Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-945-2025
https://doi.org/10.5194/os-21-945-2025
Research article
 | 
27 May 2025
Research article |  | 27 May 2025

Flow patterns, hotspots, and connectivity of land-derived substances at the sea surface of Curaçao in the southern Caribbean

Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille

Related authors

Using surface drifters to characterise near-surface ocean dynamics in the southern North Sea: a data-driven approach
Jimena Medina-Rubio, Madlene Nussbaum, Ton S. van den Bremer, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-3287,https://doi.org/10.5194/egusphere-2025-3287, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
The effect of advocacy on perceived credibility of climate scientists in a Dutch text on greening of gardens
Erik van Sebille, Celine Weel, Rens Vliegenthart, and Mark Bos
EGUsphere, https://doi.org/10.5194/egusphere-2025-3131,https://doi.org/10.5194/egusphere-2025-3131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
How frames and narratives in press releases shape newspaper science articles: the case of ocean plastic pollution.
Aike Vonk, Mark Bos, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-2216,https://doi.org/10.5194/egusphere-2025-2216, 2025
Short summary
Designing and evaluating a public engagement activity about sea level rise
Nieske Vergunst, Tugce Varol, and Erik van Sebille
Geosci. Commun., 8, 67–80, https://doi.org/10.5194/gc-8-67-2025,https://doi.org/10.5194/gc-8-67-2025, 2025
Short summary
Possible provenance of IRD by tracing late Eocene Antarctic iceberg melting using a high-resolution ocean model
Mark V. Elbertsen, Erik van Sebille, and Peter K. Bijl
Clim. Past, 21, 441–464, https://doi.org/10.5194/cp-21-441-2025,https://doi.org/10.5194/cp-21-441-2025, 2025
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Coastal and near-shore processes
Extreme sensitivity of the northeastern Gulf of Lion (western Mediterranean) to subsurface heatwaves: physical processes and insights into effects on gorgonian populations in the summer of 2022
Claude Estournel, Tristan Estaque, Caroline Ulses, Quentin-Boris Barral, and Patrick Marsaleix
Ocean Sci., 21, 1487–1503, https://doi.org/10.5194/os-21-1487-2025,https://doi.org/10.5194/os-21-1487-2025, 2025
Short summary
Coupling of numerical groundwater–ocean models to improve understanding of the coastal zone
Jiangyue Jin, Manuel Espino, Daniel Fernàndez-Garcia, and Albert Folch
Ocean Sci., 21, 1407–1424, https://doi.org/10.5194/os-21-1407-2025,https://doi.org/10.5194/os-21-1407-2025, 2025
Short summary
Monsoonal influence on floating marine litter pathways in the Bay of Bengal
Lianne C. Harrison, Jennifer A. Graham, Piyali Chowdhury, Tiago A. M. Silva, Danja P. Hoehn, Alakes Samanta, Kunal Chakraborty, Sudheer Joseph, T. M. Balakrishnan Nair, and T. Srinivasa Kumar
Ocean Sci., 21, 1369–1393, https://doi.org/10.5194/os-21-1369-2025,https://doi.org/10.5194/os-21-1369-2025, 2025
Short summary
Coupling ocean currents and waves for seamless cross-scale modeling during Medicane Ianos
Salvatore Causio, Seimur Shirinov, Ivan Federico, Giovanni De Cillis, Emanuela Clementi, Lorenzo Mentaschi, and Giovanni Coppini
Ocean Sci., 21, 1105–1123, https://doi.org/10.5194/os-21-1105-2025,https://doi.org/10.5194/os-21-1105-2025, 2025
Short summary
Wave-resolving Voronoi model of the Rouse number for sediment entrainment
Johannes Lawen
Ocean Sci., 21, 877–896, https://doi.org/10.5194/os-21-877-2025,https://doi.org/10.5194/os-21-877-2025, 2025
Short summary

Cited articles

Andrews, J. C. and Gentien, P.: Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: A solution to Darwin's question?, Mar. Ecol. Prog. Ser., 8, 257–269, https://doi.org/10.3354/meps008257, 1982. 
Bak, R. P., Nieuwland, G., and Meesters, E. H.: Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire, Coral Reefs, 24, 475–479, https://doi.org/10.1007/s00338-005-0009-1, 2005. 
Barron, C. N., Kara, A. B., Martin, P. J., Rhodes, R. C., and Smedstad, L. F.: Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM), Ocean Model., 11, 347–375, https://doi.org/10.1016/j.ocemod.2005.01.004, 2006. 
Beier, E., Bernal, G., Ruiz-Ochoa, M., and Barton, E. D.: Freshwater exchanges and surface salinity in the Colombian Basin, Caribbean Sea, PLoS One, 12, e0182116, https://doi.org/10.1371/journal.pone.0182116, 2017. 
Download
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Share