2024a. a, b
E.U. Copernicus Marine Service Information: Global Ocean Biogeochemistry Hindcast, Marine Data Store [data set], https://doi.org/10.48670/moi-00019, 2024b. a, b
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment, Journal of Geophysical Research: Oceans, 101, 3747–3764, 1996. a
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis, Journal of Physical Oceanography, 38, 1145–1165, https://doi.org/10.1175/2007JPO3792.1, 2008. a
Franz, B. A., Bailey, S. W., Kuring, N., and Werdell, P. J.: Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS, Journal of Applied Remote Sensing, 9, 096070, https://doi.org/10.1117/1.JRS.9.096070, 2015. a
Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C., and Wanless, S.: From plankton to top predators: Bottom-up control of a marine food web across four trophic levels, Journal of Animal Ecology, 75, 1259–1268, https://doi.org/10.1111/j.1365-2656.2006.01148.x, 2006. a
Gerin, R., Poulain, P.-M., Taupier-Letage, I., Millot, C., Ben Ismail, S., and Sammari, C.: Surface circulation in the Eastern Mediterranean using drifters (2005–2007), Ocean Science, 5, 559–574, https://doi.org/10.5194/os-5-559-2009, 2009. a
Gitelson, A., Karnieli, A., Goldman, N., Yacobi, Y., and Mayo, M.: Chlorophyll estimation in the Southeastern Mediterranean using CZCS images: daptation of an algorithm and its validation, Jounal of Marine Systems, 9, 283–290, https://doi.org/10.1016/S0924-7963(95)00047-X, 1996. a
Hecht, A., Pinardi, N., and Robinson, A. R.: Currents, water masses, eddies and jets in the Mediterranean levantine basin, Journal of Physical Oceanography, 18, 1320–1353, https://doi.org/10.1175/1520-0485(1988)018<1320:CWMEAJ>2.0.CO;2, 1998. a
Herut, B., Almogi-Labin, A., Jannink, N., and Gertman, I.: The seasonal dynamics of nutrient and chlorophyll a concentrations on the SE Mediterranean shelf-slope, Oceanologica Acta, 23, 771–782, https://doi.org/10.1016/S0399-1784(00)01118-X, 2000. a
Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M. S., and Claustre, H.: Relationship between photosynthetic parameters and different proxies of phytoplankton biomass in the subtropical ocean, Biogeosciences, 4, 853–868, https://doi.org/10.5194/bg-4-853-2007, 2007. a
IFS: Integrated Forecasting System version Cy47r3 documentation, https://www.ecmwf.int/en/publications/ifs-documentation/ (last access: March 2023), 2021. a
Kessouri, F., Bianchi, D., Renault, L., McWilliams, J. C., Frenzel, H., and Deutsch, C. A.: Submesoscale Currents Modulate the Seasonal Cycle of Nutrients and Productivity in the California Current System, Global Biogeochemical Cycles, 34, https://doi.org/10.1029/2020GB006578, 2020. a
Kirchman, D. L., Suzuki, Y., Garside, C., and Ducklow, W. H.: High turnover rates of dissolved organic carbon during a spring phytoplankton bloom, Nature, 352, 612–614, https://doi.org/10.1038/352612a0, 1991. a
Kress, N. and Herut, B.: Spatial and seasonal evolution of dissolved oxygen and nutrients in the Southern Levantine Basin (Eastern Mediterranean Sea): chemical characterization of the water masses and inferences on the N : P ratios, Deep-Sea Research I, 48, 2347–2372, 2001. a
Krom, M., Kress, N., Berman-Frank, I., and Rahav, E.: Past, present and future patterns in the nutrient chemistry of the eastern mediterranean, Springer Netherlands, ISBN 9789400767041, https://doi.org/10.1007/978-94-007-6704-1_4, 2014. a
Lathuiliere, C., Levy, M., and Echevin, V.: Impact of eddy-driven vertical fluxes on phytoplankton abundance in the euphotic layer, Journal of Plankton Research, 33, 827–831, https://doi.org/10.1093/plankt/fbq131, 2011. a
Lehahn, Y., Koren, I., Sharoni, S., D'Ovidio, F., Vardi, A., and Boss, E.: Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters, Nature Communications, 8, https://doi.org/10.1038/ncomms14868, 2017. a
Lehahn, Y., D'Ovidio, F. D., and Koren, I.: A Satellite-Based Lagrangian View on Phytoplankton Dynamics, Annual Review of Marine Science, https://doi.org/10.1146/annurev-marine-121916-063204, 2018. a
Lévy, M., Franks, P. J., and Smith, K. S.: The role of submesoscale currents in structuring marine ecosystems, Nature Communications, 9, https://doi.org/10.1038/s41467-018-07059-3, 2018. a, b, c, d
Lévy, M., Couespel, D., Haëck, C., Keerthi, M., Mangolte, I., and Prend, C. J.: The Impact of Fine-Scale Currents on Biogeochemical Cycles in a Changing Ocean, Annual Review Marine Science, 16, 191–215, https://doi.org/10.1146/annurev-marine-020723-020531, 2023. a
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annual Review of Marine Science, 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016. a, b, c, d
Mahadevan, A. and Tandon, A.: An analysis of mechanisms for submesoscale vertical motion at ocean fronts, Ocean Modelling, 14, 241–256, https://doi.org/10.1016/j.ocemod.2006.05.006, 2006. a
Mayot, N., D'Ortenzio, F., Ribera d'Alcalà, M., Lavigne, H., and Claustre, H.: Interannual variability of the Mediterranean trophic regimes from ocean color satellites, Biogeosciences, 13, 1901–1917, https://doi.org/10.5194/bg-13-1901-2016, 2016. a
McWilliams, J. C.: Submesoscale currents in the ocean, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472, https://doi.org/10.1098/rspa.2016.0117, 2016. a
McWilliams, J. C., Gula, J., Molemaker, M. J., Renault, L., and Shchepetkin, A. F.: Filament Frontogenesis by Boundary Layer Turbulence, Journal of Physical Oceanography, 45, 1988–2005, https://doi.org/10.1175/JPO-D-14-0211.1, 2015. a
Mensa, J. A., Garraffo, Z., Griffa, A., Özgökmen, T. M., Haza, A., and Veneziani, M.: Seasonality of the submesoscale dynamics in the Gulf Stream region, Ocean Dynamics, 63, 923–941, 2013. a
Monte, S. D., Soccodato, A., Alvain, S., and D'Ovidio, F.: Can we detect oceanic biodiversity hotspots from space?, ISME Journal, 7, 2054–2056, https://doi.org/10.1038/ismej.2013.72, 2013. a
Nixon, S. W.: Replacing the Nile: Are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river?, Ambio, 32, 30–39, https://doi.org/10.1579/0044-7447-32.1.30, 2003. a
Ogashawara, I., Kiel, C., Jechow, A., Kohnert, K., Ruhtz, T., Grossart, H.-P., Hölker, F., Nejstgaard, J. C., Berger, S. A., and Wollrab, S.: The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment: A Comparative Study on Different Lakes in Northern Germany, Remote Sensing, 13, 1542, https://doi.org/10.3390/rs13081542, 2021. a
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.: Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea, Global and Planetary Change, 151, 60–67, https://doi.org/10.1016/j.gloplacha.2016.04.001, 2017. a
Poddar, S., Chacko, N., and Swain, D.: Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors, Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00598, 2019. a
Racault, M. F., Quéré, C. L., Buitenhuis, E., Sathyendranath, S., and Platt, T.: Phytoplankton phenology in the global ocean, Ecological Indicators, 14, 152–163, https://doi.org/10.1016/j.ecolind.2011.07.010, 2012. a
Raveh, O., David, N., Rilov, G., and Rahav, E.: The temporal dynamics of coastal phytoplankton and bacterioplankton in the eastern mediterranean sea, PLoS ONE, 10, https://doi.org/10.1371/journal.pone.0140690, 2015. a
Reich, T., Ben-Ezra, T., Belkin, N., Tsemel, A., Aharonovich, D., Roth-Rosenberg, D., Givati, S., Bialik, M., Herut, B., Berman-Frank, I., Frada, M., Krom, M. D., Lehahn, Y., Rahav, E., and Sher, D.: A year in the life of the Eastern Mediterranean: Monthly dynamics of phytoplankton and bacterioplankton in an ultra-oligotrophic sea, Deep-Sea Research Part I: Oceanographic Research Papers, 182, https://doi.org/10.1016/j.dsr.2022.103720, 2022. a
Rosentraub, Z. and Brenner, S.: Circulation over the southeastern continental shelf and slope of the Mediterranean Sea: Direct current measurements, winds, and numerical model simulations, Journal of Geophysical Research: Oceans, 112, https://doi.org/10.1029/2006JC003775, 2007. a, b
Salgado-Hernanz, P., Racault, M.-F., Font-Muñoz, J., and Basterretxea, G.: Trends in phytoplankton phenology in the Mediterranean Sea based on ocean-colour remote sensing, Remote Sensing of Environment, 221, 50–64, 2019. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model, Ocean Modelling, 9, 347–404, https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Silva, E., Counillon, F., Brajard, J., Korosov, A., Pettersson, L. H., Samuelsen, A., and Keenlyside, N.: Twenty-One Years of Phytoplankton Bloom Phenology in the Barents, Norwegian, and North Seas, Frontiers in Marine Science, 8, https://doi.org/10.3389/fmars.2021.746327, 2021. a
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.: Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010. a
Taylor, J. R. and Thompson, A. F.: Submesoscale Dynamics in the Upper Ocean, Annual Review of Fluid Mechanics, 55, 103–127, https://doi.org/10.1146/annurev-fluid-031422-095147, 2023. a
Trine Dale, F. R. and Heimdal, B. R.: Seasonal development of phytoplankton at a high latitude oceanic site, Sarsia, 84, 419–435, https://doi.org/10.1080/00364827.1999.10807347, 1999. a
Varkitzi, I., Psarra, S., Assimakopoulou, G., Pavlidou, A., Krasakopoulou, E., Velaoras, D., Papathanassiou, E., and Pagou, K.: Phytoplankton dynamics and bloom formation in the oligotrophic Eastern Mediterranean: Field studies in the Aegean, Levantine and Ionian seas, Deep-Sea Research Part II: Topical Studies in Oceanography, 171, https://doi.org/10.1016/j.dsr2.2019.104662, 2020. a
Verma, V., Pham, H. T., and Sarkar, S.: The submesoscale, the finescale and their interaction at a mixed layer front, Ocean Modelling, 140, 101400, https://doi.org/10.1016/j.ocemod.2019.05.004, 2019. a
Volpe, G., Nardelli, B. B., Colella, S., Pisano, A., and Santoleri, R.: An Operational Interpolated Ocean Colour Product in the Mediterranean Sea, GODAE OceanView, https://doi.org/10.17125/gov2018.ch09, 2018. a
Volpe, G., Colella, S., Brando, V. E., Forneris, V., La Padula, F., Di Cicco, A., Sammartino, M., Bracaglia, M., Artuso, F., and Santoleri, R.: Mediterranean ocean colour Level 3 operational multi-sensor processing, Ocean Science, 15, 127–146, https://doi.org/10.5194/os-15-127-2019, 2019. a
Yacobi, Y. Z., Zohary, T., Kress, N., Hecht, A., Robarts, R. D., Waiser, M., Wood, A. M., and Li, W. K. W.: Chlorophyll distribution throughout the southeastern Mediterranean in relation to the physical structure of the water mass, Journal of Marine Systems, 6, 179–190, https://doi.org/10.1016/0924-7963(94)00028-A, 1995. a
Yadav, S., Yamashiki, Y., Susaki, J., Yamashita, Y., and Ishikawa, K.: CHLOROPHYLL ESTIMATION OF LAKE WATER AND COASTAL WATER USING LANDSAT-8 AND SENTINEL-2A SATELLITE, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3/W7, 77–82, https://doi.org/10.5194/isprs-archives-XLII-3-W7-77-2019, 2019. a
Yoder, J. A., Mcclain, C. R., Feldman, G. C., and Esaias, W. E.: Annual Cycles of Phytoplankton Chlorophyll Concentrations in the Global Ocean: a Satellite View, Global Biogeochemical Cycles, 7, 181–193, 1993. a
Zhan, P., Guo, D., Krokos, G., Dong, J., Duran, R., and Hoteit, I.: Submesoscale processes in the upper Red Sea, Journal of Geophysical Research: Oceans, 127, e2021JC018015, https://doi.org/10.1029/2021JC018015, 2022. a
Short summary
In the ultra-oligotrophic Eastern Mediterranean, winter phytoplankton blooms are enhanced by submesoscale horizontal stirring. Satellite data and simulations show these currents transport chlorophyll-rich coastal waters offshore, contributing ~24.8 % to the seasonal surface chlorophyll increase. This highlights the key role of horizontal processes in bloom dynamics and ecosystem regulation.
In the ultra-oligotrophic Eastern Mediterranean, winter phytoplankton blooms are enhanced by...